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Abstract

Background: Surface electromyographic (S-EMG) signal processing has been
emerging in the past few years due to its non-invasive assessment of muscle
function and structure and because of the fast growing rate of digital technology
which brings about new solutions and applications. Factors such as sampling rate,
quantization word length, number of channels and experiment duration can lead to
a potentially large volume of data. Efficient transmission and/or storage of S-EMG
signals are actually a research issue. That is the aim of this work.

Methods: This paper presents an algorithm for the data compression of surface
electromyographic (S-EMG) signals recorded during isometric contractions protocol
and during dynamic experimental protocols such as the cycling activity. The
proposed algorithm is based on discrete wavelet transform to proceed spectral
decomposition and de-correlation, on a dynamic bit allocation procedure to code
the wavelets transformed coefficients, and on an entropy coding to minimize the
remaining redundancy and to pack all data. The bit allocation scheme is based on
mathematical decreasing spectral shape models, which indicates a shorter digital
word length to code high frequency wavelets transformed coefficients. Four bit
allocation spectral shape methods were implemented and compared: decreasing
exponential spectral shape, decreasing linear spectral shape, decreasing square-root
spectral shape and rotated hyperbolic tangent spectral shape.

Results: The proposed method is demonstrated and evaluated for an isometric
protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective
performance evaluations metrics are presented. In addition, comparisons with other
encoders proposed in scientific literature are shown.

Conclusions: The decreasing bit allocation shape applied to the quantized wavelet
coefficients combined with arithmetic coding results is an efficient procedure. The
performance comparisons of the proposed S-EMG data compression algorithm with
the established techniques found in scientific literature have shown promising results.
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Background
Surface Electromyographic Signals (S-EMG) have attracted greater attention from areas that

deal with physiotherapy, biomechanics, sports and orthopedic medicine. Two main reasons

may be reported upon: 1) S-EMG allows accessing the muscular structure and function

through a non-invasive process and; 2) technologies associated with the acquisition and

treatment of signals have reached a level where studies and applications based on surface

electromyography have become viable.

Applications in biomechanics associated with cutting-edge sports activities may have

experimental protocols that last more than fifteen minutes. Constructing an S-EMG

signal data bank is important in that it makes it possible to develop research aimed at

understanding physiological processes, establishing new objective parameters for ana-

lysis (for example, muscle fatigue indicators) and proposing new protocols for training

in order to achieve the level of quality desired in a shorter time and without causing

injuries to athletes. Storing great quantities of digitized S-EMG signals especially, those

whose protocols have long durations, brings about the need for large amounts of mass

memory for storing information of interest. Storage also requires an extended time for

allocating channels of communication for transferring the experiment data carried out

in the field (for example, experimental protocols in a cycling velodrome). Scanning an

S-EMG signal involves sampling the signal which generally varies between 1 kHz and

4 kHz and quantization with a 2 byte digital word length per sample (the majority of

electromyograms use 12 bit to 16 bit A/D converters). Coding with fewer bits for repre-

senting the S-EMG signal waveforms, while avoiding any significant degradation to the

original information, constitutes the goal of this work.

Many different approaches for S-EMG signal compression may be found in scientific

literature involving parametric coding [1,2] and waveforms coding [2,3]. Carotti et al.

[1] proposed a linear prediction technique dedicated to S-EMG which has the advan-

tage of low computational cost and a great gain in compression. Nevertheless, although

this process is able to make a good approximation of the spectral envelope of the signal

magnitude, phase information cannot be preserved. This leads to degradation of the

reconstructed waveform when compared with the original. An improvement in

performance may be obtained by using algorithms such as ACELP–Algebraic Code-

Excited Linear Prediction [4]. On the other hand, the waveform coders have a significantly

greater performance than the linear prediction when compared to the compression gain

versus the signal to noise ratio. In consequence, there is also a substantial increase in the

computational complexity. Norris and Lovely [5] studied a compression technique based

