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characterized by four distinct parameters that describe how the control mechanisms
are activated and maintained. Thermal infrared imaging was used to record a total of
280 temperature curves of 14 finger joints for each of 11 PsA patients and 9 healthy
controls.

Result and conclusion: PsA patients presented delayed and prolonged re-warming
processes characterized by the undershoot onset after the end of the isometric
exercise followed by a faster temperature increase. Region classification on the basis of
the model parameters demonstrated that the interphalageal joint region of thumb
better discriminates between patients and controls, providing 100% true-positive
discrimination for PsA affected regions and 88.89% of correct classification of healthy
regions. Even proved over a limited number of subjects, the proposed method may
provide useful hints for early differential diagnosis in the IR assessment of PsA disease.
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Introduction

Psoriasis (PsO) is a chronic, complex, immuno-inflammatory disease involving the skin
and the musculoskeletal structures [1]. Psoriasis arthritis (PsA) is a chronic inflamma-
tory arthritis of uncertain pathogenesis that affects around 25% of worldwide psoriatic
patients [1]. PsA commonly affects the tips of fingers and toes [2]. Psoriasis skin lesions
typically precede the onset of joint symptoms, damage peripheral and axial joints by
10 months of symptom onset in around 27% of patients and 2 years of symptom onset
in 47% of patients [1]. After that period, patients experience severe disabilities such as
difficulty with grasping their hand [1,2]. The diagnosis of PsA is not always immediate
since there are not specific circulating markers and its symptoms are frequently unstable.
Ultrasonography (US) and magnetic resonance (MRI) are considered the gold standard
imaging methods for documenting clinical and sub-clinical PsA [1]. However, their use in
clinical routine for early diagnosis of PsA may be limited by their cost (especially MRI) or
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dependency on the operator’ skill (especially US) [2,3]. Local thermoregulatory malfunc-
tions were found to be manifested by the presence of PsA disorder [4]. In fact, psoriatic
skin vascular features may induce large thermal changes in skin temperature in psoriatic
plaques [3-5], however little is known about the effect of the joint inflammatory process
of PsA on normal skin overlying affected joints in PsA patients. Infrared (IR) imaging is
a non-invasive diagnostic technique that is able to provide two-dimensional maps of the
cutaneous temperature distribution of a given body by measuring emitted infrared energy
[6,7]. Moreover, since the cutaneous temperature depends on the local blood perfusion
and thermal tissue properties, functional Infrared imaging (fIR) provides a dynamical and
functional indirect evaluation of local haematic flow, thermal properties and the function-
ality of thermoregulatory effectors of the cutaneous tissue in both basal conditions or in
response to stimuli [6,7]. Many inflammatory joint diseases such as Rheumatoid Arthritis
(RA) and Juvenile Arthritis have been studied with fIR [8,9]. In RA for example a direct
relationship between disease activity ( Ritchie score, morning stiffness) and skin tempera-
ture as for the heat distribution index was demonstrated. Several IR imaging studies have
been performed to differentiate PsA plaque skin [1,4,10]. However, to our best knowledge,
no study with the exception of our pilot study (Capo et al., [11]) has ever been performed
to study the thermal changes of skin overlying joint in PsA that may be manifested by the
PsA inflammatory condition that may present on the distal interphalangeal joints as well
as larger joints. Moreover, while most of the IR diagnostic studies of PsA were usually per-
formed on the basis of static IR evaluation (without performing any Challenge/diagnostic
test) of the abnormalities in the corresponding thermal pattern [1,4,10], a dynamic and
functional IR evaluation of temperature changes of skin overlying the proximal and distal
interphalangeal Joints of PsA patients in both basal conditions or in response to functional
(isometric) exercise, is rare. Studies have shown that skin blood flow (and thus indirectly
cutaneous temperature) during isometric exercise undergoes a limitation due to cuta-
neous vasoconstriction [7]. Recently, isometric exercise was evident to be potentially able
to elicit significantly different thermal responses in both healthy and PsA patient groups
[12]. However, such evidence was based on a qualitative study without providing a broad
understanding of the complex mechanism underlying thermoregulation malfunctions in
this disease [12]. Therefore, a quantitative evaluation of the cutaneous temperature of
the skin overlying the proximal and distal Interphalangeal Joints of PsA patients in both
basal conditions and in response to functional (isometric) exercise, could provide a func-
tional indicator of the hypothetical PsA-related thermoregulatory malfunctions of skin
overlying joints due to their inflammation thus providing a mean to assess indirectly
PsA disease activity and help its primary diagnosis. Recently, control theory has been
used to model different thermal responses due to pathological, functional, and morpho-
logical alterations in the skin thermoregulation system associated with vascular diseases
like Raynaud’ phenomenon (RP) [6,7,12,13]. Ismail et al. [12,13] adopted a prototype
second-order control system to model the skin thermal recovery response to a mild cold
challenge. They suggested that the direct estimation of its time domain characteristics
could provide an effective description of the local thermoregulatory malfunctions in the
percense of RP disease and Varicocele. Mariotti et al. [6,7] proposed a thermoregulatory
model based on a homeostatic negative feedback loop characterized by four distinct func-
tional parameters, which describe how thermal control mechanisms are activated and
maintained in response to a cold challenge in the percense of RP disease and Varicocele.
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Due to the model limitation of the direct estimation approach [12,13], in this study, we
propose to implement the model proposed by Mariotti et al. [6] to evaluate how the PsA
joint inflammatory characteristics affect the skin thermal recovery capability in response
to isometric exercise. We expect that the application of such model may help in the
primary diagnosis of PsA.

