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Abstract

Background: Cardiac disease is one of the main causes of catastrophic mortality.
Therefore, detecting the symptoms of cardiac disease as early as possible is important
for increasing the patient’s survival. In this study, a compact and effective architecture
for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We
developed a portable device using this architecture, which allows real-time
electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases.

Methods: A noisy ECG signal was preprocessed by an analog front-end consisting of
analog filters and amplifiers before it was converted into digital data. The analog
front-end was minimized to reduce the size of the device and power consumption by
implementing some of its functions with digital filters realized in software. With the
ECG data, we detected QRS complexes based on wavelet analysis and feature
extraction for morphological shape and regularity using an ARM processor. A classifier
for cardiac disease was constructed based on features extracted from a training dataset
using support vector machines. The classifier then categorized the ECG data into
normal beats, AFib, and myocardial ischemia.

Results: A portable ECG device was implemented, and successfully acquired and
processed ECG signals. The performance of this device was also verified by comparing
the processed ECG data with high-quality ECG data from a public cardiac database.
Because of reduced computational complexity, the ARM processor was able to process
up to a thousand samples per second, and this allowed real-time acquisition and
diagnosis of heart disease. Experimental results for detection of heart disease showed
that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity
of 95.9%.

Conclusions: Current home care and telemedicine systems have a separate device
and diagnostic service system, which results in additional time and cost. Our proposed
portable ECG device provides captured ECG data and suspected waveform to identify
sporadic and chronic events of heart diseases. This device has been built and evaluated
for high quality of signals, low computational complexity, and accurate detection.

Keywords: Portable ECG device, Heart disease, Atrial fibrillation, Myocardial ischemia,
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Background
Heart disease is one of the major causes of death, especially for the elderly population in
many countries. A total of 42 million out of 84 million people in North America who have
one or more cardiovascular diseases are estimated to be older than 60 years old [1]. The
existing ambulatory ECG monitoring systems take a considerable amount of time and
effort, record ECG signals in patients through long-term hospitalization, and the ECG
data have to be sent to professionals for diagnostic analysis. However, a portable ECG
device, which provides real time monitoring of heart disease, can help medical decision
making by detecting sporadic events of heart disease as early as possible. If the patient
with chronic diseases worn a ECG device without any real time monitoring function, the
primary defect of such solution is arise from lack of help when a major incident occurs
during the monitoring. The device without real time analysis recorded ECG waveform
but no immediate response is taken to help the patient. The device with real time analysis
can support medical decision with captured ECG waveform during doubtful sections of
incident as a black box. Therefore, a portable ECG device is required for monitoring and
identification of sporadic and chronic events of heart diseases.
Representative ECG signals of a normal ECG, in atrial fibrillation (AFib), and inmyocar-

dial ischemia, are shown in Figure 1. AFib, which is caused by a rapid and irregular heart
beat at a rate of 400 to 600 beats per minute, is a type of arrhythmia [2-5]. AFib can be
detected by monitoring the heart beat and absence of the P wave. Myocardial ischemia,
caused by blockage of coronary arteries, reduces oxygen supply from the heart [6-9], and
can be detected by monitoring abnormal divergence in the PR and ST segments. Even
though various detection methods have been proposed for AFib and myocardial ischemia
[10-17], they can only detect a single disease. To simultaneously detect AFib and ischemia,
a compact and efficient architecture for detecting heart disease is required.
Developing a portable ECG monitoring device has been an active focus of research

(Table 1). Most of the portable ECG device have simple metal contacts that the user can
place their thumbs or other fingers on or place against bareskin, such as on the chest
[18-26]. The metal contacts are much more convenient and faster to use than adhesive
skin electrodes. In general, there are more artifact noise and artifacts called baseline wan-
der in the typical thumb contact. On the other hand, recordings using adhesive electrodes
are much cleaner, consistent and more accurate [27-31]. While most of these devices
acquire and record ECG signals, they do not provide real-time identification for analysis
of heart disease. Signal analysis of two devices is below the level that recognize existence
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Figure 1 ECG signals. Examples of ECG signals in various cases. (a) Normal ECG, (b) irregular ECG containing
atrial fibrillation, and (c) ST segment elevation containing myocardial ischemia.
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Table 1 Reviewed existing ECG devices and their properties for ECG signal analysis