on ADPCM–Adaptive Differential Pulse Code Modulation. Wellig et al. [6] and Norris

et al. [7] investigated techniques based on a single-tree algorithm that searches for the

best bases from the library of wavelet packet bases and modified EZW (Embedded Zero-

tree Wavelets). Other techniques based on wavelet transforms seeking optimization of the

bases for S-EMG representation may be found in scientific literature [8,9]. Techniques

based on mixed or vector quantization are also present in scientific literature [10-12]. An

approach involving learning about the S-EMG spectral shape with the objective of

optimizing dynamic bit allocation in the quantization of wavelet transform coefficients is

proposed in Berger et al. [13,14]. The S-EMG signal compression technique based on

recurrent patterns, proposed by Filho et al. [15], performed excellently (compression gain

versus signal to noise ratio) in isometrics experimental protocols. Nonetheless, the
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computational cost is greater than the techniques that utilize wavelet transforms and it is

dependent on the size and spectral behavior of the signal data bank.

Multidimensional techniques may also be found in scientific literature, Carotti et al.

[16-18] which have approaches based on linear prediction for application in multichannel

electromyography. In Costa et al. [19-21] an approach is proposed where the S-EMG

signal is segmented and juxtaposed in order to construct a two-dimensional signal (NxM

sample matrix). In the second step, the lines which have greater correlation with each

other are shifted so that they are immediately placed one after the other (the indices of

their original positions are kept as side information for the decoding process). Finally,

techniques for coding two-dimensional signals are applied. Other 2D techniques that use

transforms and fractals appear in recent publications [22-24]. In Salman et al. [25] and

Dixon et al. [26] compressed sensing is applied to S-EMG compression.

This paper presents a technique based on the wavelet transform that proposes

dynamic bit allocation derived from spectral shape models and arithmetic coding

applied to the data resulting from the lossy compression process. In dynamic bit

allocation the spectral signal in the wavelet domain is segmented into sub-bands. The

transform coefficients in each sub-band are quantized according to the spectral shape

model. This produces a sequence of symbols suitable for the entropy coding utilized. In

the dynamic bit allocation strategy an approximation of the behavior of the energy

magnitude contour in the wavelet transform domain was sought. Performance evalu-

ation results along with a real signal bank source are presented here. The technique

shows itself to be very efficient in respect to performance evaluation metrics when

compared to the variety of techniques reported in the references.

Methods
Proposed S-EMG compression algorithm

In the S-EMG coding process, firstly, the signal is segmented into windows. The

Discrete Wavelet Transform (DWT) is applied at each window leading to a vector of

transform coefficients. The signal spectrum in the wavelet domain is also segmented

into sub-bands; the coefficients are quantized with a bit amount as indicated by the

respective sub-band spectral shape parameter. In the next step, a lossless compression

technique is applied to the set of quantized coefficients. The data are finally packed

and are ready for transmission and/or storage.

In the quantization process, the amount of bits to be allocated to the transform coef-

ficients belonging to a specific sub-band is provided by a spectral shape model curve

decreasing in energy, which aims to estimate the spectral behavior of the transform co-

efficient vector. The efficiency of the method depends on the reasonability of the shape

proposed in relation to the spectral characteristics of the signal that is being coded.

The purpose of using the spectral shape model decreasing curve is to provide a better

efficiency coding, since the higher energy transformed coefficients, namely those which

carry a greater amount of signal information are quantized with a large number of bits,

causing them to be better represented and more accurately reconstructed in the decod-

ing process. The output of the quantization process is the input of the entropy coding

used here with the goal of reducing the redundancies that still remain in the data.