Modeling cutaneous thermoregulatory effectors for isometric exercise
Cutaneous circulation is a major effector of human thermoregulation [14]. Cutaneous
vessels dilate or constrict in response to either thermal stress, i.e. temperature changes,
arose exogenously from variations in environmental temperatures or endogenously from
the body itself, as occurs during isometric exercise [14,15]. The initiation of isometric
hand grip exercise has a little effect on the cutaneous circulation in nonglabrous (hairly)
skin, whereas the activation of vasodilator system at skin overlying the PSA inflamed
joint, causes vasoconstriction due to withdrawal of the active vasodilator activity [16,17].
In PsA, heat production of active joint, muscle and elevation of inflammatory blood flow
in tendons (as shown usually by Eco power Doppler in this disease [1]), may increase
the finger’s skin temperatures [15] (as visually evident in figure two). In fact, according
to Johnson and colleagues [15] many factors can modulate control mechanisms of the
cutaneous vasculature, such as gender, aging, and clinical conditions. Cutaneous vaso-
constriction and vasodilation are vasomotor responses mediated by a sympathetic control
action from the simulated temperature regulating center in the anterior hypothalamus
[14]. Homeostasis is basically maintained by a negative feedback loop, similar to a ther-
mostat [18], which regulates the energy exchange with the environment at the cutaneous
level through metabolic and hemodynamic processes that determine finger temperature
at any given time [19]. Employing Control System Theory, the homeostatic process can
be seen as a feedback controlled system. This kind of system considers a reference signal
to produce the desired output. The reference signal indicates the value that the output
has to assume. The reference value is represented by superficial basal temperature that
can be considered steady during the experiment, while the output is the superficial finger
temperature. The controlled isometric exercise induces a finger temperature (plant con-
trolled output) change from the basal value (reference value). The difference between the
plant controlled output and the reference value (i.e., the output error) prompts the ther-
moregulatory reaction in order to restore the basal value by steering the output error to
zero. The time-evolution of the finger temperature can be recorded by means of thermal
IR imaging [6,7,11-13]. Examples of temperature versus time curves, captured at finger
joints (shown in Figure 1) are reported in Figure 2. According to Control System Theory,
differences in the temperature recovery curves depend on the efficacy of the cutaneous
thermoregulatory effectors, which in turn can be represented by the actual values of a
given set of functional modeling parameters.

