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Abstract

Background: The design and performance of a new development prosthesis system
known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis
system was implemented by replacing the Bowden tension cable of body powered
prosthesis system using two ultrasonic sensors, two servo motors and
microcontroller inside the prosthesis hand for transradial user.

Methods: The system components and hand prototypes involve the anthropometry,
CAD design and prototyping, biomechatronics engineering together with the
prosthetics. The modeler construction of the system develop allows the ultrasonic
sensors that are placed on the shoulder to generate the wrist movement of the
prosthesis. The kinematics of wrist movement, which are the pronation/supination
and flexion/extension were tested using the motion analysis and general motion of
human hand were compared. The study also evaluated the require degree of
detection for the input of the ultrasonic sensor to generate the wrist movements.

Results: The values collected by the vicon motion analysis for biomechatronics
prosthesis system were reliable to do the common tasks in daily life. The degree of
the head needed to bend to give the full input wave was about 45° - 55° of rotation
or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of
rotation to do the daily tasks but did not achieve the maximum degree of rotation.

Conclusion: The new development of using sensor and actuator in generating the
wrist movements will be interesting for used list in medicine, robotics technology,
rehabilitations, prosthetics and orthotics.

Keywords: Anthropometrics in designing prosthesis, Biomechatronics in prosthesis,
Motion analysis, Transradial prosthetics
Background
Functional prosthetic hands can be classified into two parts; body powered prosthesis

(uses tension cable) and externally powered prosthesis (electrically powered). Body

powered prosthesis has a few other types based on need of the amputees [1-4]. The advan-

tage of this type of prosthesis is the same like other types of prosthesis such as it is moder-

ate in terms of its cost and weight. Other than that, it has high sensory feedback and easy

to be learnt. The disadvantages of this type of prosthesis are it is not cosmetically very well

and the user needs to teach some gross limb movements [5]. Usually the movements

require high force at the shoulder to pull the tension cable (known as Bowden cable)
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until the movement of the task are assigned. The common tasks that can be done by

this body powered prosthesis are usually pick and place which involved the move-

ment of the wrist part namely pronation/supination and flexion/extension [6-11].

From the statistics values shown in many research, the transradial cases is the major

population compared to other types of amputation cases [12-14]. Moreover, researchers

also found that quite a number of amputees have reported the low wearing period of

prosthesis with the dissatisfaction in terms of low functional in community and annual

daily life activities (ADLs), cosmetic appearance and the discomfort of harness [2].

Supination/pronation and flexion/extension of the wrist are the frequently used motion in

our daily life and thus the evaluation towards these motions is necessary to be carried out

for better improvement. The combination of prosthesis motion with the compatibility of

the subject by worn it is the important part need to be considered in this study.

Biomechatronics had made the combination of robotics and prosthetics become

together. The system usually operated by applying input from sensor that will transmit

the data to the controller to move the DC or servo motor [5,15-20]. Brain – computer

interface (BCI) using the input from the brain to transmitted the input [21,22], while

Pneumatic glove using the nerve from the amputation level to get data [19].

Current robotics technology is moving synchronously with this prosthetics area. Both

body powered prosthesis and also externally prosthesis can be combining together into

one system in order to bring a new development in the prosthetics technology. This

paper presents the new development of prosthesis system that used ultrasonic sensors

as the replacement for the Bowden tension cable. The system was implemented by two

ultrasonic sensors, two servo motors and microcontroller inside the prosthetics hand

for transradial user (refer Figure 1). The paper will discuss the method of motion be-

tween the shoulder’s ultrasonic sensor and the head, the anthropometry of transradial

prosthetic designs, and experimental performance of each wrist movements that using
Figure 1 New development of the biomechatronics wrist prosthesi using ultrasonic sensors as the
input, servo motors as the output and microcontroller.
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servo as an actuator. The related study has been described by the authors in previous

studies [23,24].

Methods
Biomechatronics wrist prosthesis

The biomechatronics wrist prosthesis hand basically used ultrasonic sensor to transfer

any motion detection data to the microprocessor and microcontroller-based system.

