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Abstract

Background: Many researchers have attempted to acquire respiratory rate (RR)
information from a photoplethysmogram (PPG) because respiration affects the
waveform of the PPG. However, most of these methods were difficult to operate in
real-time because of their complexity or computational requirements. From these
needs, we attempted to develop a method to estimate RR from a PPG with a light
computational burden.

Methods: To obtain RR information, we adopt a sequential filtering structure and
frequency estimation technique, which extracts a dominant frequency from a given
signal. In particular, we used an adaptive lattice notch filter (ALNF) to estimate RR
from a PPG along with an additional heart rate that is utilized as an adaptation
parameter of our method. Furthermore, we designed a sequential infinite impulse
response (IIR) notch filtering system (i.e., harmonic IIR notch filter) to eliminate the
cardiac component and its harmonics from the PPG. We compared the proposed
method with Burg’s AR modeling method, which is widely used to estimate RR from
a PPG, using open-source data and measured data.

Results: By using a statistical test, it was determined that our adaptive lattice-type
respiratory rate estimator (ALRE) was significantly more accurate than Burg’s AR
model method (p <0.0001). Furthermore, the ALRE’s tracking performance was better
than that of Burg’s method, and the variances of its estimates were smaller than
those of Burg’s method.

Conclusions: In short, our method showed a better performance than Burg’s AR
modeling method for real-time applications.
Background
The photoplethysmogram (PPG) is one of the bio-signals that can be acquired using a

pulse oximetry sensor placed on a finger or ear lobe to measure O2 saturation. In

addition, it can measure other physiological information such as pulse rate (or heart

rate) and respiratory rate (RR) by one wearable sensor unlike electrocardiography [1].

Therefore, mobile healthcare system often utilizes a PPG sensor to acquire several

kinds of health information including RR simultaneously in a simple module [2]. The

pulse oximetry sensor is composed of an infrared (or red) transmitter and receiver, and

these two devices are mounted on both sides of the target subject (finger or ear lobe).

This sensor measures a transmitted light intensity from the transmitter to the receiver,
© 2014 Park and Lee; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:leebr@gist.ac.kr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Park and Lee BioMedical Engineering OnLine 2014, 13:170 Page 2 of 16
http://www.biomedical-engineering-online.com/content/13/1/170
and its measured value indicates an absorbance of the light in tissue and blood. In

particular, the absorption of infrared light (absorbance) is proportional to material char-

acteristics such as molar absorptivity, molar concentration, and path length. This

principle is called the Beer–Lambert law [3].

The modulation of PPG induced by breathing has not been fully understood. Nonethe-

less, the fluctuation of blood volume in the peripheral vascular bed caused by respiration

is already well known [4] and was modelled by three modulation types [5]. As a result, the

acquisition of a respiratory component from PPG is possible because PPG reflects the

blood volume changes. Usually, a PPG consists of AC and DC components. The AC

signal represents the absorbance of pulsed arterial blood, and the DC signal indicates the

absorbance of non-pulsed blood and tissues (Figure 1). In this study, we used the AC

signal component of a PPG to estimate the respiratory rate.

Vital signs, which consist of heart rate (HR), respiratory rate, blood pressure, and

body temperature, have long been used as basic information in healthcare systems [6].

For example, pulmonary or cardiovascular diseases can be detected by measuring RR

[7]. In our study, we focused on the RR information that is merged in a PPG signal,

and estimated the HR for use in the RR estimation. HR is easily obtained not only by

counting the number of zero crossings or peaks of the PPG [8], but also by analyzing

the frequency of the PPG signal’s cardiac component, which is sufficiently large to

estimate HR. However, it is difficult to estimate RR from a PPG because the respiratory

component of the PPG is not clearly observed in the signal.

Because of the physiological response of the cardiopulmonary system, respiration

induces three modulations in a PPG: amplitude, baseline, and pulse width modulations

[5]. From the presence of the respiratory response in a PPG, many researchers have

been motivated to develop or utilize methods for RR estimation from a PPG, such as

digital filters, the autoregressive (AR) model, variable frequency complex demodulation,

and particle filters [2,8-14]. Nakajima et al. used digital filters to estimate HR and RR

from a PPG, but this method required specific ranges of HR and RR. For example, RR

should be less than 0.6 Hz [8]. Fleming and Tarassenko suggested a method to estimate

RR from a PPG using the autoregressive model, and its estimate was considerably

accurate. Because autoregressive modeling requires batch processing, they used a

moving-window method for the real-time process [10]. The computational efficiency of

the AR model method was considerably reasonable, but for real-time applications, it
Figure 1 Composition of PPG. PPG wave is generated by fluctuating volume of arterial blood.
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had an inefficient structure caused by the overlapped moving window method.