Problem statement

Experimental evidence (Figure 2) showed that finger cutaneous thermoregulatory
response after the isometric exercise for PsA plaque skin regions has different dynamic
characteristics with respect to the healthy skin regions [11]. The wide number of com-
plex processes potentially involved in temperature control and in its alteration suggests
considering the overall control system as a ‘black box; whose overall structure can be
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Figure 1 Selected Areas (AR) for the fourteen Regions of Interest (ROls) located on the hand’s dorsum
corresponding to proximal and distal interphalangeal joints, the metacarpophalangeal joints, nails
and inter-bones muscles. A) Thermal infrared frame. B) Anatomical location of finger joints.

investigated by analyzing the input-output time responses either in the healthy or in the
pathological conditions [6,7,12,13,20]. Mariotti et al. [6] proposed a feedback thermoreg-
ulatory model through two hierarchical control units: a higher level unit (supervisor) and
a feedback lower level executor, driven by the supervisor as shown in Figure 3. These
two hierarchical control units were proposed to model both local/peripheral, and sys-
tematic/central thermoregulatory effectors known to respond to the isometric exercise
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Figure 2 Temperature vs. time curves obtained from thermal imaging data during baseline, i.e.
before performing the isometric exercise and 5 min after the isometric exercise separated by a red
vertical line. (Subjects were required to press every 2 seconds, and for a total of 2 minutes, the dynamometer
handle, at the 20% of previously assessed maximal individual strength.) measured from: (a) 14 ROIS for HCs
subject, (b) 14 ROIS for PsA subject, () the randomly chosen representative ROI2 for HCs subject, and (d) the
randomly chosen representative ROI2 curve for PsA subject.
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Figure 3 The overall architecture of the thermoregulatory system (adapted to [6]).

attempting to restore the basal temperature [16]. In fact, the supervisor sets the reference
signal on the basis of the basal pre-stress temperature and the onset time. The overall
performance of the thermoregulatory effecting processes depends on the activity of both
the supervisor and the executor. Besides the contribution of the thermoregulatory effec-
tor mechanisms, the finger temperature (i.e., system output) is also influenced by the
thermal exchange between the finger and the surrounding environment. This thermal
exchange depends on the temperature difference which constitutes the external input to
the thermoregulatory system [18,19].

Model structure

Figure 3 shows the overall architecture of the model proposed by Mariotti et al. [6]. The
only observable output is the finger cutaneous temperature [6,7] y(t), obtained through
thermal IR imaging. No information about internal variables is available. Some assump-
tions can be made about the general structure and the order of the thermoregulatory
control system identified with a grey box approach, with the aim of introducing functional
parameters to both quantitatively and qualitatively describe the thermoregulatory effector
mechanisms [21]. The system is characterized by an external input (room temperature)
and a steady state regime reference signal (r) (basal finger cutaneous temperature T). The
reference signal can be measured by IR imaging before the initiation of the isometric exer-
cise, and averaged over time to provide a constant reference value T. Visual inspection
of the thermal recovery after the isometric exercise confirmed that skin thermoregu-
latory cutaneous effector system could be assumed as a second-order time-invariant
feedback system [22]. In particular, the executor (feedback lower level unit) is composed
of a controller and a plant block in sequence (Figure 3), both assumed to be time invari-
ant systems described by first-order transfer functions. Therefore, the plant output y(t)
(i.e., the finger temperature) is governed in the time domain by the following differential
equation:

() = —ay(t) + bu(t) (1)

Where u is the plant input, a and b are constant coefficients. The post-exercise tem-
perature y(0) (i.e., the temperature measured immediately after the end of the isometric
exercise) constitutes the initial condition for the response of the control system. The plant
input u (t) is then the sum of the feedback controller output m (t) plus the additional
external input d as shown in Figure 3:

u®) =m) +d 2)
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Input d represents passive heat exchange with the environment. Therefore, it depends
on room temperature and y(t). In other words, input d can be seen as the uncontrolled
effect of environmental conditions on the finger temperature [6]. The feedback controller
block generates the signal m(t) stimulated by the difference between the system output
and the reference signal r, namely output error e(t):

e(t) =r—y() (3)

The feedback controller acts on the plant by the signal m(t) to steer the output error to
zero. Common approaches for modeling homeostatic processes are based on an integral-
type feedback controller system, which nullifies step-wise variation of the error signal
[23]. The differential equation that describes the controller behavior in the time domain

is:
m(t) = Ké(t) (4)

