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Abstract

Introduction: Hyperspectral imaging has been used in dermatology for many years.
The enrichment of hyperspectral imaging with image analysis broadens considerably
the possibility of reproducible, quantitative evaluation of, for example, melanin and
haemoglobin at any location in the patient's skin. The dedicated image analysis
method proposed by the authors enables to automatically perform this type of
measurement.

Material and method: As part of the study, an algorithm for the analysis of
hyperspectral images of healthy human skin acquired with the use of the Specim
camera was proposed. Images were collected from the dorsal side of the hand. The
frequency A of the data obtained ranged from 397 to 1030 nm. A total of 4'000 2D
images were obtained for 5 hyperspectral images. The method proposed in the
paper uses dedicated image analysis based on human anthropometric data,
mathematical morphology, median filtration, normalization and others. The algorithm
was implemented in Matlab and C programs and is used in practice.

Results: The algorithm of image analysis and processing proposed by the authors
enables segmentation of any region of the hand (fingers, wrist) in a reproducible
manner. In addition, the method allows to quantify the frequency content in
different regions of interest which are determined automatically. Owing to this, it is
possible to perform analyses for melanin in the frequency range A£(450,600) nm
and for haemoglobin in the range A,€(397,500) nm extending into the ultraviolet for
the type of camera used. In these ranges, there are 189 images for melanin and 126
images for haemoglobin. For six areas of the left and right sides of the little finger
(digitus minimus manus), the mean values of melanin and haemoglobin content
were 17% and 15% respectively compared to the pattern.

Conclusions: The obtained results confirmed the usefulness of the proposed new
method of image analysis and processing in dermatology of the hand as it enables
reproducible, quantitative assessment of any fragment of this body part. Each image
in a sequence was analysed in this way in no more than 100 ms using Intel Core i5
CPU M460 @2.5 GHz 4 GB RAM.

Keywords: Hyperspectral imaging, Image processing, Measurement automation,

Segmentation
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Introduction

The use of imaging in dermatological diagnosis is currently a very rapidly growing
branch of medicine and computer science. Computer-assisted medical diagnosis gives
much wider possibilities than the methods of traditional evaluation performed by a
medical diagnostician. The results obtained from computer analysis are automatic, re-
producible, calibrated and independent of human factors related to both the patient
and the medical diagnostician who performs the examination. The most common
methods of imaging are infrared and visible light. In this respect, the methods of assess-
ment of various types of dermatological conditions based on simple methods of image
analysis and processing are extremely popular. In thermal imaging, temperature
changes resulting from the imaged diseases such as melanoma as well as thermal
effects of the performed dermatological treatments are analysed automatically. As
for imaging in visible light, a group of methods which enable morphometric mea-
surements or profiled methods of image analysis and processing are used, for ex-
ample, to determine the brightness of the RGB components in a segmented skin
area. Hyperspectral imaging, which is also used in dermatology, offers much wider
capabilities. Multispectral images are acquired using profiled multispectral cameras
working in different spectra ranges. Additionally, depending on the frequency and
spectrum range, various types of illuminators are used. Matching these two ele-
ments (camera and illuminator) is extremely important because of the need to ob-
tain a flat spectrum of the illuminator (lamp) in the range covered by the camera.
In this range of light, for example, the visible one, it is possible to observe melanin
or haemoglobin at a desired location on the skin. This observation is associated
with image analysis enabling automatic and reproducible measurements independ-
ent of interindividual variability.

The methods of image analysis and processing used in hyperspectral imaging of
any object (not necessarily a medical one) can be divided into several groups,
namely morphological methods [1-6], statistical methods [7-9] and profiled algo-
rithms for selected applications. Among the morphological methods, there are clas-
sical approaches [1,2,4] and those profiled to the analysis of image sequences [5,6].
The statistical methods are dominated by texture analysis [7-9] which is used as a
set of features for classification and recognition. So far, profiled algorithms have
been applied to face recognition [10], analysis of skin areas [11], and others [12].
These methods mainly dominate in the segmentation of specific objects [13]. On
the basis of segmented objects, their morphometric measurements or analysis of
their texture are performed [9]. These are, for example, methods which enable to
assess the difference in absorption of radiation by skin chromophores such as hae-
moglobin or melanin.