Figure 1 illustrates, in a block diagram, the various modules that make up the

S-EMG compression algorithm. x[n] is correspondent to the time domain signal while



Figure 1 Block diagram of the S-EMG signal encoder.
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X[k] corresponds to the wavelet domain and N denotes the length of the sample win-

dow. The purpose of the orthogonal transform is to concentrate the energy of the sig-

nal into a smaller quantity of transform coefficients leading to a sparse representation

in the transformed domain. The wavelet transform is implemented in an orthonorma-

lized manner. This means that the dynamic range of the coefficients X[k] in the trans-

formed space is less than or equal to the dynamic range of the signal in the time

domain, meaning that the ratio of Equation (1) is met.

max X k½ �f gk¼0;1;…;N−1≤2
R−1 ð1Þ

where N also corresponds to the length of the transformed coefficients vector and R to

the word length (in bits) with which the sequence x[n] is digitized using fixed point

representation. In the cases simulated in this study N = 2048 and all of the signals were

digitized with a digital word length of R = 16 bits.

As already commented, the transform coefficient vector is also segmented, creating a

total of M sub-bands. In the examples presented in this study M = 16 was used. There-

fore, in each sub-band we have N/M transformed coefficients. There are N/M = 128

transformed coefficients in the simulation results presented in this paper.

The N transformed coefficients X[k], k = 0, 1, … , N–1, are quantized in each of the

M sub-bands according to the relationship:

Xq k½ � ¼ int
X k½ �
2R−1

λm

� �
ð2Þ
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The N/M coefficients pertaining to the same sub-band are, in principle, suitable

for representation with the same digital word length. For a given M sub-band there

are N/M wavelet transform coefficients associated, according to the mathematical

relationship:

k ¼ N
M

m;
N
M

mþ 1;…;
N
M

mþ N
M

−1 where m ¼ 0; 1;…;M−1 ð3Þ

The parameter λm is obtained for each of the M sub-bands from the estimators of the
spectral shape which seek to model the spectral energy contour from the S-EMG signal

considering that although the information is not stationary, it has a low-pass characteristic

(described in the following section is how the λm scale factor of Equation 2 is obtained).

Thus, as the index associated with the transformed coefficient increases, the smaller digital

word length will be the indicated to quantize the coefficients of the respective sub-bands.

After finishing this step, the sub-band quantized coefficients are regrouped in order to

construct a vector of symbols that represent a signal window of N sample length. The vec-

tor of symbols is then compressed by an entropy coder. Arithmetic coding [27] has been

shown to be more efficient when compared to run-length and Huffman techniques [14].

In the last step, the data are packed generating a final representation of the S-EMG file.

Spectral shape in dynamic bit allocation

Four models were studied and implemented for approximating the spectral shape: (1)

Decreasing Linear Bit Allocation shape (DLA); (2) Decreasing Square-Root shape

(DSR); (3) Decreasing Exponential shape (DEA) and (4) Rotated Hyperbolic Tangent

shape (RHT). The curves are decreasing in magnitude and within them are the lengths

of the digital words indicated by the numeric representation of each wavelet coefficient

in each sub-band of the transformed vector.

In the following, the mathematical formalism associated with the spectral shape

models proposed in this paper is presented. Vector B[m] stores the appropriate number

of bits for each coefficient of the sub-band m. Parameter m indicates the index of the

sub-band and M the amount of sub-bands used in the segmented spectrum. Q and L

correspond to the longest and shortest digital word length indicated for coding the

transformed coefficients vector.

Decreasing linear bit allocation shape (DLA)

The spectral shape model is described with a decreasing linear curve that varies

between the Q and L parameters as shown in Equation 4

B m½ � ¼ intsup Q−
Q−L
M−1

m

� �
ð4Þ

Decreasing square-root shape (DSR)

In this case, the model developed for approximating the spectral shape in the trans-

formed space has amplitude decay in proportion to the square-root between the Q and

L values as follows

B m½ � ¼ intsup ξ
ffiffiffiffiffiffiffiffiffiffiffi
C−m

pn o
ð5Þ
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ξ ¼ Qffiffiffiffi
C

p ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ 1−M

p ð6Þ

and

C ¼ Q2 1−Mð Þ
L2−Q2 ð7Þ

Decreasing exponential shape (DEA)