Where K is a proportionality constant. The supervisor unit activates this controller by
means of logic signals (on/off transition). When the supervisor unit logical output is “on”,
the feedback is closed on the integral type controller and then the active temperature
recovery can start. Otherwise, when the supervisor unit logical output is “off” (during the
lag time LT), the controller is disabled to restore the initial condition, while the exter-
nal input d is independent of this switching logic. The evolution of the system can be
described more easily in the Laplace domain. The Laplace transform (L-transform) was
performed with the assumptions : i) zero initial conditions y(0), and ii) the plant is unitary
gain process with b=a in eq.1 [24], since allowing for gain both the plant and the inputs
to the controller would result in degenerate parameters [6].Therefore, the overall model
works in open loop for the time instance t<LT [6]:

a
S+a

Y(S) = d (5)

and in closed loop for the time instance t>LT [6]:

ak . a$

Y(S) = -T + —d
S(S+a)+akK SS+a)+akK

(6)

Where s is the Laplace variable, Y(s), r and d are the output, reference input, and the
disturbance inputs, respectively. Moreover, the set of parameters (i.e. a, k, d, and LT)
could provide an insight on the dynamics and activity level of thermoregulatory effector
mechanisms during both healthy state and the presence of a disease. In fact, the reciprocal
of the plant time constant (a) represents the speed of the response of the thermal process
to external and internal stimuli. The integral gain (k) could be considered as a descriptor
of an active and systemic vasodilation process in restoring and maintaining the reference
basal temperature conditions [6], since it refers to the control action and determines the
efficiency of the feedback control system in achieving the steady state. The disturbance
input (d) represents a passive heat exchange with the environment and, therefore, depends
on room temperature and y(t). LT is a time required for the thermoregulatory processes
to access the internal re-warming process after the end of the isometric exercise. During
this time, the thermal variations are mostly attributable to the passive heat exchange with
the environment. Once LT is finished, there is the onset of the re-warming process and
the controller starts to restore the reference basal conditions T.
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Since the purpose of applying control theory is to offer a model that can fit the
sample data well, which means making the calculated system output y* approach the
actual/experimental system output y® as closely as possible. The closer those two values
are, the better the fitting effect will be. Therefore, the least squares criterion function f
[25] can be taken as the fitness function:

NE

S =" =) )

i

Where y; is the vector of experimental finger re-warming curves’ data points and y{
is the vector of the estimated model’s data points. The data points are defined from i=1
to number of data points NE, and is the vector of the model parameters, i.e. a, k, d, and
LT. From equations 5 and 6, the finger thermoregulatory model (Figure 3) is uniquely
described by a, k, d, and LT, which can be estimated based on measurements of T and
y(t) [6,7] by solving the optimization problem defined by the cost function stated in
equation 7.

Materials and methods
Subjects
11 PsA patients and 9 healthy controls, matched for sex and age, participated in the study.
All subjects signed the informed consent form prior to be enrolled for the study, which
was approved by the local ethical board. The control subjects did not report any personal
or family history of Psoriasis or PsA. Demographic data of the participating subjects are
summarized in Table 1. The diagnosis of PsA was performed according to CASPAR crite-
ria [1]. PsA patients had been treated in the past with standard therapies (MTX or CsA)
with poor results in terms of pain resolution and quality of life improvement and were
eligible for biologic therapy. All the subjects observed a washout period of two weeks
before the measurements and were free of any medication that could interfere with the
fIR imaging measurements.

This study was approved by the Human Board Review and conducted according to the
Helsinki’s Declaration. All the subjects signed an informed consent and could withdraw

from the study at any moment.

Data collection

A total of 280 experimental temperature curves from 14 regions of interest were collected.
Each curve included a baseline and a recovery time-course after a controlled isometric
exercise. 154 and 126 curves were collected from PsA patients and HCs, respectively.
Selected Areas (AR) for the fourteen Regions of Interest (ROIs) located on the hand’s dor-
sum corresponding to the interphalangeal joints (IP): both proximal and distal (IPP and
IPD respectivily), metacarpophalangeal joints (MCP), nails and inter-bones muscles, as