The ultrasonic sensor is one of the most accurate and reliable measurement tools to

determine human motion intensity [7]. An ultrasonic sensor used the transmitted and

received wave to get the reflection of any motion within 0-15 cm. The sensor is attached

to the amputee’s shoulder to replace the tension cable in body powered prosthesis

[11,23,24]. The full figure of the mechanism is shown in Figure 2, instead of using only

motion detection; the patient does not have to worry about training his muscle movement

to operate the system as compared to the body powered that using the tension cable.

The Arduino microcontroller circuit functions as the main controller of the system that

will control the main input and output of the system. The microcontroller is chosen for

its ability to determine any type of output/input system either in analogue or digital form.

Besides, it has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6

analogue inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP

header, and a reset button. The programme is stored in ROM (read only memory) and gen-

erally does not change. A microcontroller also takes input from the device and controls the

device by sending signals to different components in the device. It contains everything
Figure 2 Structure of the new biomechatronics wrist prosthesis. Noted that the ultrasonic sensors
were attached on the shoulder to rotate the servo motor placed inside the prosthesis hand.



Abd Razak et al. BioMedical Engineering OnLine 2014, 13:49 Page 4 of 14
http://www.biomedical-engineering-online.com/content/13/1/49
needed to support the microcontroller; simply connect it to a computer with a USB cable

or plug it with a AC-to-DC adapter or battery to get started. The advantage of using

Arduino microcontroller is that the program memory is integral to the chip and it is small

in size, which is also due to its on-board memory.

The sensor that functions as the input will then generate the data into the microcon-

troller system that is placed inside the transradial part. This part of the transradial also

consists of two servo motors that operate as the replacement of motion of the exten-

sion/flexion and supination/pronation movements. The servo motor also has its degree

of rotation limit similar to the wrist movement of the biological human hand. Servo

motor is able to generate a maximum of 30 Nm of torque, which is greater than the

required power to do daily tasks that usually need only around 10-30 Nm [1]. Servo 1

can generate the pronation/supination movement while Servo 2 is used in flexion/

extension movement. The power supply for the system comes from the 9 V batteries

that is well-known because it is very light in weight and long lasting. Servo motor is

used as the output of the prosthetics system. There are a few types of motor used to

design a robotic system. Some common examples are the servo motor, stepper motor

and DC motor. All of them have their own classifications, advantages and disadvantages.

But, the most common motor used in robotic system is usually the servo motor. Besides

having high torque, servo motor has a capability to rotate precisely according to the

degree assigned. For this system, the capability of the servo to generate the motion is

required. The chosen maximum torque that can be applied by the servo is 13Nm. This

is because in designing the prosthetics hand, it needs to deal with the high rate motion

such as to pick and place motion and rotation motion.

Protocol approval

The subject was selected from the University Malaya Medical Centre (UMMC), Kuala

Lumpur. The inclusion criteria consist of a minimum 12 cm residual limb length

(from the radii and ulna bone until end of residual limb), no wound and ulcers in the residual

limb, and the ability to flexion/extension of elbow without the use of assistive devices. The

subject was also considered for participation if they had used prosthesis in the last 2 years.

All human test protocols were approved by the University of Malaya Medical Centre Ethics

committee, and subject’s written informed consent was obtained before data collection.

Anthropometry height analysis

The uses of anthropometry are to study the physical measurement of the human body

by classifying them into few classifications such as sex, weight, height, and age. Most of

these needs are satisfied by basic linear, area and volume measures [25]. However, hu-

man body motion usually requires more specific data such as the torque, force, angular

velocity and man power.

Based on Drillis and Contini theorem [23,24,26], the body segment length can be

defined according to the measurement of its height. Then the height will be multiply

accordingly to each segment index for example 0.146 H for the transradial part [26].