Product Contact Software for ECG Support for medical analysis

iPhoneECG [18] Dry metal for fingers Measurement Professional report

Smartheart [27] Adhesive electrodes Measurement Interpretation center

CardioDefender [19] Dry metal for fingers Signal analysis Irregularity detection

ME 80 [20] Dry metal for fingers Measurement Heart rate calculation

ELI 10 mobile [28] Adhesive electrodes Measurement ECG interpretation

EPI Life [21] Dry metal for fingers Signal analysis Interpretation center

ReadMyHeart [22] Dry metal for fingers Measurement Professional report

ECG Check [23] Dry metal for fingers Measurement Heart rate calculation

Dicare-m1CP [24] Dry metal for fingers Measurement Irregularity detection

HeartCheck PEN [25] Dry metal for fingers Measurement Professional report

MD100E [29] Adhesive electrodes Measurement Professional report

PC-80 [30] Adhesive electrodes Measurement Professional report

REKA E100 [26] Dry metal for fingers Measurement ECG interpretation

EKG/ECG-80A [31] Adhesive electrodes Measurement Built-in ECG printer

and nonexistence of irregular rhythm trends [19,21]. From a supporting medical analysis
perspective, professional reports from the interpretation center are provided as medi-
cal analysis service with extra charge [18,21,22,25,27,29,30]. Simple information of heart
rate and irregularity is provided [19,20,23,24,26,28]. Thus, it is important to develop new
healthcare device to achieve meaningful monitoring and real-time alert system.
Also, several classification methods are implemented for cardiac disease detection. We

already validated that SVM has outperformed against kernel density estimation and arti-
ficial neural networks as classifier in previous work [16,17]. Principal component analysis
(PCA), Genetic algorithm (GA), rule-based methods are also adapted to detect cardiac
diseases. However, the platforms of these classifiers are limited to desktop and laptop.
Thus, these classifiers are insufficient to work in real-time on mobile and portable plat-
form [32]. In order to overcome all these weakness, this study aimed to implement a
portable real-time ECG processing device with an algorithm for detecting heart disease
based on the feature extractors reported in previous studies [16,17].

Methods
Overall framework

As shown in Figure 2, the proposed portable ECG device was designed using the following
blocks: a simplified analog front-end, an ARM processor to realize signal monitoring and

Analog Front-end Unit ARM processor Display

Power Supply
Instrumentation amplifier

Right leg driver

Bandpass filters

Li-Po battery

Protection circuit

Preprocessing

Monitoring

Diagnosis

Patient

Electrodes

Figure 2 Overall framework.Overall framework configuration of the proposed portable ECG device.
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analysis, an interactive display unit, and a power source. The features of the individual
blocks are as follows below.

• Reduced hardware complexity: We aimed to develop a powerful software working
platform using an ARM processor to simplify the hardware requirements.
Consequently, portability of the device can be accomplished. The minimization
analog front-end was realized by implementing most of the analog functions
(highpass, lowpass, and notch filters) using digital filters. In addition to device
compatibility, this also helped to reduce power consumption of the device and
extended battery life.

• Real-time processing: Computational complexity is one of the major obstacles while
implementing hardware in real-time. However, to alleviate this drawback, the
proposed software was modified and implemented in an ARM processor [16,17].
Furthermore, the digital filter removes various types of noises and baseline wander
from the preprocessed ECG data and then it tends to extract and classify the features
from the filtered ECG data for analysis. The processed ECG data and results of the
analysis can be displayed using an interactive LCD display. To summarize the analysis
results, the device reports averaged feature values and detected diseases every minute.