Table 1 Demographic data

Item HCs PsA
No. of subjects 9 11
Age (Mean=Std) (Years) 514135 524155

Gender (Female/Male) 5/4 5/6
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shown in Figure 1. Thermal IR imaging measurements were performed in a controlled-
climate room. Patients seated with both hands placed on a table covered with a black
sheet; measurements were made on the dominant hand to minimize potential bias due
to muscle hypertrophy and motor capabilities. Prior to starting the thermal IR imaging
recordings, the patients observed a 20-minute acclimatization period in the record-
ing room, which was set at a standardized temperature (23°C), humidity (50-60%),
without any direct ventilation [8]. The subjects were asked to abstain from assuming
any vasomotor substance (e.g., alcohol, coffee, tea etc), nor undergo of physical activ-
ity during the 2 hours prior to evaluation. High-resolution digital thermal images of
the hand were acquired at baseline and after a functional exercise. The exercise con-
sisted of repeated isometric contractions through the compression of a calibrated digital
dynamometer interfaced to an ADInstruments 8/30 PowerLab computerized system
[7]. Subjects first underwent 1.5 minutes of baseline thermal recording. Next, sub-
jects were required to press the dynamometer handle every 2 seconds for a total of
2 minutes at 20% of their previously assessed maximal individual strength. Soon after
the exercise, the subjects repositioned their hand in the starting position, undergoing
5 minutes of thermal recording. We used a 14-bit digital thermal camera (FLIR SC660
QWIP, Sweden), sensitive in the 7-144 m band and with 0.04«x temperature resolution.
The thermal imaging’s sampling rate frequency was set to 0.1 Hz. ROI temperature
data were extracted by means of the FLIR ThermaCAM Researcher Professional 2.9.
Software.

Data analysis

Data preprocessing

In-home software implemented within the MATLAB® platform (www.mathworks.com)
was used for data and graphic analysis. The time-course of the temperature data was
filtered through a smoothing algorithm (span = 5 samples). The control model was imple-
mented the Matlab Simulink Graphical User Interface® (Figure 4 shows the implemented
Simulink model). Thermoregulatory model responses were simulated by the variable step

ODE45 (Dormand-Price) solver.
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Figure 4 Thermoregulatory model Simulink block diagram (adapted to [6]).
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Parameter estimation procedure

In order to compute and optimize the four unknown model parameters (a, k, d, and LT),
several parameter estimation procedures were performed based on the following opti-
mization theory: i) The initial estimation of the model parameters was assigned based on
the graphical approach for real time process-identification [26]. Table 2 summarizes the
definition of model parameters using the graphical method; ii) The search space for the
model parameters (see Table 3) were selected based on both common limits used in lit-
erature [27] and operator evaluation by performing unconstrained simplex optimization
method [28] (see Figure 4), considering the system output signal as its reference signal;
iii) Since the function to be minimized in the parameter estimation procedure is nonlinear
(see equation 3), the corresponding nonlinear least square algorithm used could actually
produce local results; therefore the model parameters (a, k, d, and LT) were computed
and optimized through the Matlab Simulink Parameter Estimation Toolbox®, by using a
Non-Linear Least Square algorithm [29], while T and y(t) were directly estimated on the
thermal IR imaging data.

Statistical analysis

For each subject, the model parameters were computed for each of the fourteen regions
of interest. The statistical analysis was performed to search for the most significant joint
regions that could differentiate between PsA patients and HCs based on the estimated
model parameters. To this goal, we analyzed the estimated model parameters at each
joint regions individually and at the fourteen ROIs all together.The distributions of the
estimated model parameters for each group were tested for normality by visual inspec-
tion of the frequency distribution and Shapiro-Wilk test [30]. All the parameters for each
group were compared through Wilcoxon-Mann-Whitney test [31]. The level of statistical
significance was fixed at 0.05. A multiple logistic regression classification algorithm [31]
was performed in order to evaluate which parameter better reproduces the probability to
detect and classify the presence of PsA as clinically diagnosed, according to the CASPAR
criteria [1]. The clinical diagnosis was adopted as independent variable. The classification
procedure was a region-based classification. The cut-off for the best classification was
established by means of a receiver operating characteristic (ROC) analysis [32] applied
to the multiple logistic regression model output. ROC analysis allows the evaluation of

Table 2 The Time- domain parameter Identification based on graphical method [26]

Symbol Parameter name Calculation description
K Process gain* Process gain is determined by dividing the steady state output (t — co)
(assumed to be the final output value of y(t) ) by the input set point
value (T).
LT Lag time The lag time or dead time is the time interval between the input being

applied to the system

and the output responding to this signal. The time delay from the onset
of the re-warming process and the end of the isometric exercise is often
referred to as lag time (LT) [6].

a Open loop pole location [tis the inverse of system time constant.
The system time constant is the time taken for the output
to reach 63% of the final value.