The amount and distribution of melanin is in fact an important factor determining,
inter alia, the efficacy and safety of treatments in aesthetic medicine with the use of la-
sers and ILP. In hyperspectral imaging of melanin and haemoglobin, only qualitative
analyses of the results obtained are known [14-16]. Therefore, there is a need to object-
ify the results obtained and to propose fully-automatic measurements of progression
and changes of melanin or haemoglobin in the skin of the hand.

The aim of the analysis is to determine melanin and haemoglobin quantity in selected
areas of the right hand by using hyperspectral imaging.



Koprowski et al. BioMedical Engineering OnLine 2014, 13:47 Page 3 of 15
http://www.biomedical-engineering-online.com/content/13/1/47

Material

As part of the study, an algorithm for the analysis of hyperspectral images of human,
healthy skin acquired with the use of the Specim PFD-V10E camera was proposed. Im-
ages were derived from the human hand having 2 Fitzpatrick skin phototypes. Individ-
ual hands were illuminated with a typical lamp with flat spectral characteristics in the
required range (based on HgAr emission for the VNIR spectral range). The images
were obtained retrospectively during routine medical examinations carried out in ac-
cordance with the Declaration of Helsinki. As for the described algorithm, no studies
and experiments were carried out on humans. The resulting data were anonymized and
stored in the output format, source 'dat' (ENVI File). The frequency A of the data ob-
tained ranged from 397 to 1030 nm. Each image was recorded every 0.79 nm, which in
total gave 800 2D images for each patient. The resolution M x N (number of rows and
columns) of each image for the selected frequency was 899 x 1312 pixels. For the fixed
distance of the object from the camera and the set focusing parameters, there was a
square area covering the range 130 x 130 um per each pixel. A total of 4'000 2D images
were obtained for 5 hyperspectral images. These images are subject to further analysis.

Method
Preprocessing

Input files with the extension *.dat containing a sequence of images are reorganized in
the preliminary stage. This process (Figure 1) concerns the change in the organization
of individual rows and columns obtained for different wavelengths to the sequence of
images Lgray(m,n,1), where m and n are row column coordinates and the wavelength 1
respectively, for which the image was acquired. The number of rows and columns and
the wavelength for each image are automatically read from the file *hdr. This file also
contains information about the data format (e.g. data type 4 - float 32 bits) and other
elements that need to be taken into account when reading such data (wavelength units,

~

m=3

Lerar{m,n,A=const.)

M times

*.dat file

one line

Figure 1 Diagram of the acquisition and organization of data *.dat. The various stages of data analysis
and reorganization are performed automatically. A hyperspectral camera saves each row sequentially for
individual wavelengths A. In subsequent stages of processing, they are converted to the image Lgpa/(m,nA).
The resulting image is further subjected to further processing steps.
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default bands, sensor type, interleave). For the analysed data, the image resolution M x N
was 899 x 1312 pixels.

Each of the images Lgray(m,n,1) is calibrated using the reference rows (used for the
calibration for a given range of the spectrum 1) [17-19], and then subjected to filtration
thus forming a new sequence of images L, (m,n,A). This is median filtration with a
mask /15, sized 3 x 3 pixels. The mask size was chosen arbitrarily taking into account
the possible contamination of the optical path as well as the image resolution and the
size of the object [20-22]. A larger size of the mask /,, caused the removal of not only
noise but also small elements in the image which are substantively important. Conse-
quently, the size of 3 x 3 pixels remained. The final step of image pre-processing in-
volves normalization and removal of uneven illumination. In the case of normalization
of brightness levels, the range of minimum and maximum values in the image L(m,1,1)
is extended to the full range of brightness from 0 to 1, that is, the image after
normalization Lp(m,n,1) is equal to:

Ly (m,n,A) — miny, ,(Ly(m,n, 7))

Lp(m,n,A) = (1)

maXy, (LM(m, n,A) — miny, , (Ly(m, n,/l)))

It should be noted that this normalization also covers the area to be calibrated. For
this reason, the maximum brightness value equal to “1” after normalization corre-
sponds to 100% emission for the wavelength A. Removal of uneven illumination is re-
lated to the subtraction from the image Lp(m,mA) the image resulting from its
filtration, i.e.:

Le(myn,A) = Lp(m,n,A)
My Nia

My, Njo > )

Lp| m+m ——, n+ny ——=, 1) - hy(my,n
sz(( — , N (2, 1)
()

for me(M,,5/2, Mc-M,,5/2) and ne(Nj,5/2, Nc-Nj,/2).where:

M5 x N, resolution of the mask /1,
Lc(m,n,A) — output image after the removal of uneven illumination.