• Simultaneous feature extraction for AFib and ischemia: We considered two distinct
diseases corresponding to atrial and ventricular activity. To simultaneously describe
heart activity, we implemented features for irregularity, shape, area, slope, and
distribution of ECG data [16,17]. Feature extraction methods to represent irregularity
were simplified without compromising detection performance. Furthermore, the
extracted features from the ECG signal were classified into AFib and myocardial
ischemia. Therefore, if target diseases are changed or added, we can easily adjust the
feature extractors and train the classifiers accordingly.

Analog front-end

ECG signals that are generated by electrical activity in the heart are a small pulse train of
which the amplitude is less than 2mV and bandwidth ranges from 0.05 to 150Hz. Because
the ECG signal is often corrupted by various noises originating from the body and analog
signal processing hardware, efforts have been made to capture a clean ECG signal with
error-prone analog circuits, such as amplifiers and filters [33-35]. In the current study,
analog signal processing was minimized by realizing most of the signal processing in the
software using a cheap and general purpose ARM processor to enable a small system for
portability and reconfigurable for use in various conditions. The analog front-end has
two major functions (1) amplifying the ECG signal to be sampled and quantized properly
by an analog-to-digital converter (ADC), and (2) attenuating high-frequency noises that
can corrupt the sampled ECG signal because of an aliasing effect. For the sake of cost
reduction and simplicity of hardware, an ADC embedded in the ARM processor was used
instead of using an additional high-performance ADC. An ADC running at a sampling
frequency (FS) of 1 kHz has a 12-bit resolution with a reference voltage (VREF ) of 1.8 V.
Figure 3 shows a block diagram of the analog front-end. The analog front-end contains

an amplifier with a first-order high-pass filter for DC or offset rejection, two gain stages
with a level shifter, and a second-order low-pass filter (LPF) as an anti-aliasing filter.
Because the peak ECG signal has an amplitude of approximately 2 mV, the required gain
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Figure 3 H/W block diagram. Hardware block diagram of the proposed minimized analog front-end.

is 900 (V/V), and this is implemented by spreading it over the gain stages. The amplifier
has a gain of 15 V/V and the two gain stages are 10 and 6 V/V.

ECG signal processing and learning on the ARMprocessor

The proposed software has two different operating modes of the training phase and test
phase. A schematic setup of the proposed software is shown in Figure 4. The software
can be divided into three functional blocks, including preprocessing, feature extraction,
and classification. At the preprocessing stage, the noise and baseline wander of the mea-
sured ECG data were removed. We simultaneously labeled the locations of the QRS
complex, P wave, and T wave by using the QRS complex detector. Later, using the labeled
QRS complex, we calculated interbeat intervals and created Poincaré plots. In the feature
extraction process, we extracted feature values for irregularity and morphological shape
from a sliding window. Eventually, at the classification block, we built a trained support
vector machine (SVM) model that could detect heart disease from the test data. Further-
more, the trained SVM model was moved to the ARM processor and operated to classify
heart disease based on the test phase. In this study, we trained our proposed system to
detect AFib based on theMIT-BIH AF, Arrhythmia, CinC 2001, and CinC 2004 databases,
and to detect myocardial ischemia using the European ST-T databases [36]. Primarily,
the training phase was conducted to train our proposed SVM model, by exploiting these
databases. Conversely, the test phase provided the analytical results of the measured ECG
signals that were acquired using the proposed electrodes.