*Integral Control gain was used to study the whole model gain, as we adapted the process transfer function to be unitary
gain one [6].



Ismail et al. BioMedical Engineering OnLine 2014, 13:162 Page 10 of 16
http://www.biomedical-engineering-online.com/content/13/1/162

Table 3 Parameter search space

Parameter Minimum Maximum
Lag Time LT 0 22
Open pole location a 0.01 30
Integral controller gain K -5 100
Disturbance gain d -5 10

the optimal cut-off for a binary classification resulting from a compromise between the
1-specificity, i.e., the false-positive rate, and the sensitivity, i.e., the true positive rate [32].

Results

Figure 5 shows a comparison between the identified response and the experimental tem-
perature curves for two representative cases randomly chosen from PsA and HCs groups,
respectively. For all subjects, the IR curves estimated with a minimum cost function
higher than 1 were excluded from the statistical analysis in order to guarantee high accu-
racy of the result. This exclusion occurred in 20 (13%) and 5 (0.04%) curves from PsA and
HC:s set, respectively.

The distributions of the average model parameters allowed to reject the null hypothesis
of the normality test with significant level <0.05. Group mean and standard deviation
(Std) for each estimated parameter for each joint region for each group are reported in
Table 4.

Wilcoxon-Mann-Whitney result (Table 5) showed statistical significant difference for
at least one model parameter between PsA and HCs when studying the 14 joint regions
all together and individually when studying Interphalangeal region ROI 2, Metacapopha-
langeal ROIs 6 and 9. Other joint regions did not show any statistical significance
between the groups; therefore we excluded it from the multinomial logistic regression
classification.

Statistically significant differences between PsA and HCs were found in the open loop
location a,the disturbance gain parameter d and the integral controller gain k (see Table 5).
The PsA group showed the highest values for d and k (see Table 4). The model of mul-
tiple logistic regression for the region classification includes one equation for PsA with

(a) rotz2-Hcs (b) roi2-psa
35.6 35.4
35.4 35.3
2
_ 362 %
O (&)
< < 35.1
o 35 °
=3 =1
2 g 85
2 348 8
E E 34.9
846 34.8
844 — — — measured output 34.7 — — — measured output
estimated output estimated output
342 34.6
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (Number of samples) Time (Number of samples)
Figure 5 Comparison between experimental data and identified model response for the studied
groups. (a) Healthy control HCs. (b) Psoriasis patient PsA.
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Table 4 Group average values
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Group Parameter (Mean(Standard deviation))
LT a d K

ROI'T: I MCP

PsA 4(6) 0.9(3) 0.04(0.1) 0.9(1.7)

HCs 6(7) 0.1(0.2) -0.07(0.09) 3(0.6)
ROI2:IP

PsA 0.5(0.8) 0.1(0.1) -0.02(0.1) 0.3(04)

HCs 2(3) 0.1(0.17) -0.02(0.2) -0.5(1.6)
ROI3: Il MCP

PsA 3(4) 1(3) -0.01(0.2) 0.48(1)

HCs 4(4) 0.08(0.08) -0.03(0.1) 0.4(0.8)
ROI4: 1 IPP

PsA 5(6) 0.902) -0.06(0.1) 0.1(0.1)

HCs 3(3) 2(3) -0.06(0.08) 0.02(0.04)
ROI5 : 11IPD

PsA 4(5) 0.5(1) 0.03(0.19) 0.7(1.5)

HCs 8(7) 04(0.6) 0.007(0.2) 4(0.9)
ROI6: I MCP

PsA 3(5) 0.12(0.17) -0.01(0.17) 0.3(0.9)

HCs 2(2) 1(1.5) -0.04(0.04) 0.03(0.07)
ROI7: Il PP

PsA 3(3) 0.8(2) -0.1(0.3) 0.2(0.16)

