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Abstract

Background: Model-based reconstruction algorithms have shown potentials over
conventional strain-based methods in quasi-static elastographic image by using
realistic finite element (FE) or bio-mechanical model constraints. However, it is still
difficult to properly handle the discrepancies between the model constraint and
ultrasound data, and the measurement noise.

Methods: In this paper, we explore the usage of Kalman filtering algorithm for the
estimation of strain imaging in quasi-static ultrasound elastography. The proposed
strategy formulates the displacement distribution through biomechanical models, and
the ultrasound-derived measurements through observation equations. Through this
filtering strategy, the discrepancies are quantitatively modelled as one Gaussian white
noise, and the measurement noise of ultrasound data is modelled as another
independent Gaussian white noise. The optimal estimation of kinematic functions, i.e.
the full displacement and velocity field, are computed through this Kalman filter. Then
the strain images can be easily calculated from the estimated displacement field.

Results: The accuracy and robustness of our proposed framework is first evaluated in
synthetic data in controlled conditions, and the performance of this framework is then
evaluated in the real data collected from elastography phantoms and patients with
favourable results.

Conclusions: The potential of our algorithm is to provide the distribution of
mechanically meaningful strain under a proper biomechanical model constraint. We
address the model-data discrepancy and measurement noise by introducing process
noise and measurement noise in our framework, and then the mechanically
meaningful strain is estimated through the Kalman filter in the minimum mean square
error (MMSE) sense.

Introduction
A tumour or a suspicious pathological growth is normally much stiffer than the back-
ground of normal soft tissue [1]. So when a mechanical compression or vibration is
applied, the tumour deforms less than the surrounding tissue, i.e. the strain in the tumour
is less than the surrounding tissue. Hence a strain image may, under particular simpli-
fying assumptions, be interpreted as representative of the underlying Young’s modulus
distribution. Ultrasound elastography [1] is a non-invasive technique in which stiffness or
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strain images of soft tissue are used to detect or classify tumours or cancers. Similar elas-
tography techniques have been also developed using magnetic resonance imaging [2-4]
and mammographic imaging [5]. As an emerging medical imaging modality, it has been
broadly applied in the clinical applications, including improving the diagnostic accuracy
of breast and prostate cancer [6-9], assessing plaque vulnerability [10-13], guiding mini-
mally invasive therapy [14-16]. Currently, supersonic shear imaging (SSI) has become one
cutting-edging technique for real-time visualisation of soft tissue mechanical properties.
Using ultrasonic focused beams, SSI is able to remotely generate mechanical vibration
sources radiating low-frequency, shear waves inside tissues, and then reconstruct the
viscoelastic properties of tissue from the propagated shear waves [17]. Among differ-
ent forms of ultrasound elastography, quasi-static ultrasound elastography is one popular
technique because of its simplicity: two sets of radio-frequency (RF) echo frames are first
collected before and after deformation caused by external compressions, and then the
displacement field, strain field and even the distribution of tissular elasticity are recon-
structed fromRF signals using different approaches [18]. Numerous techniques have been
proposed to solve the reconstruction problem of strain images for quasi-static ultrasound
elastography in the last decades [19], but the estimation of strain images in ultrasound
elastography still remains as a challenging researching topic at present because of its
ill-posed nature [20].
The general procedure of quasi-static elastography is first to recover internal tis-