Remove baseline wandering QRS complexes detection

Preprocessing with digital filters

Noise removal

Training set / ECG data

Feature Extraction

Training and test with classifier

Irregularity features from Poincar plot Morphological features from ECG waveform

Build a SVM model using training dataset
&

Classify the test dataset using trained SVM model

Figure 4 S/W block diagram. Block diagram of the proposed software for training and test phases.
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Preprocessing with digital filters

As mentioned above, in addition to filtering provided at the analog-front end, ECG data
are processed by digital filters to further reduce the noise and interference, which are
caused by the following artifacts: contraction of skeletal muscle, fluctuation of the power
supply, and mechanical force on electrodes. The digital filters have the advantage of
being able to easily change the filter characteristics (i.e., modification of filter coeffi-
cients). Therefore, to remove accumulated noise, we combined 0.05-Hz highpass, 60-Hz
notch, and 40-Hz lowpass filters using Butterworth filters, which are a type of infinite
impulse response. Advantages are that the implemented filters require a small number of
operations per time step.
Similarly, to remove baseline wandering effects, we decomposed the signal vectors

using a wavelet operator, which has a similar shape as QRS complexes. In this step, we
used Daubechies8 as mother wavelet since Daubechies wavelet family have similar shapes
with QRS complex. Measured ECG data is decomposed into eight levels with detail
and approximation coefficients. The sequences of detail coefficients represent prominent
points and segments, and the sequences of approximation coefficients represent an unex-
pected wandering baseline. Therefore, important sequences of detail coefficients can be
retained from the input ECG data. Subsequently, to detect QRS complexes, we assigned
proper locations of QRS complexes using the wavelet scale selection method. From the
decomposed coefficients, we substituted the zero-vector to all sequences, except for one
detail coefficient sequence. By repeating this step to all acquired sequences of detail coef-
ficients, we measured the score to find the protruding segment. The QRS complex was
then assigned as QRSi by maximum protruding values for each target segment. And the
interbeat interval Ii is RR interval which is calculated from the difference of two con-
secutive QRS complexes as follows: Ii = QRSi −QRSi−1. More detailed descriptions for
detecting QRS complexes have been previously reported [17].

Feature extraction and classifications

We used sliding windows of size 10 seconds and included about 10 consecutive inter-
beat intervals. The sliding window continuously moves to the next interbeat interval,
overlapping the half of the interval. Therefore, the features for irregularity and morpho-
logical shape can be extracted from the sliding window. To represent irregularity on ECG
data, we created a Poincaré plot, which showed self-similarity in periodic functions and
sequences. A point in the plot can be defined as Pk = (Ik , Ik+1), where Ik is k-th inter-
beat interval. If the measured points converge near to a central point, this phenomenon
implies the interbeat intervals are almost the same in the observed sliding window. In
contrast, a pattern with diffused points represents irregular interbeat intervals.
In real-time processing, to represent irregularity to detect AFib, we modified three

features based on our previous study [16]: (1) a simplified mean stepping increment,
(2) the sum of the distance from the major interbeat interval point, and (3) the num-
ber of clusters in a Poincaré plot. These features are extracted from the current sliding
window which contains n interbeat intervals. The first feature is a simplified mean
stepping increment. The distance between two consecutive points Pk and Pk+1 in the
plot using the Euclidean distance can be formulated as follows: distance(Pk , Pk+1) =√

(Ik − Ik+1)
2 + (Ik+1 − Ik+2)

2. If the two consecutive points are regular beats, the
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distance converges to zero. However, irregularity of ECG signals is accumulated with
increasing distances. Furthermore, by removing the common points, the simplified value
of the summation can be implemented in the portable device. The simplified version of
mean stepping increment was modified as follows:

simplified mean stepping =
n∑

k=1

distance(Pk , Pk+1)

Ik
. (1)

The second feature is the sum of the distance from a diagonal line in a Poincaré plot. If
a point is located around a diagonal line in the plot, then it denotes that x and y positions
have similar values. This characteristic also means that interbeat intervals are regularly
generated. This dispersion feature illustrates how to distribute the points in a plot from
regular interbeat intervals as follows:

dispersion = 1
n

n∑
k=1

distance((Ik , Ik), Pk). (2)