HCs 7(9) 0.2(0.2) -0.04(0.07) 0.12(0.16)
ROI8: 11 IPD

PsA 5(7) 1(3) -0.1(04) 4)

HCs 4(4) 0.2(0.3) -0.01(0.2) 3)
ROI9: IV MCP

PsA 4(4) 0.1(0.09) -0.007(0.06) 0.14(0.15)

HCs 4(5) 0.6(1.7) -0.06(0.15) -0.2(0.4)
RONO: Il IPP

PsA 3(4) 9) -0.06(0.2) (13)

HCs 4(7) 3) -0.2(0.2) 1.9)
RONT:IPD

PsA 3(6) 2(2) -0.05(0.1) 0.07(0.05)

HCs 3(3) 0.1(0.18) -0.08(0.1) 0.15(0.1)
RON2:VMCP

PsA 7(8) 0.8(1 0.03(0.1) 1.5(3)

HCs 3(4) 0.6(1.5) (0.01(0.3) 0.9(1.7)
ROIN3:IVIPP

PsA 3(7) 12) 0.04(0.2) 0.1(0.1)

HCs 4(4) 0.9(2) 0.02(0.1) 0.02(0.05)
ROIN4: IV IPD

PsA 6(7) 0.3(0.4) -0.01(0.3) 0.1(0.2)

HCs 102) 0.15(0.17) -0.02(0.5) -0.1(0.9)
All 14 ROIs

PsA 0.09(0.1) 0.7(2) -0.02(0.2) 0.4

HCs 4(5) 0.5(1) -0.04(0.2) 0.2

MCP used for Metacapphalangeal, IP used for Interphalangeal,

IPP used for proximal interphalangeal,and IPD used for distal interphalangeal
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Table 5 Wilcoxon statistical result

Region of interest Model parameter (Ranksum,Z statistics, p value)
(ROI) LT a d k
ROI2 (67,-,>0.05) (88,-,>0.05) (96,-,>0.05) (118,-,<0.05)*
ROI6 (100,-,>0.05) (116,-,<0.05)* (89,-,>0.05) (76,-,>0.05)
ROI9 (89,-,>0.05) (88,-,>0.05) (68,-,>0.05) (58,-,<0.05)*
All 14 ROIs (16050,1,>0.05) (15142,0.04,>0.05) (13493,-2.7,<0.05)* (13047,-3.5,<0.05)*

*means statistically significant.
- means not available; Wilcoxon Mann Whitney test could not measure the z-statistics for small sample size.

respect to HCs, with all the estimated parameters LT, a, d and k. The thumb Interpha-
langeal joint region is the only joint region set that provides a multilogistic regression
model that better reproduces the probability to detect and classify the presence of PsA as
clinically evaluated. Table 6 reports the estimation of the predictor coefficient (8) with its
Standard Error (SE), the Wald statistics and the odds ratio of response variable (Exp(8))
with respect to the predictor coefficient for the interphalangeal joint. The Wald statis-
tics validate the positive correlation between the model parameter k and the presence of
PsA disease. Means with 95% confidence intervals error bars for each parameter for each
group are shown in Figure 6.

Means with 95% confidence intervals error bars for each parameter for each group are
shown in Figure 6.

The ROC analysis (Figure 7) established one optimal cut-off at 0.4 in order to discrimi-
nate between PsA and HCs groups. It provided a true-positive prediction for PsA patients
from HCs of 100% and 88.89% for discriminating healthy controls from PsA. Table 7
illustrates the confusion matrix for the region classification.

Discussion

The aim of the present study was to identify quantitative parameters, which describe
the functional differences in the thermal recovery of the skin, overlying the proximal
and distal interphalangeal joints, from a controlled mild isometric exercise shown by
healthy controls and PsA patients [15]. We hypothesized that the implementation of the
functional thermoregulatory model proposed by Mariotti et al. [6] to model the skin
thermoregulatory processes in response to isometric exercise could evaluate how the
pathophysiological differences due to joint inflammatory characteristics corresponding to
the PsA disorder affect these processes [9,15,17]. The thermoregulatory system was mod-
eled through two hierarchical control units: a higher level unit (supervisor) and a lower
feedback level (executor) driven by the supervisor. The implemented model is unequiv-
ocally identified by a set of four functional parameters (a, k, d, LT) [6]. The statistical