In the decreasing exponential shape the number of bits indicated in B[m] decays expo-

nentially from Q to L. This mathematically leads to the expressions below:

B m½ � ¼ intsup
1
b

� �m−p� �
; b > 1 ð8Þ

b ¼
ffiffiffiffi
Qp

p
ð9Þ

p ¼ 1−M
log10 Lð Þ
log10 Qð Þ−1

ð10Þ

Rotated hyperbolic tangent (RHT)

In this spectral shape model a curve based on a π/2 radian rotated hyperbolic tangent

function is proposed as illustrated in Figure 2. The parameters α and β indicate the

behavior in the transition between Q and L in addition to the linear displacement of

the midpoint, as shown in Figure 2, respectively.

B m½ � ¼ intsup
Q
2

1−htan α m−
M
β

� �� �� �� �
ð11Þ
Figure 2 Illustrative examples. Decreasing Square-Root shape (DSR) and Rotated Hyperbolic Tangent Bit
Allocation shape (RHT) models. The horizontal axis indicates the respective frequency bands and the vertical
axis the number of bits associated with each frequency band. Smooth behavior of mathematical curves
models can be viewed in these examples drawn in continuous lines. Shown in the dashed lines are the
amounts of bits associated with variable B[m]. Using Equations (2) and (12) the quantized coefficients can
be obtained.
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Having obtained B[m], for m = 0, 1, … , M–1 sub-bands, the scale factor λm may be

calculated by

λm ¼ 2B m½ � ð12Þ

After calculating the λm parameter, the quantized coefficient vector Xq[k], k = 0, 1, … ,

N–1, may be reached as shown in Equation 2.

Decoding algorithm

Figure 3 shows the block diagram that describes the process for decoding the

compressed data. First, the data is unpacked in order to have access to the information

corresponding to each segment of the compressed signal. Next, entropy decoding is

applied. The spectral sub-bands are reconstructed and in each sub-band, inverse

quantization is carried out. The sub-bands are regrouped to obtain the coefficient

vector to which an inverse wavelet transform is applied. As a result, a segment of

N S-EMG signal samples is obtained. The various segments are concatenated in

order to obtain the decoded signal.

Presented next are the metrics used to carry out the performance evaluation of the

proposed algorithm.

Metrics used for performance evaluation

The performance of the compression algorithm was objectively measured from two

metrics: the compression factor (CF) and the percent residual difference (PRD). Currently,
Figure 3 Block diagram of the S-EMG signal decoding.
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these criteria are the most commonly used in scientific literature [7,9,13-15,19-24] for

evaluating the compression of electrophysiological signals. The compression factor is

defined by (13),

CF ¼ OS−CS

OS
� 100% ð13Þ

where OS is the number of bits necessary for storing the original data and CS is the

amount of bits necessary for storing the compressed data.

The percent residual difference is defined in (14) as

PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK−1

n¼0
x n½ �−x̂ n½ �ð Þ2XK−1

n¼0
x2 n½ �

vuuut � 100% ð14Þ

where x[n] is the original signal, x̂[n] is the reconstructed signal and K is the total

length in samples of the S-EMG signal.

To implement the orthogonal transform, the Daubechies-4 base with 8 levels of

resolution was chosen. This choice was established based on a previous study having

the de-correlation of the S-EMG signal in the transformed space and measurements of

the capacity for compressing signal energy into fewer transformed coefficients as

performance parameters [3].

Experimental protocols used to evaluate performance

Two distinct experimental protocols were addressed in this research for evaluating the

performance of the data compression technique proposed: (1) isometric protocol and

(2) dynamic protocol.