The third feature is the number of clusters in a Poincaré plot, and this is decided from
the spectral clustering method [37]. In normal cases, the interbeat intervals are regular.
Therefore, the corresponding points in the Poincaré plot are grouped as a small clus-
ter, i.e., closely located points. After the clustering process, a plot of normal ECG signals
shows a consistent group of points. However, a plot of AFib shows scattered points.
To capture characteristics related to myocardial ischemia, we focused on the shape of

the ST segment and QRS complexes. We can extract significant morphological infor-
mation through QRS complexes and the T wave peak. The first feature of ischemia is
cumulative voltage values, whichmeasure how the T wave is elevated from a normal QRS
onset point. If the ST segment deviates from normal levels, this feature value is highly
increased. The mean value of the ST segment is usually located at around the QRS onset
point. The second and third features are a voltage deviation in the ST segment and a slope
from the QRS onset to the offset point, respectively.
As explained above, at the training phase, feature values are agglomerated together to

a feature space. At the test phase, extracted features from preprocessed ECG signals are
classified using support vector machines every minute. We classified the extracted test
feature values using the trained SVM model.

Implementation and programming environment

The proposed device captures ECG signals from the human body using a four-pole clip
electrode through the analog front-end. Furthermore, we used three-lead ECG signals
from the left arm, right arm, and right leg. The size of the analog front-end module is
(H ,W ,D) = (0.1 cm, 3.5 cm, 7.7 cm), which can easily be embedded into a wearable ECG
acquisition device. The instrumentation amplifier (TI INA216) and theOP-Amp (LM358)
are used to obtain regulated ECG signals from the human body. These circuits are suitable
for a portable device with the data acquisition system.
To provide portability, as well as an interactive service, we attached a compact (4.3”

TFT) LCD display device on top of the ARM processor. The LCD4 display provides a
simple and compact display solution with touch screen capability. This display offers a
good resolution of 480 × 272 and a four-wire resistive touch screen provides the oppor-
tunity to design various types of graphic user interfaces. This system is equipped with a
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compact lithium polymer single cell battery with 1300 mAh and the battery should last
for approximately 3 hours with a full charge. The hardware implementation is shown in
Figure 5.
For scalability, we developed our software using C++ language and QT for embedded

Linux. Preprocessing, feature extraction, classification, and graphic user interface for the
software were implemented and tested in the ARM processor. The classifier was used
based on libSVM, which provides an integrated library for support vector machines [38].
The software consists of three screen activities, including the main signal view, a Poincaré
plot, and data description view.
Figure 6 shows the ECG monitoring and real-time test results on human subjects. The

proposed device simultaneously records ECG signals from a user, then displays it on the
real-time screen. By collecting ECG signals continuously for one minute, we can then
calculate inter-beat intervals for each QRS complex. Furthermore, the Poincaré plot is
drawn from extracted inter-beat intervals and is updated after every minute. The plot
shows heart activity by regular drawing of points. The activity of points converging on
one centroid represents that heart activity is regular and normal. On the other hand, when
the points are irregularly distributed, this plot represents one of the typical AFib cases
[39,40].
Additionally, the data description view is displayed after the measured ECG data are

analyzed. The description view provides essential information with the average extracted
feature values and classification results. The numbers with AF and ischemia represent
the existence of corresponding diseases as (0 for nonexistence and 1 for existence). The
numbers with “feat (1,2,3)” represent a set of three features for detecting AFib as follows:
(1) simplified mean stepping, (2) the sum of the distance from themajor interbeat interval
point, and (3) the number of clusters in a Poincaré plot. Similarly, the numbers with “feat
(4,5,6)” represent a set of three features for detecting myocardial ischemia as follows: (4)
cumulative voltage value, (5) voltage deviation in the ST segment, and (6) slope from
the QRS onset to the offset. Since the range of feature values varies widely, all ranges of
features are normalized. The summarized information and corresponding ECG records
would help medical decision for physicians.