Recently, AR modeling for HR and RR estimation was proposed for video-based vital

sign monitoring [11]. Chon et al. suggested a high resolution time frequency analysis

for RR estimation from a PPG [12,13]; the method was called the VFCDM. This

method showed outstanding accuracy, but its computational burden was not sufficiently

light to construct a real-time monitoring system [5,14].

The need to design a comfortable, portable, and fast-processing system has grown

stronger as ubiquitous healthcare industry has grown [15]. Although many researchers

have achieved a technical progress to monitor the cardiopulmonary system [1,16,17],

mobility and fast processing remain as challenges [15]. Because of these challenges, we

set two conditions for designing a RR estimator from a PPG as follows: (1) light

computation, and (2) on-line processing. In order to satisfy these conditions, we

propose an adaptive filter structure that combines a sequential infinite impulse

response (IIR) notch filter to remove the harmonic components of the heart rhythm,

and two on-line frequency estimators (see Figure 2). Especially, we adopt an adaptive

lattice notch filter (ALNF) for the frequency estimator [18,19].

In the next section, we explain the relationship between the AR modeling method

and our approach, the structure of the proposed algorithm, and the ALNF, which serves

as a frequency estimator in our method. Then, we compare the proposed system with

Burg’s AR method using experimental results. Finally, we discuss the results and future

works.
Methods
A PPG can be modulated by the respiratory activity in three manner: baseline trend,

amplitude, and pulse width modulations [2,5]. To design an estimation system that uses

simple processes, we assumed that the modulations in a PPG caused by respiration can

be simplified by only a baseline modulation without amplitude and pulse width modu-

lations, which is suitable in most real-life situations. From this assumption, we can

model a PPG by adding cardiac and respiratory components as follows:

x nð Þ ¼
XM
k¼1

Aksin w0knþ ϕkð Þ½ � þ Bsin w1nþ ϕ0ð Þ þ ν nð Þ ð1Þ

v (n): white Gaussian noise
wo: heart rate, w1: respiratory rate
Figure 2 Overall system. The ALRE is constructed by two frequency estimators and harmonic IIR notch filter.
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where the first term represents the cardiac component and the second term does the

respiratory component.

In this study, we suggest an adaptive algorithm to estimate respiratory rates from a

PPG in real-time. This algorithm is constructed by simple methods that feature light

computation and on-line processing to obtain real-time filtering. For convenience, we

call this algorithm ALRE, for Adaptive Lattice-type Respiratory rate Estimator. In the

following subsection, we explain the general transference of approaches from an AR

model to an adaptive notch filter, which is the core concept in our method, as well as

the relationship between Burg’s algorithm for the AR model and our ALNF structure

about their lattice forms.

Autoregressive modeling method and our proposed method

The AR model is one of many signal modeling techniques, and is composed only of

autoregressive and error terms, as follows:

x nð Þ ¼ −
XM
j¼1

kjx n−jð Þ þ e nð Þ ð2Þ

where x(n) is the target signal and e(n) represents the residual error. M and kj denote

the AR model order and coefficients, respectively. The AR modeling procedure means

to find the optimal model coefficients kj, which minimizes the energy of the residual

error e(n).

The AR model can be used as a parametric method for spectrum estimation.

Spectrum estimators can be classified into two categories, the parametric method and

the non-parametric method; their characteristics are explained in [20]. When we have

a priori knowledge about the signal, we can apply parametric methods and find more

accurate estimates by using the known information about the signal. Therefore, it is

important to find an optimal model order.

Application of the modeling method can also be extended from spectrum estimation

to frequency estimation because the spectrum contains frequency information [20]. In

biomedical signal processing fields, the AR modeling method has been frequently used

for RR estimation from a PPG [9-11,14]. The AR modeling method has three steps in

total: downsampling, AR modeling, and RR estimation from the AR model coefficients.

The AR modeling method requires two parameters, such as a down-sampling frequency

and an AR model order, and it is necessary to find optimal parameters. For example, if the

down-sampling frequency is 1 Hz, the AR modeling method cannot detect a RR higher

than 30 bpm (0.5 Hz). This means that the AR modeling method imposes a constrained

range of RR estimates when the down-sampling frequency is already determined. The AR

modeling procedures are explained in detail in [10].