In order to design the transradial prosthetics that is suitable for Malaysian, the full

data of average Malaysians’ heights and weights were collected from the Kuala Lumpur

Hospital (HKL) in 2000 [27]. The data show that the average of human height in Malaysia

is 1.64 m for male and 1.53 m for female.
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The data were measured among 200 adults in Malaysia with the age from 20 and

above. Table 1 show that the transradial segment of a normal human is about 0.24 m

for male and 0.22 m for female. These values are the transradial part that covers from

the below elbow until the hand. But, to design the transradial prosthetic hand, the

range should be lower than those values since the patient needs to slot in the remained

residual limb into the socket. The length of the transradial prosthetic hand is very im-

portant when we deal about the balancing and stability of human body movement. The

length must be suitable to be worn by the amputee and synchronous with the length of

the other side of the hand. Otherwise, the hand would look awkward and is not com-

fortable to be worn.

Anthropometry mass analysis

Human body segment has a lot of criteria to be considered especially the balance of the

cross-section between the left and right sides of the body. The left side of the body

usually has almost similar mass with the right side of the body [26]. This is the main

criterion for human body mass because it involves walking, running, moving and

even standing. If the body segment is imbalanced, it would interrupt the body move-

ment and the other side of the body needs to be trained to cope with the imbalance.

Figure 3 show example of imbalance body structure cause by wearing heavier pros-

thetic. The mass for the transradial segment can be calculated by multiplying the

total mass of the human body with 0.00160. The usual mass of the transradial part

for Malaysian male in average is about 0.95 kg [27].

Table 2 shows the mass that need to be considered to maintain the movement of the

amputee and make it feels comfortable by wearing the transradial prosthetics. The de-

tails of the actuator mass are also shown in the Table 2. The outer part of the design

uses the polypropylene materials and plaster of paris bandage that give the total mass

of the design to be only about 0.69 kg. The value is much lesser compared to the exact

mass of human hand that is about 0.95 kg.

By using anthropometrics data [26], the human hand mass is about 0.36 kg, plus the

transradial prosthetics mass about 0.69 kg, the total mass of the below elbow hand is

about 1.05 kg, which is lighter compared to the actual mass of human hand and com-

pared to the body powered prosthesis and myoelectric prosthesis mass. The design is

more comfortable since it mimics the actual mass and length of human hand.

The measurement of the average length and mass of transradial prosthetics was then

designed using computer aided drafting (CAD). The dimensions followed the criteria of

the subject by taking the amputation level as the main requirement. The CAD dimen-

sion gave further view on the space and the dimensions of the actuator and the sensor.

The transradial prosthetics used the value of length that was based on the subject’s
Table 1 Average height and segment length of hand for Malaysian population [27]

Average male
height (m)

Average female
height (m)

Sample/population/
age range

Methodology

1.65 1.53 20+ measured

Length of segment Shoulder (m) Transhumeral (m) Transradial (m) Hand (m)

Male 0.21 0.31 0.24 0.18

Female 0.20 0.29 0.22 0.17



Figure 3 Sample of Imbalance body structure.
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dimensions that were measured earlier. The design considered the level of transradial

amputation and the segment of the actuator such as circuit board and motor.

Angle for sensor detection

The ultrasonic sensor wave has been programmed to detect any motion within the

range of 0-15 cm and is placed on the shoulder. The motion of head to the left and

right sides or the upside and down sides of the shoulder will give the detection to the

ultrasonic sensor. Figure 4 shows how the motion of the head and the shoulder gives

the detection to the wave of ultrasonic sensor. Generally, the ultrasonic sensor detects

about 200-300 cm range if the user is inside a building or a room. The range will be re-

duced immediately after the head blocks the wave signal and will be continued until

the range is about 15 cm [23,24]. The reason to choose the ultrasonic sensor and not
Table 2 Mass distribution of the biomechatronics wrist prosthesis

Mass of 1 unit No of unit Total mass Overall mass

(kg) (kg) (kg)