Results and discussion
The proposed device is characterized as follows: (1) it reduces hardware complexity,
(2) it has real-time processing, and (3) it has simultaneous feature extraction for AFib

Figure 5 Implemented hardware. Photographs of the implemented hardware. (a) Prototype consisting of
electrodes, display, analog front-end, and ARM processor. (b) Detail view of implemented device.
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(a) (b)

Figure 6 Implemented software. Real-time ECG monitoring on human subject. (a) Input ECG signals are
visualized in the main view. (b) A Poincaré plot and extracted features are shown on the screen.

and ischemia. To validate our device, we examined the quality of acquired signals,
computational complexity, and the accuracy of the embedded algorithm.

Performance evaluation of the analog front-end

We conducted an experiment to determine the quality of the measured ECG signals
by comparing public ECG databases, synthesis signals, and collected ECG signals The
purpose of this experiment was to determine whether our ECG measurement is simi-
lar to well-organized cardiac databases. We prepared three ECG signals as follows. First,
existing records from the PhysioNet databases were chosen as public ECG signals [36].
Second, synthesized ECG signals with simulated random noise and wandering baseline
were generated as follows:

noise = rand() · σECG ·
(
sin

(
rand() · π
SampRate

)
+ 1

2
cos

(
rand() · 2π
SampRate

))
. (3)

The noise was added to the public ECG signals as Eq. 3. The waveform of our result had
a similar amplitude to the public ECG signals and stable shapes. We then transformed
signals from the time domain to the frequency domain. The measured ECG signals were
similar to the quality of the public cardiac database. This finding indicates that various
types of noises were well controlled and maintained for the purpose of analysis. We then
estimated the power spectral density using a periodogram in the frequency domain. We
calculated the similarity by using the root-mean-square-error (RMSE) between the sig-
nals as follows: RMSE(ECGexisting , ECGsimulated) = 0.0308,RMSE(ECGexisting , ECGour) =
0.0545,RMSE(ECGsimulated, ECGour) = 0.0853. The similarity results showed that our
device captured ECG signals that were as clean as the public cardiac database. Addition-
ally, ECG signals from our device were distinguished from simulated ECG signals. This
result indicates the quality of our analog front-end and digital filters.
In addition, We have conducted additional tests to compare the SNR before and after

filtering using MIT-BIH Noise Stress Test Database [36]. This database provides three
types of noises (e.g. baseline wander (BW), muscle artifact (MA), and electrode motion
artifact (EM)). Various noisy signals have been generated and tested by combining nor-
mal ECG signal from MIT-BIH Arrhythmia database with the noises [36]. The following
Table 2 shows the experiment results of comparing the SNR before and after the filtering.
Average SNR improvements of BW, EM, and MA are (7.3632 dB, 5.2544 dB, 6.5382 dB),
resulting in overall SNR improvement of 6.3853 dB.
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Table 2 Test results to compare the SNR before and after filtering

Clean signal from Type of SNR before SNR after SNR

MIT-BIH Arrhythmia DB noise filtering (dB) filtering (dB) improvement (dB)

Record 118 BW 6 15.1689 9.1689

Record 118 EM 6 13.7682 7.7682

Record 118 MA 6 14.4875 8.4875

Record 118 BW 10 18.5482 8.5482

Record 118 EM 10 15.7853 5.7853

Record 118 MA 10 17.5477 7.5477

Record 118 BW 14 19.4872 5.4872

Record 118 EM 14 17.5643 3.5643

Record 118 MA 14 18.6872 4.6872

Record 119 BW 6 14.2548 8.2548

Record 119 EM 6 12.2346 6.2346

Record 119 MA 6 13.7458 7.7458

Record 119 BW 10 17.9658 7.9658

Record 119 EM 10 16.4867 6.4867

Record 119 MA 10 17.1054 7.1054

Record 119 BW 14 18.7548 4.7548

Record 119 EM 14 15.6875 1.6875

Record 119 MA 14 17.6561 3.6561

Average 10 16.3853 6.3853

Performance evaluation of computational complexity

Real-time monitoring of the device was tested by measuring the computational time of
the primary components. Computational complexity is based on processes, such as signal
acquisition, digital filters, feature extraction, and classifications. We measured average
values for the central processing unit (CPU) and memory use per minute. The results of
the performance evaluation are as follows: (1) average CPU use: 33%, (2) minimum CPU
use: 11%, (3) maximum CPU use: 56%, and (4) average memory consumption: 55%. Our
results showed the feasibility of our device in real situations.