The AR method is an attractive technique for RR estimation from a PPG, because (1)

its estimate is considerably accurate, (2) it has a simple algorithm structure, and (3) a

short data set is sufficient for RR estimation. Furthermore, it can be applied in a real-time

implementation by using the moving-window method. However, a sufficient window

length is required for stable estimation; therefore, for real-time applications, each window

has to be overlapped with the one next to it. As a result, the AR modeling method has an

inefficient computational structure in real-time applications, and the estimate of the AR
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method lags behind the true RR varying with time. These problems are caused by the

batch processing and windowing approach. Thus, we suggest an adaptive and recursive

method using an adaptive notch filter and compare it with Burg’s method, which is one of

the most common AR modeling techniques [20,21].

Burg’s AR modeling method is derived from an all-pole lattice filter which has only

feedback procedures, as shown in Figure 3. In Figure 3, kj represents a filter coefficient

and, equivalently, an AR model coefficient in Burg’s method. When the model

order is M, the coefficient kj + 1 is determined by a combination of the j th order

forward prediction error ej
+ and the backward prediction error ej

−, as follows:

kjþ1 ¼ −
2
XM

i¼jþ1
ejþ ið Þ ● ej− i−1ð ÞXM

i¼jþ1
ejþ ið Þ2 þ ej− i−1ð Þ2� � ð3Þ

In this paper, we call Burg’s AR modeling-based RR estimation method as “Burg’s

method” for the sake of simplicity.

In this study, we suggest a novel way to estimate RR from PPG using the frequency

estimator (ALNF) based on an adaptive notch filter. The adaptive notch filter can

estimate the dominant frequency of a given signal. We can intuitively understand the

relationship between the AR modeling method and the adaptive notch filter through a

simple example. Let us consider a second-order AR modeling problem. A pair of poles

of this model is directly linked to a pair of peaks of spectrum, which represents one

dominant frequency. Thus, we can estimate the dominant frequency from the model

coefficients (a pair of poles). If we invert the transfer function of this AR model, then

we can obtain a notch filter and estimate the frequency from a pair of zeroes of the

notch filter. Eventually, finding AR model coefficients and designing a notch filter are

similar techniques, and we can adaptively trace RR (or HR) by using the adaptive notch

filter instead of the AR method. In this study, we chose an ALNF, which is an adaptive

IIR notch filter combined with a lattice form and which serves as a frequency estimator

in the ALRE. Thus, the ALRE is composed of two ALNFs and a harmonic IIR notch

filter. The ALNF and Burg’s method have theoretically similar backgrounds because

they are both based on a lattice filter structure.

As we mentioned earlier, the optimal selection of the AR model order is quite

important to estimate a spectrum and frequencies. However, unlike the AR modeling

method, the adaptive notch filer’s order is essentially fixed at 2, and it estimates only a

single dominant frequency. To compensate for this crucial problem, we designed a

sequential IIR notch filter, which utilizes the estimated HR as its adaptation parameter

to obtain the respiratory component from the PPG.
Figure 3 All-pole lattice filter for Burg’s method. ej
+ means j-th forward prediction error and ej

− is j-th
backward prediction error.
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The structure of the proposed algorithm: ALRE

The key idea of the ALRE is the sequential isolation of cardiac and respiratory signals;

a PPG can be decomposed into its cardiac and respiratory components. The sequential

isolation approach is important for the RR estimation because the respiratory and

cardiac components are mixed in a PPG at the same time. Considering this concept,

we designed the ALRE that includes three processes to estimate HR and RR. The

overall structure of the ALRE is shown in Figure 2.

The first step is the estimation of HR using a frequency estimator (ALNF) which

traces the fundamental frequency of a harmonic signal. To extract the pure HR compo-

nent, we employ an IIR band pass filter which has a reasonable pass band (0.5 ~ 5 Hz)

based on a feasible HR range prior to HR estimation.