Proposed experimental isometric protocol

Pre-amplified surface electrodes (model DE-02, DelSys Inc. Boston MA, USA) were used

in the S-EMG signals acquired in the experimental isometric protocol. The electrodes

were positioned in order to get signals coming from the biceps brachii muscle. In all,

14 subjects were evaluated who underwent isometric stress force, maintaining 60% of

their maximum voluntary contraction. The signals were fed into a data acquisition card

with LabVIEW (NI-DAQ for Windows, National Instruments, USA). All signals were

sampled at 2 kHz and digitized with 2 bytes/sample. The duration of the signals varies

from 3 to 6 minutes.

Proposed dynamic experimental protocol

When evaluating the proposed techniques with dynamic experimental protocol a set of

S-EMG signals collected from the vastus lateralis muscle was used from 14 individuals

riding a cycling simulator (Cateye CS1000, USA). In the experiment, pre-amplified

surface electrodes were used (model DE-02, DelSys Inc. Boston MA, USA). The signals

were fed into a data acquisition card with LabVIEW (NI-DAQ for Windows, National

Instruments, USA). All signals were sampled at 2 kHz and quantized with 16 bits. The

duration of the signals varies from 3 to 6 minutes.
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In the next section, an evaluation of the proposed algorithm and performance

comparison with other techniques found in scientific literature are also presented.

Simulated results were obtained with the real S-EMG signal data bank.
Results
Figure 4 shows a summary of the PRD results according to the CF for the S-EMG

signal data bank used for isometric experimental protocol. In Figure 5, a comparison of

the proposed algorithm using the rotated hyperbolic tangent bit allocation shape (RHT)

and the decreasing square-root bit allocation shape (DSR) with other results reported

in scientific literature can be observed. Table 1 succinctly illustrates the difference in

performance between the coders analyzed and Figure 6 shows examples of segments of

the original signal, of the decoded signal and of the error signal obtained (difference

between the signals).

Results for dynamic experimental protocol are presented in Figure 7 and it shows a

summary of the PRD behavior according to the CF for the S-EMG signal bank. In

Figure 8 a performance comparison may be observed with other algorithms published

in scientific literature. Table 2 summarizes the results found of the percent residual

difference (PRD) for specific values of the compression factor (CF). Figure 9 shows a

segment of the original signal (a), two examples of the signals reconstructed using the

proposed algorithm in (c) and (e) and the respective signal error obtained (difference

between the original and reconstructed signal).
Discussions
The algorithm evaluations with isometric and dynamic experimental protocols were

implemented. Ahead, the performances of two distinct experimental protocols

addressed in this research are discussed.
Figure 4 Simulation results for isometric protocol. Comparison of the proposed algorithm’s
performance in the four spectral shapes implemented for the experimental isometric protocol, where:
DLA–Decreasing Linear Bit Allocation Shape; RHT–Rotated Hyperbolic Tangent Bit Allocation Shape;
DEA–Decreasing Exponential Bit Allocation Shape; and DSR–Decreasing Square-Root Bit Allocation Shape.



Figure 5 Simulation results for isometric protocol. Performance evaluation of the proposed method of
S-EMG data compression: emphasized in this figure is the Decreasing Square-Root Bit Allocation Shape
(DSR) and Rotated Hyperbolic Tangent Bit Allocation Shape (RHT) spectral shape approximation. Also shown
in this illustrative scenery is a comparison of the performance evaluation with relevant works found in
scientific literature: Norris et al. [7]–based on EZW (embedded zero-tree wavelets) scheme, Berger et al.
[13]–based Wavelet Transform, neural network bit allocation procedure and Huffman entropy coding, Berger
et al.–improved [14]–based Wavelet Transform, neural network bit allocation procedure and arithmetic
entropy coding, Costa et al. [20]–based on two-dimensional technique to S-EMG compression, and Filho et al.
[15]–based on recurrent patterns algorithm. It is important to notice that [13-15] and [20] used the same signal
data bank used in this work.
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Performance analysis for S-EMG isometric experimental protocol

For isometric protocol, the PRD results according to the CF is illustrate in Figure 4. In

this figure it can be observed that the decreasing exponential spectral shape’s perform-

ance is inferior to the other spectral shape models implemented. This difference in

performance is more significant for a smaller CF. On the other hand, for isometric

S-EMG signal compression, the rotated hyperbolic tangent spectral shape model

performed slightly superior to the others proposed. Insofar as the CF grows, the

performance curves approach each other.