Evaluation of sensitivity and specificity for AFib andmyocardial ischemia

We also compared our results with recent detection algorithms such as Artificial Neural
Networks, Principal Component Analysis, Genetic Algorithms, Rule-based method, and
morphological analysis [10-17]. For each heart disease, we already found the set of param-
eters with the best classification results in our previous work [16,17]. For the purpose of
overall comparison, we evaluated our method with the following three sets of MIT-BIH
databases: (1) MIT-BIH AF and arrhythmia, (2) CinC challenge 2001 and 2004 databases,
and (3) European ST-T database from PhysioNet. The number of waveforms are (1) 48
and 27, (2) 300 and 110, and (3) 90, respectively. These waveforms randomly partitioned
into 10 equal size sub-samples for 10-fold cross validation. Of the 10 sub-samples, a sin-
gle sub-sample is retained as the validation data for testing the model, and the remaining
9 samples are used as training data. The cross-validation process is then repeated 10
times, with each of the 10 samples used exactly once as the validation data. Then, the 10
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results from the folds are averaged to produce a single estimation result. To compare the
classification results, we measured the sensitivity and specificity as follows:

sensitivity = TP
(TP+ FN)

× 100, specificity = TN
(TN + FP)

× 100 (4)

Where true positive (TP) implies normal beats, which are correctly detected as anno-
tated. False positive (FP) represents abnormal beats that are classified into normal labels.
True negative (TN) denotes abnormal beats that are detected as annotated with heart dis-
ease. False negative (FN) indicates normal beats, which are considered as abnormal cases.
Table 3 shows the results of the classification with sensitivity and specificity. The aver-
age sensitivity and specificity of our method were 95.1% and 95.9%, respectively. These
results indicate that our method effectively detects AFib and ischemia cases with a higher
performance of detection for distinct cardiac diseases, while existing methods only focus
on one target disease.

Conclusion
In this study, we proposed and implemented a portable ECG device for real-time and per-
sonal purposes. We reduced the hardware complexity by using the digital filter-driven
hardware architecture. By using this device, patients can keep tracking the condition
of their heart on a daily basis, at low cost. According to the experimental results with
MIT-BIH databases, our algorithm has a higher sensitivity and specificity of 95.1% and
95.9%, respectively. In addition, the proposed device has lower computational complex-
ity than other existing detection algorithms that capture abnormal heart activities from
atrial and ventricular chambers on portable and mobile platform. In summary, our device
contributes to excellent monitoring and acceptable analysis results for helping medi-
cal decision making. Our results provide empirical evidence to substantiate real-time as
well as show that our portable personal health care device has high quality signals, low
computational complexity, and accurate detection ability.

Table 3 Offline classification results for AFib and ischemia using an SVM

Previous works Target Databases Sensitivity Specificity
diseases

Papaloukas et al. [10] Ischemia European ST-T 0.9 0.9

Goletsis et al. [11] Ischemia European ST-T 0.912 0.909

Exarchos et al. [13] Ischemia European ST-T 0.912 0.922

Park et al. [17] Ischemia European ST-T 0.957 0.953

Dash et al. [15] AFib MIT-BIH AF and MIT-BIH Arrhythmia 0.944 0.951

Logan and Glass [12] AFib MIT-BIH AF 0.96 0.89

Kikillus et al. [14] AFib MIT-BIH AF and MIT-BIH NSR 0.944 0.934

Park et al. [16] AFib CinC 2001 and 2004 0.914 0.929

This work

AFib MIT-BIH AF and MIT-BIH Arrhythmia 0.956 0.962

AFib CinC 2001 and 2004 0.928 0.938

Ischemia European ST-T 0.969 0.977
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