Biomechatronics wrist design

Servo motor 0.06 2 0.12

Arduino circuit board 0.03 1 0.03

9V battery 0.03 1 0.03

6V battery 0.01 1 0.01

Wiring 0.01 0.01

Interior prosthetics 0.19

Exterior prosthetics 0.50 0.50

Prosthetics 0.69

Normal male Hand 0.36

Normal male Hand + Forearm 1.31

Transradial Prosthetics + Hand 1.05



Figure 4 Ultrasonic wave detection between the shoulder and the head of the user.
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other sensors such as IR sensor is because the ultrasonic sensor is more accurate in

reading the receiver value. For example, it is reading in an integer value and directly

can be understood by HMI (human machine interface) rather than in binary if IR sen-

soris used. The ultrasonic sensor also does not reflect because of the types of material

or the colour of the obstacle. It will only deflect because of the other types of wave or

frequency. For example, it will work very low if it is put too close between each others.

Motion analysis for wrist movements

The experiment setup uses the combination of six MX-F20 infrared cameras into the

Vicon Nexus 6.1.109 that makes up the capture system used in this study. The six

MX-F20 cameras were positioned at each corner of the room and the midpoint of

the room’s width. Afterwards, only object within this area may be detected by the

motion signal. The calibration for using the MX-F20 was carried out by using the

Vicon Nexus to give a full measurement and dimensions of the room. Each and every

time the subject moves, it will give an orientation to the cameras to capture the mo-

tion. The Vicon software allows the motion to reconstruct a 3D image in space based

on the calibration done. The calibration of the system needs to be calibrated each

and every time during the trials. Even though the cameras are well-mounted on the

wall but the area of the room may be interrupted from time to time and the detection

of the cameras may be changed. Static and dynamic calibrations were carried out be-

fore the trials begin. For the static calibration, the object needs to stand at the centre

of the system while for the dynamic calibration; the object needs to move from one

place to another. This procedure is usually to make sure that all of the cameras work

properly and the data transferred are correct [23,24].

The detection of any motion within the area of the cameras depends on the reflection

of the markers. The dimensions are about 14 mm in diameter and there are 32 markers

positioned all around the body (refer Figure 5 and Table 3). During the experiment, the

markers are placed on both of the normal and amputation subject. In order to have a

full view of movement, the markers are put all around the body instead of on transra-

dial part only. To have accurate results, the subject was advised to wear tight dress to

prevent artefacts from the movement of loose dress. This is because the camera cap-

tures any movement of the markers [23,24].



Figure 5 Body marker placement.
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The motion analysis comparison of degree rotation is the main interest in this study.

The subject completed four simulated wrist general movements, which are pronation/

supination and flexion/extension. Table 4 show the average of degree of movements for

each motion. For the extension and flexion, the subject was asked to use the biomecha-

tronics wrist prosthesis and moved it from the initial position to the final position. The

maximum and minimum results were based on the degree of rotation.

The subject repeated the task five times and they were compared with the biological

hand movement. Basically, the subject was asked to do each task separately, such as

moving the flexion from initial position until the maximum position, moving the exten-

sion from initial position to final position, moving the supination from the initial pos-

ition to final position, and moving the pronation from the initial position to final

position.
Results and discussions
Pronation of wrist motion means that the wrist part rotates about 90 degrees into body

segment [12]. Normal human hand usually rotates the pronation between 85 to 90 de-

grees depending on the task [13]. Supination is where the forearm rotates where the

palm faces up. The degree of rotation is also usually between 85 to 90 degrees depend-

ing on the task [13]. The tasks include opening a door, holding a cup, and driving a car

that will bring an effect to the transradial prosthetics user [2]. Wrist flexion and