To acquire the output image L(m,1,1), its convolution with the mask /1, sized My, x N},
equal to 30 pixels was used. The mask size was selected on the basis of twice the maximum
size of the elements, objects visible in the image Lc(m,n,1), in this case it is 15 x 15,
i.e. M5 x Ny =30 x 30 pixels. Next, based on the images Lo(m,1,1) and Lp(m,n,A), the
appropriate stages of image analysis and processing are carried out.

Image processing
The images Lc(m,n,A) and Lp(m,n,A) resulting from the initial stage of image processing
are used for further processing steps. The image Lc(m,1,1) is further used in order to
isolate the region and the object of interest. The image Lp(m,1,1) is a measurable image
with respect to the value A.

Since the aim of the analysis is to determine melanin and haemoglobin quantity in se-
lected areas of the right hand, an important element is the location of characteristic
areas. These areas included the individual fingers from V; to V5 (pollex, index, digitus
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medius, digitus annularis, digitus minimus manus) and the metacarpus and wrist area
Vs. Automatic localization of these places (points) from V; to Vg was made based on
the pattern shown in Figure 2. Automatic recognition of individual locations (from V;
to Vg) for each of the patients was carried out based on a hierarchical approach. The
image Lc(m,n,A) is reduced to a resolution being 10% of the original resolution, that is
from the resolution 899 x 1312 pixels to 90 x 131 pixels using the nearest neighbour
method. The result is the image Lp(m,1,4,a) where a is the angle of rotation relative to
Lc(m,n,A). Then, the angle of the hand inclination « is roughly determined, i.e.:

M

a = arg(max <ZZLD(m,n,/1,a)>> (3)
@ o\

and a€(0°,180°).

The obtained result is the value of the rotation angle a* at which the hand image
must be rotated for each wavelength A so that it is placed in a horizontal position. The
rotation angle is constant for each A so it does not occur in the formula (3). The image
Lc(myn,)) rotated at the angle « is subjected to options for finding characteristic points
from V; to V. Detection of the position of characteristic points is carried out based on
the local minima found on the contour of the hand - Figure 3. The contour curve y(m) is
formed on the basis of the binary image Lz(m,n) resulting from binarization of the
image Lp(m,nA,a*) for the threshold p, determined automatically from the Otsu’s

formula [23], i.e.:

1 !f ZLD(WI,}?,A,(X) >pr
A
0 other

LB(m7n) = { (4)

The course of the curve y;(m) was determined on the basis of the position of the first
rows with the pixel values of “1” in the image Lg(m,n) for each column. Local minima,
which are highlighted in Figure 3, were also determined on this basis. In the present
case, these are the points V;, to Vi (the big finger is not fully visible). The point Vj is

sz p——
VW4
* Vs
Vw3 o
sz v
Vi1 o

Figure 2 Hand pattern used during matching to hyperspectral images. The division into individual
(points) areas from V,,; to Ve is performed automatically. For each area, a number of the finger from V,,,
to V,,s and the centre of mass of the wrist V,,¢ are assigned. In the upper part of the image, there is the
brightness pattern sized 100 x 1321 pixels. The distribution and size of the fingers is carried out based on
anthropometric data.
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Figure 3 Binary image of the hand Lg(m,n) and the course of the curve y,(m). The binary image of

the hand is acquired in a way which only enables to determine the position of the points V; to Ve. These

points are determined on the basis of the local minimum in the course y(m). They provide a further basis
for matching the pattern.

; i i vz, |
0 100 200 300 400V 4 50
m

00 800

the centre of mass of the wrist calculated on the basis of the image Lo(m,1) resulting
from the opening operation of the image Ly(m,n), i.e.:

Lo(m, n) = min(Lo(m, n)) (5)

where SE — square structural element sized 201 x 201.