sue displacements from two ultrasound radio-frequency (RF) frames before and after
tissue deformation due to a quasi-static external compression, and then strain image
and even mechanical properties distribution, such as Young’s modulus, can be com-
puted from the displacement field under certain assumptions. So the quality of tissue
motion estimation determines the performance of quasi-static ultrasound elastogra-
phy. The estimation of tissue displacements is inherently a three-dimensional problem,
which means the displacement vector components physically involve in all three direc-
tions (x, y, z axis) simultaneously and continuously. However, early methods only
focus on axial displacement estimation. Among these techniques, time delay estima-
tion (TDE) is an important and widely used displacement estimation method [1].
Typically, TDE method is to find the best-matching segment in the delayed RF sig-
nal for a specific segment in the reference RF signal by computing the maximum or
minimum of a pattern matching function. Cross-correlation is mostly used as a pat-
tern matching function in TDE method, and several other matching techniques have
been also employed, such as correlation coefficient, hybrid sign correlations, sum abso-
lute differences (SAD) and sum squared differences (SSD). TDE provides accurate
estimation of axial displacement, but it is normally time-consuming. In the quasi-
static elastography, the motion of tissue caused by the compression from the probe
normally occurs in the corresponding two-dimensional scanning plane. However, the
spatial resolution in the axial direction is much higher than that in the lateral direc-
tion in ultrasound imaging, that is why the estimation of the axial component of
the motion has received the most attention [1,21]. Recently, quite a few approaches
have been proposed to recover the lateral and shear strain fields (i.e. reconstruct the
strain tensor), Poisson’s ratio and Young’s modulus [21], but their performance is still
compromised by the low resolution of lateral displacements and the noise from RF
data.
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Both for the calculation of strain images and the reconstruction of elastic parame-
ters, accurate estimation of tissue displacements is the first important step that will
critically affect the image qualities. Therefore, different motion tracking techniques have
been developed to recover tissue displacements during the past two decades [21]. Dif-
ferent beam-forming schemes have been proposed to improve the lateral resolution. For
instance, using large beam steering angle can obtain better lateral displacement mea-
surements, but this method can be only implemented by the phased array. Different
post-processing techniques have also been applied to improve the quality of lateral dis-
placement, such as iteratively interpolation along the lateral direction or local affine
transformation. In another work, a two-dimensional displacement field is calculated
using the analytic minimization (AM) of cost functions that incorporate both the sim-
ilarity of the amplitudes of RF signals and the displacement continuity [21]. However,
lateral displacement estimation is still of order of magnitude less accurate than the axial
displacement estimation. Thus, lateral strain failed in identifying the ablation lesion in
patient experiments [21]. Researchers have also tried to integrate bio-mechanical con-
straint to recover high-resolution lateral displacements from the noisy data. With the
assumption of a constant Poisson’s ratio (0.49), i.e. based on the biomechanical constraint
of tissue incompressibility [22], lateral displacements were recovered from axial-strain
measurements using the least-square technique. However, the least-square technique in
this tissue-incompressibility-assumption (TIA) method cannot perfectly eliminate mea-
surement noise. In addition, errors will be introduced when the tissue incompressibility
assumption is invalid. The recovery of strain and elasticity of tissue from the sparse
displacement is one inverse problem [2,23,24], therefore, it is necessary to develop a
robust framework with a more meaningful bio-mechanical constraint to recover a full
displacement field from the ultrasonic measurements.
The rest of this paper is organised as follows: sectionMethodology describes the details

of our elasticity reconstruction method. The linear FE model is first introduced, followed
by the discussion about the integration of the stochastic state space strategy and the
dynamic equation for the quasi-static ultrasound elastography. In section Experiments
and results, the results obtained from the experiments using simulated data, real phan-
tom data and in-vivo clinical data are presented and discussed respectively. In each set of
data, our results are compared to the strain-based maps. As the ground truths are avail-
able in simulation and phantom study, the results generated by our strategy are compared
to the ideal results. In the clinical experiment, the elastographic images are compared to
CT images with lesions indicated by the doctor. Finally, the discussion of our framework,
concluding remarks and future research endeavours are outlined in section Discussion
and section Conclusion respectively.

Methodology
Linear elasticity

In order to construct a realistic, yet computationally feasible, analysis framework using
the imaging data and other available physical measurements such as pressure induced
by the probe, the structure and material of the biological tissue should be properly
modelled. For computational simplicity, in our current 2D implementation, we adopt
the linear isotropic continuum material for the quasi-static ultrasound, where the stress
and strain relationship obeys the Hooke’s law. Hence, in our current two dimensional
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implementation the linear isotropic continuum material is adopted to describe the
mechanical behaviour of the tissue in quasi-static elastography for the computational
simplicity, and the relationship of the stress σ and the strain ε obeys the Hooke’s
law [25]:

σ = Sε (1)

where S is the strain-stress matrix.
Let u(x, y) and v(x, y) be the displacement along the x- and y-axis of a point, the

infinitesimal strain tensor of the point is:

ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

Under the plane strain condition [25], strain-stress matrix S can be derived as:

S = E
(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎣
1 − ν ν 0

ν 1 − ν 0

0 0
1 − 2ν

2

⎤
⎥⎥⎥⎦ (3)