In the second step, the cardiac component (HR and its harmonics components) in

the PPG are removed through a harmonic IIR notch filter with an estimated HR. The

harmonic IIR notch filter structure is very well-known and commonly used in the

signal processing field [22]. Although a previous study [8] showed that it is possible to

reduce the cardiac component and enhance the respiratory component by using an IIR

low-pass filter, some portion of the cardiac component remain in the respiratory com-

ponent because the IIR low-pass filter is limited to eliminating the cardiac component

whose frequencies are above the cut-off frequency. Thus, we used a harmonic IIR notch

filter next to the frequency estimator. The harmonic IIR notch filter is composed of a

serial connection of second-order tunable IIR notch filters as follows:

H z; θð Þ ¼
YM
j¼1

1−2 cos jθð Þz−1 þ z−2

1−2r cos jθð Þz−1 þ r2z−2
ð4Þ

Figure 4 shows an example of the pole-zero map of a harmonic IIR notch filter for

the removal of four harmonic components (M =4). r represents the distance between

the origin and the pole, and it can control the bandwidth of the notch, which becomes
Figure 4 An example of the pole-zero map of harmonic IIR notch filter with 4 harmonic components.
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narrower as r approaches 1. We chose 0.95 as the value of r in the ALRE. In the ALRE,

θ is particularly assigned to HR, which is estimated by the frequency estimator (ALNF)

in the first step. M is the number of serial connections, that is, of harmonic compo-

nents. The frequency response of this filter seems a comb with several notches at the

fundamental frequency and its harmonics (not shown here, refer to [22]).

The final step is RR estimation. From the second step, we obtain a residual signal

after the cardiac components were eliminated from the PPG through the harmonic IIR

notch filter (see Figure 2). Given the residual signal, we performed a band pass filter

(0.1 ~ 2 Hz) to refine the respiratory component, by which we can stably estimate RR

using another frequency estimator. In this sense, the process of RR estimation is similar

to the HR estimation step.

Altogether, the ALRE adaptively eliminates the cardiac signal and its harmonic

components from a PPG through HR estimation and sequential harmonic IIR notch

filtering, and then it estimates RR from the residual signal (the respiratory component).

Thus, unlike the AR method, it does not restrict the estimated HR or RR ranges but

uses only the feasible ranges (HR: 0.5 ~ 5 Hz, RR: 0.1 ~ 2 Hz). Within the feasible

frequency ranges, the frequency estimators are designed to find the target frequencies

(HR and RR). In this study, we adopt the ALNF as a frequency estimator and briefly

review the ALNF in the next subsection.

Adaptive lattice notch filter - review

The ALNF method was initially proposed in [18,19]. It is an adaptive notch filer com-

bined with a lattice form for an adaptation algorithm. Initially, its IIR filter structure is

separated into all-pole and all-zero filters (see Figure 5):

s nð Þ ¼ x nð Þ−k1 1þ γð Þs n−1ð Þ−γs n−2ð Þ ð5Þ

y nð Þ ¼ s nð Þ þ 2k1s n−1ð Þ þ s n−2ð Þ ð6Þ

where x(n) and y(n) represent input and output signals, respectively. s(n) represents the

output of the initial all-pole filter part, and k1 is the filter’s adaptation parameter. γ

corresponds to the pole and zero contraction factor. Eqs. (5) and (6) represent all-pole
Figure 5 IIR lattice notch filter structure for ALNF. Upper part means all-pole filter and lower part is
all-zero filter. (a): signal flow graph representation, (b): block diagram representation. D(z) and N(z) represent
denominator and numerator of transfer function of IIR lattice notch filter, respectively.
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and all-zero filtering processes, respectively. By minimizing E[y2(n)], we can get the

value of the adaptation parameter k1:

k1 ¼ −
E s n−1ð Þ s nð Þ þ s n−2ð Þf g½ �

E 2s2 n−1ð Þ½ � ¼ −
Rs 1ð Þ
Rs 0ð Þ ð7Þ

where Rs(0) and Rs(1) are the autocorrelations of s (n), which should be calculated by a

statistical process. To alternatively realize the statistical process in real-time, the

weighted least-square algorithm can be used: mink1
Xn
j¼−∞

wn−jy2 jð Þ, where y2(j) and wn − j

represent an output power of the ALNF and a weight parameter, respectively. The

weighted least-square algorithm can be arranged by recursive processes using the

forgetting factor η [23]:

P nð Þ ¼ ηP n−1ð Þ þ 1−ηð Þs n−1ð Þ s nð Þ þ s n−2ð Þ½ � ð8Þ

Q nð Þ ¼ ηQ n−1ð Þ þ 1−ηð Þ2s n−1ð Þ2 ð9Þ

k
^

1 nð Þ ¼ −
P nð Þ
Q nð Þ ð10Þ

Furthermore, k
^

1 nð Þ is clipped to prevent divergence:

~k 1 nð Þ ¼
k
^

1 nð Þ; −1≤k
^

1 nð Þ≤1
1; k

^

1 nð Þ > 1
−1; k

^

1 nð Þ < −1

8><
>: ð11Þ

In addition, in order to sustain the stable state, a smoothing process is conducted

using the smoothing factor μ.

k̂ 1 nð Þ ¼ μk̂ 1 n−1ð Þ þ 1−μð Þ~k 1 nð Þ ð12Þ

where k̂ 1 nð Þ is the estimate of k1. Given k̂ 1 nð Þ, we can estimate the frequency ω̂ nð Þ:

ω̂ nð Þ ¼ arccos −k̂ 1 nð Þ
� �

ð13Þ

Thus, ALNF has three parameters: γ (pole and zero contraction factor), μ (smoothing
factor), and η (forgetting factor). γ in Eq. (6) represents the contraction between pole

and zero (0 < γ <1), so that it is matched to the sharpness of the frequency response of

the filter. When γ is closer to 1, the notch will become narrower. The smoothing factor

μ is designed to enhance the stability, and the forgetting factor η represents the update

parameter for the recursive form of Rs (autocorrelation of s (n)). Each parameter’s

characteristics and the algorithm’s configuration are explained in detail in [18].

The ALNF, which was adopted as frequency estimators in ALRE is theoretically a

single-tone frequency estimator [18,19], but the adaptive IIR notch filer is generally

robust to sinusoidal noise (colored noise) [24,25]. Further, the ALNF is less computa-

tionally demanding [26,27]. Despite these advantages, its estimate can be biased when

the colored noise is added to the input signals. Because a PPG has several frequency

components, the colored noise interference commonly occurs and biased estimation is

inevitable. However, the amount of bias of the ALNF is considerably small. The charac-

teristics of the ALNF are discussed below.
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Analysis of the ALNF

Before using the ALNF, it is necessary to analyze the ALNF regarding its bias charac-

teristic. Originally, the ALNF was designed to estimate the frequency of a single tone,

and it is theoretically unbiased when the input is a single sinusoidal with additive white

Gaussian noise [18].

To analyze the baseline modulation, we consider a two-tone signal x (n) with additive

white Gaussian noise v (n):

x nð Þ ¼ A0sin ω0nþ ϕ0ð Þ þ A1sin ω1nþ ϕ1ð Þ þ ν nð Þ ð14Þ

where ω0 and ω1 are constant frequencies and ω0 ≠ ω1, the phases (ϕ0 and ϕ1) are

mutually uncorrelated random variables, and Rs (k) is calculated as follows:

Rs kð Þ ¼ 1

D ejω0ð Þj j2
1
2
A0

2cos kω0ð Þ þ 1

D ejω1ð Þj j2
1
2
A1

2cos kω1ð Þ ð15Þ

As a result, the ALNF traces the biased frequency

k1 ¼ −
D ejω1ð Þj j2A0

2cos ω0ð Þ þ D ejω0ð Þj j2A1
2cos ω1ð Þ

D ejω1ð Þj j2A0
2 þ D ejω0ð Þj j2A1

2
ð16Þ

ω̂ ¼ arccos −k1ð Þ≈ω0 or ω1 ð17Þ

As in Eq. (16) and Eq. (17), the bias is theoretically generated by the addition of a

sinusoidal signal and can be determined by the frequency response of the all-pole filter

part 1
D ejωð Þ. As can be seen in Figure 6, D(ejω) is similar to the frequency response of the

notch filter; its shape is controlled by γ in Eq. (5) and its center frequency is ω̂ in Eq.

(17). When γ asymptotically reaches 1, the frequency response goes to the notch, and

the gain of the center frequency approximately becomes 0. For example, if ω0 is domin-

ant frequency component with large A0, then ω̂ (center frequency of D(ejω)) ap-

proaches nearby ω0 and k1 ≈ − cos(ω0) because D ejω0ð Þj j will be approximately 0 but

not equal to 0. Identically, if ω1 is dominant frequency component, then ω̂ reaches

some frequency close to ω1 and k1 approximately becomes − cos(ω1). In this case, ω̂ can

approximately converge into ω1, and its accuracy depends on D(ejω) on ω0 or ω1. As a
Figure 6 Frequency response for the inverse of all-pole filter part of the IIR lattice notch filter.
Vertical axis unit of left-side is dB and that of right-side is absolute value.
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result, we can ensure that large values of γ decrease the bias of the ALNF to the sinusoidal

interference or colored noise.