The size of the structural element SE was selected on the basis of the maximum
width of the fingers - for the set distance of the camera and its focal length. In the tests
performed, the width of the biggest finger was no more than 200 pixels. On this basis,
the centre of mass of the wrist was determined as the coordinates 1,4 and 7,¢ of the
point Vg, i.e.
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The centre of mass of the wrist is necessary to roughly detect the position of the

(7)

hand relative to the pattern. After this stage, the positions of the individual points of
fingers, ie. Vi, V5, V3, V4 and Vs, are matched. Matching is performed on the basis of
minimization of the distance between the individual points of the pattern and the ana-
lysed image. For the points of the pattern Vi, Vi, Vi3, Vs and Vs, this is mi-
nimization of the criterion J:

i=5 i=5
J= Z (mw' - mwvi)2 + Z (nvi - nwvi)z (8)
=1 -1

where m,; and m,,; — coordinates of the points of the analysed image and the pattern
ie(1,5).

The value of the criterion J is calculated for the displacement of the points V7, V5, V3,
V4 and V5 in the range of +100 pixels in the axis of rows and columns. This range is
sufficient for searching for the minimum value of /. Examples of the obtained values of
the criterion J are shown in Figure 4. In this case, displacements amounting to -18
and -3 pixels in the axis of rows and columns respectively were obtained. This value

-100

A m [pixel] A n [pixel]

Figure 4 Graph of changes in the value of the criterion J as a function of Am and An. Depending on
the displacements of the points V; to Vs (Am and An), the value of the criterion J is calculated. One global
minimum occurring for the displacements —18 and —3 pixels in the axis of rows and columns respectively
is visible. This value provides information about the need to move the image of the patient so that it
would better (with respect to the criterion J) match the pattern.
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informs about the need to move the image of the patient so that it would better (with
respect to the criterion /) match the pattern. Final adjustment of the positions of the in-
dividual points of the fingers is performed on the basis of an analogous criterion. How-
ever, it applies to only one vertex V. A block diagram of the proposed algorithm is
shown in Figure 5, whereas matching the pattern to the patient's hand is shown in
Figure 6. The image Lp(m,n,)) corrected in terms of affine transformations is further
analysed in terms of the content of melanin and haemoglobin.

Acquisition of an
899x1312x800 image > Lomar
v 2
w
h Filtration >l O
(3x3) median filter 8
¥ ¥ g
a
- Remove
LPT Normalization background | ®Lc
| T—1—& hz
— ,} L t———"——(30x30)
Decrease >l
the resolution - 10% o
' F
Roughl | >
ou angle
ghly angle a >L.* o
] 3
pr > Binarization > s g
a
Center of
v;___ V5 < Curve yk(m) mass > V6
v v
Fit V1.V2,V3 Ve V5 Ve >»J
1
\ 4
Select fingers
Y
Calculation of melanin 2
and hemoglobin 5
=4
\ 4 <
Statistical analysis
|
v
Results

Figure 5 Block diagram of the proposed algorithm for image analysis and processing. The subsequent
algorithm blocks are profiled to the described issue. In the stage of pre-processing, interference is filtered out of
the input image after it is reorganized from the file * dat to the sequence of images. Next, the image is matched
to the pattern for the subsequent frames. In the final stage, it is analysed in specified areas.

Page 8 of 15
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Figure 6 Contours of melanin and haemoglobin images presented as components R-red and
G-green respectively. For melanin, it is the contour formed as the sum of hyperspectral images in the
frequency range As€(450,600) nm, whereas for haemoglobin this is the range A4€(350,500) nm. Within these
ranges, there are 189 images Lp(m,n\) for melanin and 126 images for haemoglobin. The image for melanin
and the result of automatic segmentation into characteristic areas, described in the paper, are shown on
top and separation into individual objects at the bottom.