Table 3 Marker labels, definitions and positions

LFHD Left front head Located approximately over the left temple

RFHD Right front head Located approximately over the right temple

LBHD Left back head Placed on the back of the head

RBHD Right back head Placed on the back of the head

FORE Forehead Middle anterior aspect of forehead

LEAR Left ear Left ear canal

REAR Right ear Right ear canal

C7 7th Cervical vertebrae Spinous process of the 7th cervical vertebrae

T10 10th thoracic vertebrae Spinous Process of the 10th thoracic vertebrae

CLAV Clavicle Jugular notch where the clavicles meet the
sternum

STRN Sternum Xiphoid process of the sternum

RBAK Right back Place in the middle of the right scapula

LSHO Left shoulder Placed on the acromioclavicular joint

LUPA Left upper arm
marker

Place on the upper arm
between elbow and shoulder

LELB Left elbow Place on lateral epicondyle approximating elbow
joint

LMEL Left medial elbow Place on medial epicondyle approximating elbow

LFRA Left forearm Place on the lower arm between the wrist and
elbow

LWRA Left wrist marker A Left wrist bar thumb side

LWRB Left wrist marker B Left wrist bar pinkie side

LFIN Left fingers Actually placed on the dorsum of the hand

LASI Left ASIS Place directly over the left anterior superior iliac
spine

RASI Right ASIS Place directly over right anterior superior iliac spine

LPSI Left PSIS Place directly over left posterior superior iliac spine

RPSI Right PSIS Place directly over right posterior superior iliac
spine

SACR Sacral wand Place on the skin mid-way (PSIS).

LILC Left iliac crest Place on the mid-superior aspect of the left iliac
crest

RILC Right iliac crest Place on the mid-superior aspect of right iliac crest

LKNE Left knee Place on the lateral epicondyle of the left knee

LMKN Left medial knee Place on the medial epicondyle of the left knee

LTHI Left thigh Place over the lower lateral 1/3 surface of the
thigh.

LHIP Left hip Superior aspect of greater trochanter

LANK Left ankle Place on the lateral

LMAN Left medial ankle Place on the medial malleolus

LTIB Left tibial wand marker Similar to the thigh markers

LTOE Left toe Place over the second metatarsal head

LHEE Left heel Place on the calcaneus

LHAL Left hallux Anterior surface of left hallux (big toe)

LMT1 Left metatarsal 1 Medial aspect of head of left metatarsal one

LMT5 Left metatarsal 5 Lateral aspect of head of left metatarsal five
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Table 4 The maximum, minimum and range of motions (in degrees) during each task

Range of motion (ROM): biological hand Range of motion (ROM): biomechatronics wrist prosthesis

Type of motion Test 1 Test 2 Test 3 Test 4 Test 5 SD Average (ROM) Test 1 Test 2 Test 3 Test 4 Test 5 SD Average (ROM)

Flexion 21 21.5 20.3 21.9 20.2 0.74 20.6 ± 0.74 18.7 22 24 17 19.2 2.27 22.4 ± 2.27

Extension 55 57 57 56 57 0.89 57.3 ± 0.89 40 39 41 41 40 0.84 41 ± 0.84

Pronation 55 54.6 55.2 55.7 55.4 0.41 55.7 ± 0.41 50 49.8 50.1 50 50 0.11 50.4 ± 0.11

Supination 50.2 47.2 48.4 51.2 50.2 1.61 50 ± 1.61 89.7 88.7 88.9 89.1 89.8 0.49 89.3 ± 0.49
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extension usually occur when we open a door or we put our arm up and down. The

usual range of degree for flexion is about 80° - 90° maximum and can be extended be-

tween 70° - 90°. This degree is the maximum criteria of the wrist flexion and extension

task. If we want to have higher degrees then other aspects need to be controlled such

as finger and elbow extension and flexion [2,13].

Table 4 simplifies the results by taking the relevant values and the averages are stated

in maximum, minimum and range of each motion for the wrist movement. A problem

occurred to the marker that was placed at the wrist because the position was only cov-

ered by one marker and the degree of rotation may change reliability. While doing the

flexion movement, the range of normal hand motion was 20.7° in average while the

prosthetics showed about 22.9° in average. The maximum of the hand flexion is usually

85°-90° but the value depends on how we stretch our muscle to reach that position

[13]. The extension motion for both normal hand and prosthetic hand gave about 57°

and 41°, respectively. The biomechatronics wrist prosthesis gave a lesser value due to

the capability of the servo motor after several tests but the degree was already enough

to do daily tasks that involve the extension motion. These two extension and flexion

motions showed that the needed requirements to do daily tasks such as opening a door

and filling a cup can be done.