Comparison of performance using simulated signals

To compare the algorithms’ performance, we executed a rigorous simulation. All the

procedures were implemented in Matlab®. First, we constituted an input signal x (n) as

follows:

x nð Þ ¼ xcardiac nð Þ þ xresp nð Þ þ ν nð Þ ð18Þ

xcardiac nð Þ ¼ 10 cos 2π
f HR

fs
n

� �
þ 5 cos 4π

f HR

fs
nþ 0:4π

� �

þ 2 cos 6π
f HR

fs
nþ 0:6π

� �
þ cos 8π

f HR

fs
nþ 0:8π

� �

þ 0:5 cos 10π
f HR

fs
nþ π

� �

xresp nð Þ ¼ cos 2π
ψ nð Þ
fs

� �

_ψ nð Þ ¼ f RR ¼
Constant;

Linear Function or
Sinusoidal Function

8<
:

where xcardiac(n), xresp(n), and ν(n) represent the cardiac signal, respiratory signal, and

white Gaussian noise, respectively. fHR and fRR represent the HR and RR, and particu-

larly fRR corresponds to the first derivative of ψ(n) which is an operand of the cosine

function of xresp(n). fs is the sampling frequency. We set xcardiac(n), which was modeled

based on the cardiac components of the PPG, with HR (fHR). Furthermore, to cover

various situations, three types of RR (fRR), such as a single sinusoidal with constant

frequency (for normal situations), a linear chirp (for urgent situations) and a sinusoidal

frequency modulation (FM) signal (for exercise situations), were used for respiratory

component modeling in the PPG. By adding xcardiac(n) and xresp(n), we constructed the

simulated PPG signal x(n), and its shape was similar to the real PPG (see Figure 7).
Figure 7 Simulation signal. (a): PPG with white Gaussian noise (20 dB), (b): reference respiratory signal
(constant frequency).
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From the simulation signals, RR estimation was performed by the ALRE and Burg’s

method. For the comparison between these two algorithms, we found optimal parame-

ters for each algorithm, which minimize root mean square error (RMSE). We adopted

a 30-s moving window for Burg’s method, and for the real-time estimation, each

window was overlapped by 25-s duration with the neighboring windows. By the moving

window method, the RR estimated by Burg’s method was updated at a 5-s interval.

The estimation of RR by the ALRE method showed better performance than Burg’s

method and the result is compared in the dashed box of Figure 8. The HR and RR

estimated by the ALRE are depicted in the first and second columns, respectively. The

third column demonstrates the result of Burg’s method for RR estimation. The first

row of Figure 8 illustrates the estimation result when the respiratory signal is modeled

by the constant frequency single sinusoidal signal. The second and last rows depict the

results when the respiratory signals are simulated by the linear chirp signal and the

sinusoidal FM signal, respectively. The dotted lines in Figure 8 represent true reference

frequencies and the solid lines indicate values estimated from PPG. From the estimated

frequencies, we calculated the estimation error between the true and estimated values

when each method has an optimal parameter, and the results are summarized in

Table 1. Because of the initial convergence time, all RMSEs were calculated from 80 s

to the end. With the simulated signals, the ALRE generally shows better performance

than Burg’s method as shown in Table 1 and Figure 8.

The ALNF method has three kinds of parameters (γ: pole and zero contraction factor,

μ: smoothing factor, and η: forgetting factor) that determine the performance of the ALRE

method when the signal is given. Therefore, it is necessary to search for optimal param-

eter values to minimize the estimation error. As mentioned before, the robustness to

colored noise was enhanced as γ increased. Therefore, we set γ sufficiently close to 1. The

other parameters were also assigned to large values because the error generally decreased

as μ (smoothing factor) and η (forgetting factor) were incremented. We confirmed the
Figure 8 RR tracking from simulated PPG. Solid lines represent estimates and dotted lines are reference
values when all input signal’s SNRs are 10 dB. Dashed red box includes only RR estimation results for the
ALRE and Burg’s method.