The performed and described analysis enables automatic and reproducible determin-
ation of the position of individual areas of the hand. This process allows to perform fur-
ther analysis of the brightness of the specific wavelengths A. These lengths correspond to
the maximum emissivity of melanin and haemoglobin. For melanin, this is the frequency
range 1£€(450,600) nm and for haemoglobin it is 14€(397 nm,500 nm) extending into the
ultraviolet. Within these ranges, there are 189 images Lp(m,n,2) for the melanin and 126

images for haemoglobin. Accordingly, the image for melanin Lg(m,n) was determined as:

Le(m,n) = > Liy(m,n,2) (9)

1€(450,600)

and analogously for the haemoglobin L(m,n):

Ly(m,n) = Z Ly(m,n,A) (10)

1€(397,500)

The results obtained after brightness normalization are shown in Figure 6. The red
component is the image Lg(m,n), while the green component is the image Ly(m,n). The
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blue component was extinguished. The images Lg(m,n) and Ly(m,n) are the basis for
further analysis of the results. Additionally, owing to the applied matching to the pat-
tern, the division into individual fingers and the wrist is further used - Figures 6 and 7.

Results

The results of automatic division into the fingers and wrist of the human hand (Figure 6)
are further used in the tests. These analyses include automatic determination of the
changes in the spectrum absorption for different frequencies 1€(397,1030) for individual
fingers. To this end, along each finger, the mean along its symmetry axis (for subsequent
n) for a given frequency A was calculated. The obtained results for the sample calculations
of melanin are shown in Figure 8. For subsequent fingers, characteristic changes in the
intensity of each frequency A are visible. The last graph in Figure 8 shows changes in

Figure 7 Result of segmentation for individual wavelengths. The sample finger (V) was divided into
six areas from O, 4; to O, 4 for the left side and from O, 5, to O, for the right side. Within these areas, the
mean value of melanin and its standard deviation and proportions relative to the other areas are calculated.
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Figure 8 Graphs of changes in the value of spectrum for wavelengths A for the patient’s
subsequent fingers. The values on the axes are successive columns, wavelength A and brightness for the
selected wavelength. The last sixth graph shows the change of melanin along all five fingers of the patient.

The y-value is the mean value of brightness for Az€(450,600) nm. The colours of individual lines correspond
to the colours of the fingers shown at the bottom in Figure 6.

melanin along subsequent fingers. When approaching the wrist, an increase in the inten-
sity by about 10% to 20% can be observed. The division of one finger (vertex V) into dif-
ferent areas is shown at the bottom in Figure 7. The finger was divided into 12 areas, 6 on
the side “A” and 6 on the side “B” of the finger - that is from O, 4; to O 46 for the side A
and from O, p; to O, e for the side B respectively - Figure 7. These areas are automatic-
ally scaled depending on the size of the finger and other camera settings which may affect

the size of the object. The results of the average brightness intensity and standard
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deviation of the mean for each area are presented in Table 1. Between the sides A and B,
brightness changes are not greater than 1% (0545 Osp and O, 43, O p3). The standard
deviation of the mean is the highest for the areas of distal phalanges — areas O,4; and
O, ;. The situation is similar for haemoglobin - Table 2. The standard deviation of the
mean is a bit smaller than in the case of melanin — it oscillates around the brightness
value of 0.02. Higher brightness values exist for other wavelengths not included in the
calculation of melanin or haemoglobin - Figure 8.

Comparison with other authors’ results

The known results and methods presented by other authors can be divided into:

o Issues related to hyperspectral imaging involving image analysis and processing and
e Methods of analysis and processing of hand images that can be used in
hyperspectral imaging.

In the first case, hyperspectral imaging was used, inter alia, to analyse the saturation
of HbO, in people of different races (Zuzak [14,15]). Sampling from the hyposthenia
region of African-American controls, the area within the square on the image, the per-
centage of skin HbO, was 77.5 + 0.2%, which is similar to the skin HbO, percentage of
78.2 £ 0.2% in healthy Caucasian subjects. In contrast, the percentage of skin HbO, in
patients was significantly smaller and amounted to 61.0+0.2% (p <0.001). Percent
renal parenchymal oxyhaemoglobin was also analysed by Liu [24]. In [13], there are also
other results of analysis which is related only to the analysis of the whole ROI (region
of interest) marked manually by an operator. The use of hyperspectral imaging to as-
sess the time of the bruise formation is also interesting — Stam [25]. The inaccuracy
found is 2.3% for fresh bruises and 3 to 24% for bruises up to 3 days old. In Authors’
conclusion [25], colour inhomogeneity of bruises can be used to determine their age.
For example, the experiment results presented in [13] show that the hyperspectral
based method has the potential to identify the spinal nerve more accurately than the
traditional method as the new method contains both the spectral and spatial informa-
tion of nerve sections. There are many other areas of medicine where manual or semi-
automatic marking of regions of interest is used - analysis of vibrational Filik J. [26],
laparoscopic digital light processing — Olweny EO. [27], blood stains at the crime scene —
Edelman G. [28], prostate cancer detection — Akbari H. [29], histopathological examination
of excised tissue - Vasefi F. [30] diabetic foot ulcer - Yudovsky D. [31], cancer detection -
Akbari H. [32], and others.