For the pronation movement, the range of rotation of the prosthetic hand was about

55.7°. That was almost the same with the normal hand that showed 50.4° range of rota-

tion. The pronation movement for the daily tasks is usually between the 85° - 90°. Even

though the required range is higher, the degree of rotation between the normal hands

with the biomechatronics wrist prosthesis was quite similar to each other. The supin-

ation movement usually only takes about 50° - 55°, which is similar to the motion for

normal hand that gave about 50° of rotation [2]. But, the biomechatronics wrist pros-

thesis showed higher degree of rotation that almost achieved the maximum level of

89.3° of rotation.

Table 3 shows the system beginning from the input until the output of the motion

analysis. The first column is about the input system that used the head motion in order

to assign the input wave to the ultrasonic sensor. The degree of the head needed to

bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16

cm. The second column is about the degree of rotation of the servo motor to generate

the motion. The last column is about the rotation of motion (ROM) by using motion

analysis.

The biomechatronics wrist prosthesis on the other hand, gave higher degree of rota-

tion to do the daily tasks but did not achieve the maximum degree of rotation. There

were some data that showed lower degree of rotation. This was due to the lack of

power supply after doing several trials. It was also due to the servo motor rotation that

had its own inertia to generate a motion. The degree of rotation was then changed due

to the programming system of the microcontroller and also the capability of the motor.

But the objective to produce a prosthesis hand that gives similar capability of wrist

movements like the normal hand was achieved.

Based on Figure 6, almost all of the results gave a similar sinusoidal graph, but in

terms of robotics principle, the degree of each rotation can be maximised up to 90°

[28]. The 2R (two rotational) robotics theoretically can achieve up to 90°. But the re-

sults only gave the required rotation. Based on the graph in Figure 6, most of the



Figure 6 Input, output and motion analysis of biomechatronics wrist prosthesis system.
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motions done by the robotic servo motor displayed a sharp slope than the motion done

by human hand.

This was due to the characteristics and speed mechanism of the motor. Human hand

gave smooth and dynamic motion but the biomrchatronics wrist prosthesis gave a di-

rect synchronous motion. That is why the slope of each motion was slightly different

but at the end the results showed similar position. This is not a problem to the system

since the speed and also the characteristics are greater than the human hand motion.
Study limitations

The used of ultrasonic sensor attached at the shoulder of the subjects may interrupt

the motion of head and shoulder in general condition. Any movements by the head or

the shoulder may lead to generate any motion even it is not desired by the subjects.

For further development, the switch may be include within the prosthetics that can be

on and off whenever need as to avoid any in coincident of movements generate by the

prosthesis. From the anatomical aspect, the motion of head and neck may interrupt the

cervical joints and muscle between them. But comparing the effect of muscle tension

given by head and neck was not as great as muscle tension for shoulder motion when

using cable type prosthetics hand. Even the system cannot be consider as full achieve-

ment for developing prosthetics hand, but the placement of tension cable from body

powered prosthesis to ultrasonic sensor may lead to a new finding in developing this

area. At the same time the system helps reduce the power from shoulder to generate

motion.

By using the servo motor to generate the pronation/supination and flexion/extension

was a challenge in this research. The degree of freedom for the servo motor even

though can be precisely and accurately but still giving a less rotation to achieve the

maximum desire rotation as normal human hand. However, this can be counter by

selecting other type of servo that gives higher rotation. But the development to replace

the previous body powered prosthetics with the instalment of new technique using

ultrasonic sensor and servo motor will be interesting for used list in medicine, robotics

technology, rehabilitations, prosthetics and orthotics.
Conclusion
This paper presented the design and development of new technique in generating wrist

movements by using ultrasonic and servo as main sensor and actuator. The design

prototype involves the anthropometrics to find the suitable measurement and size for

prostheses in Malaysia. The size and measurement depends on the weight and size of

each sensor, actuator and microcontroller that include inside the prosthetics hand. The

replacement of ultrasonic sensor for the cable type prosthesis bring more comfort to

the user and at the same time neglect the shoulder-muscle pain when generating the

prosthesis.
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