Table 1 RMSEs of RR estimation under simulated signal

Constant frequency Linear chirp Sinusoidal FM

Burg’s method ALRE Burg’s method ALRE Burg’s method ALRE

(dfs, order) (η, μ) (dfs, order) (η, μ) (dfs, order) (η, μ)

0dB 0.005350 0.002204 0.148526 0.023145 0.093723 0.013340

(1 Hz, 10) (0.999, 0.989) (2 Hz, 16) (0.998, 0.983) (1 Hz, 7) (0.996, 0.996)

5dB 0.003908 0.001567 0.149505 0.008220 0.046544 0.008827

(1 Hz, 8) (0.999, 0.987) (2 Hz, 15) (0.996, 0.983) (1 Hz, 3) (0.997, 0.981)

10dB 0.002030 0.001106 0.088621 0.006885 0.031328 0.006998

(1 Hz, 9) (0.999, 0.983) (3 Hz, 4) (0.980, 0.996) (2 Hz, 12) (0.996, 0.98)

According to simulation signal types and SNRs, RMSEs of each method are listed and the optimal parameter values are
placed in each round bracket. (dfs: down sampling frequency, order: AR model order, η: forgetting factor, μ: smoothing factor).
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better results of RR estimation with higher values of varying μ and η as well as γ from the

three simulation datasets.

Data collection

Initially, we used an open-source data set, and additionally, our own PPG and respir-

ation signals measured by a BIOPAC® device. The open-source data was adopted from

the MIT MIMIC Database, which has been used in previous studies [28]. We particu-

larly isolated 50 data sets that were less contaminated by artifacts, and these were used

for assessing the performance of the RR estimation. Each data set was recorded at a

sampling rate of 125 Hz for 9 min 40 s, and it included the PPG and (reference)

respiratory signal (see Figure 9). In addition, we collected PPG and respiratory signals

from five male and one female subjects (Age = 28.7 ± 1.9 years). Each subject was

instructed to take a breath randomly but without limiting RR during four trials of data

acquisition (Figure 9). In total, 24 trials were collected, and in each trial, data was re-

corded with a 125-Hz sampling rate for 5 min using a BIOPAC® PPG100c and

RESP100c. In order to calculate the estimation error, the reference RR was evaluated by

the zero crossing method from the given respiratory signal.

Results
For the verification of the ALRE’s performance, the RMSE was calculated by the differ-

ence between the reference RR and the RR estimated from the PPG when each
Figure 9 Experiment data. (a) and (b) represent PPG and the reference respiratory signal from MIT MIMIC
data, respectively. (d) and (e) are PPG and the reference respiratory signal measured by BIOPAC® device. (c)
and (f) depict residual signals obtained by the ALRE approach from MIT MIMIC data and measured signal,
respectively. The unit of vertical axis is mV.
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method’s parameters had optimal values to minimize error. All RMSEs were calculated

from 80 s to the end. To compare the two methods, we performed statistical tests on

the MIT open-source data by using a paired t-test and on our measured data with

non-parametric Wilcoxon’s two-sampled signed rank test under calculated RMSEs;

the p-values of both tests were less than 0.0001. As shown by the two statistical

tests, the ALRE’s RMSEs were significantly smaller than those of Burg’s method,

which means the ALRE was superior to the conventional Burg’s method for RR

estimation from a PPG. Figure 10 represents box plots of RMSEs for the ALRE

and Burg’s method applied to the MIT open-source data and our experimental data

measured by the BIOPAC®. In Figure 10, the upper and lower boxes represent the

75th and 25th percentiles, respectively, and the center, top, and bottom lines indicate the

50th, 90th, and 10th percentiles, respectively. Asterisks represent outliers in the RMSE

distribution. Although we can get an additional HR estimate during the RR estimation

process of the ALRE procedure, we did not directly assess HR estimation. However, it

could be indirectly evaluated by the result of the RR estimation because the RR estimation

process of the ALRE contains the HR estimation. Thus, we calculated the estimation error

of RR with the actual data only.

As a result, the ALRE showed more accurate estimation results than Burg’s method

did. In Figure 11, the dotted line represents the reference RR, which was acquired from

the respiratory signal, and the solid lines correspond to the RR and HR estimates.

Figure 11 shows that the ALRE’s tracking performance was superior to Burg’s method,

and the variances of estimates were also smaller than those for Burg’s method.
Discussion
Because a PPG contains both cardiac and respiratory components, many methods have

been proposed to obtain a RR estimate from a PPG [5]. Although it is possible to
Figure 10 Distribution of RMSEs of RR estimation. Upper and lower boxes represent the distribution of
RMSE from 25th to 75th percentiles. Center, top, and bottom line indicate 50th, 90th, and 10th percentiles.
Left two columns means RMSEs (the ALRE’s and Burg’s method’s) from MIT MIMIC data, and right two
columns represent RMSEs (the ALRE’s and Burg’s method’s) from experiment data measured by BIOPAC®
device. P-values of paired t-test for MIT open source data and Wilcoxon signed rank test for measured data
are less than 0.0001.