S is a material-dependent matrix, E stands for the Young’s modulus, and ν stands for the
Poisson’s ratio. Here, the Young’s modulus E and the Poisson’s ratio ν are two material-
specific parameters. This fact is quite clear from these relationships that the internal
stress caused by the deformation is a function of the displacement vector and the mate-
rial parameters. Ideally, the problem could be tackled in three dimension to avoid the
through-plane motion effect, but in this paper we only study the two-dimensional prob-
lem because the image of quasi-static ultrasound elastography are two dimensional data
collected by the linear array of ultrasonic probe. Further, more realistic biomechan-
ical models can also be adopted into current framework in same way, but a linear
material model is used to illustrate the fundamental ideas and rationales of our filter-
ing estimation strategy to recover the distribution of strains for quasi-static ultrasound
elastography.

Stochastic finite elementmethod

In the past decades, the deterministic finite element method has been able to provide an
effective and convenient platform for bio-mechanical studies in the past decades [26,27].
However, it does not have the capability to process the uncertainties of material proper-
ties, and kinematic observations, i.e. measurements of the displacement. Especially the
ultrasound imaging-derived data are usually corrupted by noises of various nature. It is
thus necessary to develop a strategy, the stochastic finite element method (SFEM), which
has been used widely for structural dynamic analysis in probability analysis frameworks
[28,29]. In SFEM, structural material properties are described by random fields, possibly
with known prior statistics.
In our implementation, a Delaunay triangulated finite element mesh is constructed

at the first image frame before compression. An isoparametric formulation defined
in a natural coordinate system is used, where, for tri-nodal linear element, the basis
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functions are linear functions of the nodal coordinates [25]. With mesh constructed,
assuming that the material parameters E (Young’s modulus) and ν (Poisson’s ratio) are
temporally constant but varying spatially, we can have the following dynamic governing
equation [25]:

MÜ + CU̇ + KU = R (4)

where U is the displacement vector, and R is the load vector. Mass matrix M here
is a known function of the material density and is temporally and spatially constant.
Stiffness matrix K is a function of Young’s modulus and Poisson’s ratio determined by
the material constitutive law [25]. Damping matrix C is frequency dependent, and we
assumed the presence of small proportional Rayleigh damping and so C = αM + βK
in our implementation, where α and β are the the mass- and stiffness-proportional
Rayleigh damping weighting coefficients, respectively [25]. In practice it is difficult
to determine the damping parameters because they are frequency dependent. Our
assumption of Raleigh damping was based on the very low damping exhibited by bio-
logical tissues during quasi-static elastography, and fixed the two weighting coefficients
at 1%.
One initialisation issue of Equation (4) is how to measure the external loading vector

(R) during freehand elastography. Considering the object system dynamics embodied in
Equation (4), if any knowledge of the displacement vector (U) is available, it can be used
as essential boundary conditions to recover the motion parameters of all other nodes.
The following experiments involving synthetic and real imaging data provided a set of
displacements at nodal points of the boundary (e.g., axial displacements), and they are
employed in the following fashion. LetUb = b be known from the imaging data at selected
sampling nodes of the boundary, then the additional constraining equation μUb = μb is
enforced on the system dynamics through

MÜ + CU̇ + KU + μUb = R + μb (5)

where weighting coefficient μ depends on the confidence of each displacement, with
large μ values (1 × 104 in this study) indicating highly trustworthy data points and small
μ values for others. In this way it remains possible to describe the boundary condition
without measuring the external force during freehand elastography. More details of this
enforcement of boundary condition can be found elsewhere [25].

State space representation

In order to employ our filtering strategy to integrate bio-mechanical model, the dynamics
equation (Equation (4)) needs to be transformed into a state-space representation of the
continuous-time linear stochastic system. First the kinematic vector x(k) and the material
parameter vector θ are defined as:

x(t) =
[

U(t)

U̇(t)

]
(6)

θ =
[
E

ν

]
(7)

where the kinematic vector x(t) is consisted of displacement U(t) and velocity U̇(t) infor-
mation, and the material parameter vector θ is consisted of Young’s modulus E and
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Poisson’s ratio ν. In general, tumour inclusion or tissue blocked from its blood nutrients
is stiffer than normal tissue, which mostly reflects in the variation of E. Since benign and
cancerous tumours usually have distinguishing elastic properties, i.e. different Young’s
modulus value, the value of Poisson’s ratio can be fixed in the following implementation.
For example, as one of incompressible materials, the Poisson’s ratio of tissue can be set
close to 0.5.
The state space representation of Equation (4) becomes