A comparison of the proposed algorithm using the rotated hyperbolic tangent bit

allocation shape (RHT) and the decreasing square-root bit allocation shape (DSR) with
Table 1 Isometric–performance evaluation of the coders–PRD (%)

Compression factor‒CF (%)

70 75 80 85 90 95

Norris et al. [7] 3.90 4.12 5.20 8.02 13.08 27.10

Berger et al. [13] 2.57 2.63 3.85 7.01 14.14 24.95

Berger et al.-improved [14] 1.79 1.80 2.24 3.13 7.61 17.76

Filho et al. [15] 1.21 1.75 2.64 4.18 7.33 16.61

DEA – – 4.82 6.83 10.17 18.17

DLA 2.30 2.49 3.01 4.42 8.13 18.30

DSR 2.00 2.15 2.69 3.68 7.09 19.40

RHT 2.07 2.22 2.52 3.31 6.88 19.74

Best results in bold, i.e., lowest PRD for a given CF (arranged column-wise).



Figure 6 Qualitative examples. (a) the original signal with a 3072 sample window, (b) the same window
of the signal reconstructed using the DLA bit allocation shape, (c) the difference between the original and
decoded signal for the DLA bit allocation shape (with CF = 85.86% and PRD = 4.67%), (d) the decoded
signal using the RHT bit allocation shape (with CF = 85.92% and PRD = 3.44%), and (e) the difference
between the original and decoded signal for the RHT bit allocation shape.
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other results reported in scientific literature can be observed in Figure 5. In this figure

may be verified that the performance curves presented by Filho et al. [15], Berger

et al.–improved [14] and through the proposed technique using the spectral shapes

RHT and DSR are similar. Table 1 succinctly illustrates the difference in performance

between the coders analyzed. Highlighted in the table are the lower PRD values for the

CF values listed. For 70%, 75% and 95% CF the results reported by Filho et al. [15] have

the lowest PRD values. 80% and 85% CF Berger et al.–improved [14] had a performance
Figure 7 Simulation results for dynamic protocol. Performance comparison of the proposed algorithm
for the four spectral shapes implemented in the dynamic experimental protocol, where: DLA–Decreasing
Linear Bit Allocation Shape; RHT–Rotated Hyperbolic Tangent Bit Allocation Shape; DEA–Decreasing
Exponential Bit Allocation Shape and DSR–Decreasing Square-Root Bit Allocation Shape.



Figure 8 Simulation results for dynamic protocol. Performance comparisons of the proposed method
of S-EMG data compression in the studies reported in scientific literature. In this figure, results are shown
which were obtained using the decreasing square-root (DSR) and Rotated Hyperbolic Tangent Bit Allocation
Shape (RHT) spectral shape approximation. Also, this figure shows performance results found in Norris et al.
[7]–based on the EZW (embedded zero-tree wavelets) scheme, Berger et al. [13]–based Wavelet Transform,
neural network bit allocation procedure and Huffman entropy coding, and Costa et al. [20]–based on a
two-dimensional technique for S-EMG compression. It is also important to notice that [13] and [20] used
the same dynamic S-EMG signal data bank used in this work.
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slightly superior to other techniques and for 90% CF the compression technique pre-

sented in this paper using the RHT spectral shape model had the lowest PRD value.

Figure 6 shows examples of segments of the original signal, of the decoded signal and

of the error signal obtained (difference between the signals). In the example, the

waveforms have been normalized for the purpose of illustration. Figure 6b was obtained

by using the decreasing linear bit allocation shape. In turn, Figure 6d was reached when

using the rotated hyperbolic tangent shape. In both examples, a compression ratio of

approximately 85% was sought.