Table 6 Discriminant parameters for thumb interphalangeal joint region classification

Model equation Parameter B Standard error SE Wald DF sig Exp(B)
PsA-HCs Intercept -1.7 1 -16 1 0.1 017
L -0.7 06 -1.2 1 0.2 046
55 5 1 1 0.2 24.9
d 2.3 35 0.6 1 0.5 10.6
12 4.7 25 1 0.01* 100000

*means statistically significant.
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I HCs
I PsA

Parameter Values

_4 Il 1 4 '
LT a d k

Figure 6 Bar graph with means and 95% confidence intervals error bars. Comparison of the group
average parameters among groups at the thumb interphalangeal joint region. The horizontal bar with
asterick indicates the statistical significance (p<0.05).

analysis was performed for all the Interphalangeal, Metacarpophalangeal, Proximal Inter-
phalangeal and Distal Interphalangeal regions individually and for the fourteen regions all
together, in order to check which of them is the most significantly discriminating region
between PsA and HCs groups. Our analysis confirmed that PsA patients exhibit differ-
ent thermoregulatory dynamic responses to the controlled isometric exercise compared
to HCs. Delayed and prolonged re-warming processes characterized by an undershoot

ROC
PsA versus HCs
#® PsA thershold B
HCs versus PsA
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= |
.“5)
C

@ 0.6} i
2

© 05F . X X N 4
[0
=

G 04} 1
o
T

g 0.3} R
'_

0.2} R

0.1 R

O Il Il Il Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False—positive rate (1-Specifity)

Figure 7 Roc analysis result using thumb interphalageal joint region.
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Table 7 Confusion matrix

Original group Predicted group Correctly classification%
PsA HCs
PsA 100 0 100
HCs 1111 88.89 88.89

onset after the end of the isometric exercise was found [6]. This finding is expressed by
the PsAs’ higher values for model disturbance gain (d). Therefore, in the presence of the
disease, the skin thermoregulatory recovery process could be mainly based on the pas-
sive heat exchange because of the withdrawal of the cutaneous vasodilation activity and
the intact vasoconstrictor action in the affected joint region [15,17]. The higher k values
found for PsA with respect to HCs values reflect the higher active and systemic vasodi-
lation after the end of the onset undershoot. This finding might be attributed to a higher
emissivity of the PsA areas [4] in the presence of more arterioles or even chronic structure
widening of the existing arterioles [5]with higher basal flux [3]. Moreover, PsA showed
a faster temperature increase after the undershoot onset compared to the healthy. This
finding is evident by the higher mean values of the model parameter of open loop loca-
tion (a). Region classification on the basis of the model parameters seems to indicate that
thumb’s interphalageal joint region is the most expressive region. However, the small sam-
ple size does not allow to draw any conclusion about, as further studies on larger samples
are needed. The misclassified healthy regions were attributed mostly to those exhibiting
very small undershoot recovery curves in response to the controlled exercise. That find-
ing might be due to the little effect on blood flow in nonglobrous skin (finger skin) known
to be in normothermic conditions after the end of isometric exercise [15,16]. It should be
pointed out that the implementation of such an approach is valid within two limits: i) the
limitations of the model itself, which is the assumption of a step response and the adop-
tion of a simple prototype second-order system, ii) the limit of the time period after the
end of the isometric exercise selected to study the dynamics of the temperature recovery
curves (i.e. in our case 5 min). The method specificity has to be tested by increasing the
number of participants.

Conclusion

In this study, we identified four quantitative parameters to describe the functional differ-
ences in thermal recovery from a controlled isometric exercise shown by PsA and healthy
subjects. A homeostatic negative feedback loop, characterized by the four parameters,
describes how the control mechanisms are activated, maintained in healthy individuals
and impaired in PsA patients. Region classification on the basis of the model parameters
demonstrated that Thumb’s interphalageal joint region is the most indicative region for
PsA joint inflammatory disease, while further studies on larger samples are needed. In
fact, it provided 100% true-positive discrimination for PsA affected regions and 88.89 %
of correct classification of healthy regions.
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