ẋ(t) = Acx(t) + BcW (t) + n(t) (8)

where n(t) is the process noise and it is white noise (E[n(t)] = 0; E[n(t)n(s)′] = Qn(t)δts,
where Qn is the process noise covariance). The system matrices Ac, Bc and input forces
W (t) are:

Ac =
[

0 I

−M−1K − M−1C

]

Bc =
[
0 0

0 − M−1

]

W (t) =
[

0

R(t)

]

An associated measurement equation, which describes the observations y(t) provided
by the ultrasonic RF data, can be expressed in the form:

y(t) = Hx(t) + e(t) (9)

where e(t) is the measurement noise and it is white noise (E[e(t)]= 0;E[e(t)e(s)′]=
Re(t)δts, and Re is the measurement noise covariance), independent of n(t). H is the mea-
surement matrix which should be specified by the relation between state vector x(t) and
measurement vector y(t).
In order to run the dynamic equation (Equation (4)) in computer, it should be trans-

formed into a discrete state-space equation, typically seen in control and estimation
literature [30,31]. We discretize Equation (8) and (9) over a constant time interval T.
Since the interval T is always a known constant, we can replace kT with k in following
equations

x(k + 1) = Ax(k) + Bw(k) + n(k), (10)

where

A = eAcT , (11)

B = A−1
c (eAcT − I)Bc (12)

The associated measurement equation can be:

y(k) = Dx(k) + e(k) (13)

where y(k) is the measurement vector contained the displacement extracted from ultra-
sound RF data. In most quasi-static elastography, only theaxial component of displace-
ment vector is extracted. Therefore, the corresponding place of D will be set to 1 or 0
according to the available measurement data. n(k) and e(k) are process noise and the
measurement noise respectively.
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Experiments and results
Our filtering framework is validated in simulated data, real phantom data and clinical data
respectively. All the programs in the following experiments are coded in Matlab 2009a
(MathWorks Corporation, USA) and run in a desktop computer with a core 2 intel CPU
and 12 G memory.

Simulated data

ABAQUS (DS Simulia Corporation, USA) software is used for generating simulation data,
and our phantom model is shown in Figure 1. Because the displacements are collected
by the ultrasound probe along axial direction and the lateral displacement is much less
accurate than axial displacement, we only use the axial displacements as input data and
estimate the full displacement field through ourmethod. In this model, a 20×20mm rect-
angular object (Eb = 25 kPa and νb = 0.49) is built as the background. A 4 mm hard
circular inclusion with different elastic property (Et = 80 kPa and νt = 0.49) is included
in the centre of the model, as the target. The top side of the object is compressed to
move 1.0 mm down along the vertical direction with a deformation ratio 5% and the bot-
tom side is fixed. After the rectangular with circular is divided into a triangular mesh
and the mechanical deformation is calculated by ABAQUS, the Gaussian noise is added
into the axial displacements for generating simulated the measurements. The lateral dis-
placement is recovered by our proposed Kalman filter method, then a linear interpolation
function is applied to smooth the displacement image. The least square method is used
to calculate the strain field. We design two experiments on the simulated data in different
conditions:

Figure 1 Setup of phantommodel. (a) the model with circular inclusion; (b) the finite element mesh;
(c) the direction of moved nodes.
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1. Since we have the ground truth of simulated measurements, the first experiment is
designed to examine the influence of measurement noise. In order to evaluate the
performance quantitatively, we define the following two factors, the lateral
displacement relative error (DRE) and contrast-to-noise ratio (CNR):

DRE = ē
d̄

(14)

CNR =
√
2(s̄b − s̄t)2

σ 2
b + σ 2

t
(15)

where ē is the average nodal displacement error, d̄ is the average nodal
displacement value, s̄t and s̄b are the spatial strain average of the target and
background, σ 2

t and σ 2
b are the spatial strain variance of the target and background.