Figure 11 RR tracking from real data. (a): HR and RR tracking from MIT MIMIC data, (b): HR and RR
tracking from measured data. Solid lines represent HR and RR estimates and dotted lines are reference RR
values. Dashed red box includes only RR estimation results for the ALRE and Burg’s method.
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estimate RR from PPG, the process is difficult because the respiratory component in a

PPG is not as easily observed as the cardiac component. Therefore, previous methods,

such as VFCDM and the AR modeling method, required complicated batch processes,

which imply an inefficient computation structure for real-time applications [10,12-14].

Because of the development of sensing and communication techniques, the health-

care industry has made much progress in recent years; to further enhance this progress,

mobility and fast processing are increasingly in demand [15]. To meet those require-

ments, we set design conditions, light computation and on-line processing. Considering

these conditions, we propose the ALRE algorithm. The ALRE is an on-line processor

that is constructed by an adaptive and recursive algorithm. Through a sequential

process, a PPG can be decomposed into its cardiac and respiratory components. With

the decomposed signals, the ALRE can estimate HR as well as RR using the ALNFs,

which feature light computation and robustness to interfering input sinusoids. The

ALNF has three parameters: a pole-zero contraction factor, a forgetting factor, and a

smoothing factor, which characterize the ALNF [18,19]. Before applying the ALNF to

the proposed ALRE, we searched for appropriate values of the ALNF’s parameters

through mathematical analysis and simulation; furthermore, we assessed the ALRE

algorithm with real data. Our approach showed not only simple on-line processing

(light computational burden) but also high estimation accuracy compared to Burg’s

method.

Although HR has its own variation, our algorithm accurately traced the cardiac

component and removed it by harmonic IIR notch filter. ALRE estimated RR accurately

and it was very close to the reference RR as in the middle column of Figure 11 in

contrast to Burg’s method (right column of Figure 11). The respiratory components

acquired after harmonic IIR notch filtering are presented in Figure 9 (c) and (f ).

Burg’s method with model order M generally has an computational cost per iteration

as O(M2) [29] and our ALRE with harmonic IIR notch filter order M has O(M) [30]. In
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terms of analysis, to compare between them meticulously is a little difficult so that we

measure the computation time using real data with 9 min 40 s duration. That is, the

computation time of ALRE was 0.0548 s much shorter than those of Burg’s method

which had different overlapping durations with neighboring windows. As the overlapping

increased, the Burg’s method with M = 6 showed increasing computation times with

0.1810 s (overlapping: 0 s), 0.2205 s (5 s), 0.2739 s (10 s), 0.3808 s (15 s), 0.5883 s (20 s),

and 1.2076 s (25 s). Consequently, the computational load of Burg’s method depends on

the overlapping duration and ALRE takes less computational burden than Burg’s method.

ALRE does not restrict the ranges of the HR or RR estimates, whereas the AR

modeling method has a restriction on its frequency estimation range caused by the

down-sampling frequency [10,11]. For example, the ALRE can cover the physiologically

feasible ranges of HR from 0.5 to 5 Hz and RR from 0.1 to 2 Hz, which cannot be

implemented by the AR method with a down-sampling frequency under 4 Hz [10,11].

Taken together, the ALRE might be considerably better than Burg’s method in real-life

and real-time applications.

Although the ALRE has several advantages, it still should be improved to be embedded

in mobile devices because of the problem of convergence time. The initial convergence

time of the ALRE is not a critical problem, but a short transient time can enhance the

tracing performance for varying HR and RR situations. In fact, convergence time can be

controlled by the forgetting factor and smoothing factor. If these two parameters have

smaller values, then convergence time will possibly be shorter. However, smaller para-

meter values result in worse performance. Therefore, we should consider a trade-off

between convergence time and the fidelity of estimation. In order to break through this

limitation, we are planning to investigate a faster and more precise frequency estimator or

an adaptive parameter updating strategy for future work.
Conclusions
In conclusion, the novelty of the ALRE stands out because of its simple structure and

fast processing without constrained ranges of HR or RR estimate. Therefore, it can

contribute to daily cardiopulmonary system monitoring. Even though fast HR and RR

tracking remain to be improved, the proposed ALRE approach can substitute for the

AR modeling method for RR estimation. In addition, we expect this algorithm to be

applied to other physiological signals that contain several health conditions at the same

time, such as a mixed signal composed of a fetal heartbeat and respiration.
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