In the other case, these are morphological operations used in the classification of
various types of artefacts visible in the image [1,2,5,6]. Other methods for classification
are also used such as SVM (support vector machines) [4], Gauss-Markov model [7] or

Table 1 The percentage of melanin for the sample finger (vertex V,) and its standard
deviation (STD) of the mean

0341 0242 Oza3 Oz44 Ozas 0246 O2p1 Ozp2 Ozp3 Ozps Ozps Ozps
Brightness 017 016 016 019 017 016 017 017 017 019 017 016

STD 0.06 0.02 0.03 0.02 0.01 0.02 0.05 0.02 0.03 0.02 0.01 0.02
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Table 2 The percentage of haemoglobin for the sample finger (vertex V) and its
standard deviation (STD) of the mean

02,A1 02,A2 02,A3 02,A4 02,A5 02,A6 O2,B1 02,82 02,83 02,84 02,85 02,86
Brightness 017 014 015 016 015 015 017 014 015 016 015 015
STD 004 002 002 001 001 001 004 002 002 001 001 001

wavelet method [9]. In the study of Dicker et al. [16], spectral library was gener-
ated with 12 unique spectra, which was used to classify specimens where sample
preparation was varied. Using a CT of 0.99 left large areas of the tissues unclassi-
fied. Lowering the minimum correlation coefficient to 0.99 enabled all the samples
to achieve >85% classification. The results referred mainly to the analysis of a hyper-
spectral image by analyzing the histograms obtained. Liu Z. et al. [12] propose a novel
tongue segmentation method that uses hyperspectral images and the SVM. The pre-
sented segmentation of the tongue allows to obtain reproducible and quantitative re-
sults. Benediktsson J. et al. [2] present results for a sequential use of morphological
opening and closure for the increasing size of the structural element. This method-
ology is similar to the use of conditional erosion and dilation as in [3]. In turn, Rellier
G. et al. [7] propose a probabilistic vector texture model, using a Gauss-Markov ran-
dom field (MRF). The MRF parameters allow the characterization of different hyper-
spectral textures.

In conclusion, the well-known studies related to using the methods for the analysis
and processing of images into hyperspectral images is dominated by morphological
analysis. Segmentation into specific areas refers to simple objects such as the tongue.
In each case the methods described are profiled to a particular application. Therefore,
the approach to the analysis of the hand proposed in this paper is an extension of these
methods into a new area and new dedicated analysis methodology.

Summary
The paper presents a method for the analysis of melanin and haemoglobin in the area
of the human hand. The characteristics of the described method are as follows:

e Repeatability of measurements owing to limiting of operator’s participation in the
study,

e Full automatic operation of the algorithm - the arguments for each algorithm func-
tion are set once when first starting the algorithm — as they only depend on the
type of the multispectral camera used,

o Dossibility of any quantitative (not qualitative) assessment of the amount of melanin
or haemoglobin in any area of the hand,

e Dossibility of automatic comparison of the results of any area of the finger with
other areas or other study of the same person in therapy/disease monitoring,

e Time analysis of a single image sequence does not exceed 100 ms when using Intel
Core i5 CPU M460 @2.5 GHz 4 GB RAM.

The discussed methodology of hyperspectral image analysis and processing does not
fully cover the issue. The presented algorithm for image analysis and processing can
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also be created by using the techniques from spectral methods [33,34], optical image
analysis [35], microscopic analyses [36,37] and others [38-41]. In future work, the au-
thors intend to analyse reproducibility of results for a larger number of patients using
different types of hyperspectral cameras operating in the same spectral range. The im-
pact of lighting and calibration method is equally interesting, which will be the subject
of the authors’ future work.
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