Figure 2 and Figure 3 show the lateral displacement and strains estimated results
when the axial displacement is added by the Gaussian noise (SNR = 40 dB).
Figure 4 and Figure 5 show the estimated results in different noise conditions
(40 db, 20 db, 15 db). Table 1 shows the comparison of lateral displacement errors
and CNR under different measurement noise levels.

2. The second experiment is designed to evaluate the effect of initialisation of the
model elastic property. In our method Young’s modulus distribution is assumed to
be homogeneous when the whole displacement field is estimated. Figure 6 and
Table 2 show the effect of Young’s modulus in lateral displacement estimation. The
performance of our method is acceptable when Young’s modulus is greater than
20 kPa, but the CNR is in a higher level only from 20 kPa to 40 kPa.

Real phantom data

Two sets of phantom data are used to evaluate the performance of our method. The
first set of phantom data is collected by us in one Elasticity QA Phantom (Model 049,
CIRS Inc. USA) using a PC-based Ultrasonix RP ultrasound machine (UltrasonixMedical
Corporation, Burnaby, BC, Canada). One phase-shift method with prior estimates [32]
is used to estimate the axial displacements from the RF signals, and the full displace-
ment field is recovered from the axial displacement measurements. And then all the
strain images are displayed in Figure 7. We also compare our method to the method
developed by Johns Hopkins University (JHU) [21]. In this comparison, the second set
of phantom data is provided by JHU and it is available online [21]. Figure 8 shows
the recovered strain images from both methods and the strain profiles in the same
depth.

Clinical data

The ultrasound experiments were performed with the approval of the Health Science
Research Ethics Committee of JHU. The participants were provided written informed
consent before beginning the experiment. Three sets of patients’ ultrasonic RF data are
provided online in [21], and those data are collected in the patients undergoing open sur-
gical RF thermal ablation for liver cancer enrolled between February 06, 2008 and July
28, 2009. The details of these patients’ clinical status have been extensively discussed
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Figure 2 Comparison between recovered displacement field and true displacement field. True
displacement field and recovered displacement field: (a) ground truth of the axial displacement (left) and
lateral displacement (right); (b) the estimated results: axial displacement (left) and lateral displacement (right);
(c) the comparison of lateral displacement profile at the same depth which is marked by the colourful lines.

in [21]. All the patients’ data are processed in the same way as the way for real phan-
tom data. Since the axial and lateral displacement measurements have been provided in
[21], the extraction of displacement is not necessary in this experiment. Figure 9 shows
patients’ CT images scanned after RF ablation, strain images and our estimated results
respectively.

Discussion
Our model-based stochastic filtering strategy is able to provide a a high-resolution dis-
placement field (in both axial and lateral directions) in 2D elastography. In the following
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Figure 3 Comparison between recovered strain field and true strain field. True strain field: (a) axial
strain, (c) lateral strain, (e) axial-shear strain, (g) lateral-shear strain, and (h) shear strain; recovered strain field:
(b) axial strain, (d) lateral strain, (f) axial-shear strain, (h) lateral-shear strain, and (j) shear strain.
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Figure 4 Performance evaluation under different external noise conditions. Comparison of estimated
results under different noise conditions (40 dB, 20 dB, 15 dB): (a) estimated lateral displacement profiles at the
same depth which is marked by the red lines in Figure 3; (b) estimated strain profiles at the same depth which
is marked by the red lines in Figure 3(c) converge curves of average positional error, and the small segments
of the curves indicated by the red colour rectangular area are zoomed in displayed in the small panel.

Figure 5 Tolerance of external noise. Three factors’ tolerance of external noise conditions (from 15 db to
80 db): (a) average position error; (b) average relative error; (c) CNR (the used areas are indicated by blue
lines in Figure 3(d)).
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Table 1 Comparison of lateral displacement errors and CNR under differentmeasurement
noise levels

SNR 80 dB 60 dB 40 dB 30 dB 20 dB 15 dB

Average positional error (×10−3 mm) 2.2411 2.2412 2.2679 2.5023 2.6250 2.8952

Average relative error (%) 3.3270 3.3271 3.3667 3.7147 3.8922 4.2980

CNR 15.1921 15.1910 15.1561 14.8592 13.7931 11.0543

context the robustness, initialisation and computational cost of our filtering framework
are discussed respectively.