Performance analysis for S-EMG dynamic experimental protocol

Figure 7 shows a summary of the PRD results according to the CF for the S-EMG

signal bank with dynamic experimental protocol. The S-EMG compression algorithm

was implemented for each of the proposed spectral shape models. Analogous to the
Table 2 Dynamic–performance evaluation of the coders‒PRD (%)

Compression factor‒CF (%)

70 75 80 85 90 95

Norris et al. [7] 7.75 7.93 9.06 10.02 19.98 35.71

Berger et al. [13] 2.44 2.70 4.41 7.52 20.10 29.96

Costa et al. [20] – – 4.39 5.77 9.39 –

DEA – – – 10.13 11.94 19.44

DLA – 6.23 6.84 7.86 9.50 16.05

DSR 4.41 4.70 5.41 6.40 8.22 15.76

RHT 5.46 6.15 6.59 7.44 10.23 16.24

Best results in bold, i.e., lowest PRD for a given CF (arranged column-wise).



Figure 9 Reconstruction examples using the different spectral shapes. (a) window with 3072
original S-EMG signal samples; (b) signal reconstruction with DSR shape (CF = 88.54% and PRD = 8.93%),
(c) DSR reconstruction error, (d) signal reconstructed with DLA (CF = 87,41% and PRD = 9.92%), (e) DLA
reconstruction error.
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isometric case, the spectral shape model with the worst performance was DEA. How-

ever, unlike the isometric case, the DSR spectral shape obtained a performance slightly

better than the RHT.

In Figure 8, a performance comparison may be observed with other algorithms

published in scientific literature. It should be noted that Berger et al.–improved [14]

and Filho et al. [15] did not present results for dynamic experimental protocol S-EMG

signal compression. Table 2 summarizes the results found of the percent residual

difference (PRD) for specific values of the compression factor (CF). For 70% and 75%

CF the results reported by Berger et al. [13] have the lowest PRD values. For 80%

and 85% CF Costa et al. [20] show better performance when compared to the other

techniques listed in Table 2. For 90% and 95% CF the results of the compression

techniques presented in this study using the DSR spectral shape model have the lowest

PRD values.

Figure 9 shows a segment of the original signal (a), two examples of the signals

reconstructed using the proposed algorithm in (c) and (e) and the respective signal

error obtained (difference between the original and reconstructed signal). The results

for the decreasing square-root shape model (DSR) and the decreasing linear bit

allocation shape (DLA) may be observed in this example.

Conclusions
The S-EMG signal compression algorithm described in this study revealed itself to be

very efficient. The proposed dynamic bit allocation scheme for transformed coefficients

based on a spectral shape model integrated with a quantization process and entropy

coding leads to a high accuracy of S-EMG waveforms coding. It also allows greater

liberty for adjusting the spectral content to the length of the digital word to be used in

the representation of transformed wavelets coefficients.



Trabuco et al. BioMedical Engineering OnLine 2014, 13:22 Page 14 of 15
http://www.biomedical-engineering-online.com/content/13/1/22
For isometric S-EMG experimental protocol the rotated hyperbolic tangent spectral

shape model (RHT) performed slightly superior to the others proposed models.

However, in dynamic S-EMG experimental protocol, it was observed for similar

conditions to the compression factor (CF) the decreasing square-root spectral shape

model (DSR) has a percent residual difference slightly lower than others bit allocation

spectral shape model.

Dynamic experimental protocol has intervals with and without muscle activation.

The electrophysiological behavior and large dynamic range variation in the S-EMG

intervals with and without muscle activation lead to different non-stationary power

concentration in spectral sub-bands when it is compared with isometric protocol. As

a result, different CF x PRD performances are obtained for isometric and dynamic

experimental protocols for the various proposed models of spectral shapes.

An improvement in performance with respect to the objective evaluation metrics can

be investigated through the development of new models of spectral shapes. Another

approach for refining the technique is envisioned by local adaptation of the spectral

shape model.
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