Robustness of our filtering strategy

The kernel of our proposed approach is the Kalman filtering algorithm, therefore
the tolerance of external noise is the one key performance factor of our filtering
strategy. Our filtering framework can recursively absorb sparse measurements under the
biomechanical-model-based constraint, and finally calculate physically meaningful opti-
mal estimates, which is a full and smoother displacement field. In order to examine the
robustness of our filtering strategy, we have designed several experiments to test the
tolerance of the noise in our method.The tolerance of the proposed filtering strategy
to external noise was evaluated by adding different levels of measurement noise to the
simulated measurement. Our filtering framework was still able to recover the displace-
ment/strain fields with a similar quality frommeasurements containing different levels of
measurement noise after certain number of iterations, as indicated by the three pictures
in Figure 4. But if we examine the tolerance of noise in much finer scale, we can see the
quality of estimated displacement/strain field will not change when SNR is greater than
40 db as shown in Figure 5. This fact can be also verified by quantitative measures in
Table 1.

Initialisation issues

The number of iterations and the initialisation of biomechanical-model constraint
(Young’s modulus and Poisson’s ratio) are important to our filtering strategy. In order

Figure 6 Tolerance of Young’s modulus. Estimated results using increased Young’s modulus: (a) average
position error and (b) CNR (the used areas are indicated by blue lines in Figure 3(d)).
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Table 2 Comparison of lateral displacement errors and CNR using different Young’s
modulus

Young’s modulus (kPa) 5 10 20 30 40 50 60 80

Average positional error 6.2704 2.9314 2.3100 2.2253 2.3947 2.2381 2.1240 2.2818
(×10−3 mm)

Average relative error (%) 9.3085 4.3518 3.4291 3.3036 3.5550 3.3226 3.1531 3.3874

CNR 11.526 13.750 15.322 14.842 14.860 13.685 13.506 13.860

Figure 7 Experiment on phantom data. Estimated strain field using phantom data: (a) axial strain,
(b) lateral strain, (c) lateral strain profile at the same depth which is marked by the red line in (b),
(d) axial-shear strain, (e) lateral-shear strain, and (f) shear strain.
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Figure 8 Comparison of our method and JHUmethod. (a) axial and lateral strain images (left to right)
generated by JHU method; (b) axial and lateral strain images (left to right) generated by our model-based
framework; (c) Comparison of axial strain profiles (left) and lateral strain profiles (right) at the same depth
which is marked by the red lines.

to generate a displacement/strain image of high quality, we simply performed 200 iter-
ations of the filtering procedures as show in Figure 4(c). Since most biological tissues
are incompressible materials, Poisson’s ratio used in our filtering strategy can be ini-
tialised to 0.49. When Young’s modulus is initialised greater than 20 kPa, the average
position error will not increase anymore (see Figure 6(a) and Table 2), but a better CNR
can only be obtained when Young’s modulus is from 20 kPa to 40 kPa (see Figure 6(b)).
Therefore, the initial value of Young’s modulus should be in the range from 20 kPa to
40 kPa.

Computational cost

The computational cost of our method is the high in current implement scheme. In all
the experiments performed in this study we can only handle measurements on 21 × 21
sample nodes. Although the spatial resolution of the recovered strain image is actually
limited by the number of nodes, the quality of the estimated strain images generated by
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Figure 9 Experiment on clinical data. Patient 1: (a) axial displacement and strain images (left to right)
calculated from JHU’s displacement results; (b) lateral displacement, axial strain and lateral strain images (left
to right) calculated from displacements which are estimated by our method. Patient 2: (c) axial displacement
and strain images (left to right) calculated from JHU’s displacement results; (d) lateral displacement, axial strain
and lateral strain images (left to right) calculated from displacements which are estimated by our method.

our model-based filtering strategy is not yet compromised. Furthermore, we can take
advantage from advanced computing power technologies, such as GPU, to accelerate our
filtering strategy in future study.

Conclusion
In this paper, we have developed a bio-mechanically constrained filtering framework to
extract a full displacement field from the measurements derived from ultrasound RF sig-
nals collected before and after deformation. Then, the strain tensor can be reconstructed
from the full displacement field. The proposed framework have been validated by a series
of experiments. However, the spatial resolution of recovered displacement field and strain
images are restricted by the number of finite element nodes. In the future works, more
efforts should be done on computational complexity reduction in order to increase spatial
resolution.
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