
Yahya et al. BioMedical Engineering OnLine 2014, 13:154
http://www.biomedical-engineering-online.com/content/13/1/154

RESEARCH Open Access

Subspace-based technique for speckle noise
reduction in ultrasound images
Norashikin Yahya*, Nidal S Kamel and Aamir S Malik

*Correspondence:
norashikin_yahya@petronas.com.my
Centre for Intelligent Signal and
Imaging Research (CISIR), Universiti
Teknologi Petronas, Bandar Seri
Iskandar, Perak, Malaysia

Abstract

Background and purpose: Ultrasound imaging is a very essential technique in
medical diagnosis due to its being safe, economical and non-invasive nature. Despite
its popularity, the US images, however, are corrupted with speckle noise, which
reduces US images qualities, hampering image interpretation and processing stage.
Hence, there are many efforts made by researches to formulate various despeckling
methods for speckle reduction in US images.

Methods: In this paper, a subspace-based speckle reduction technique in ultrasound
images is proposed. The fundamental principle of subspace-based despeckling
technique is to convert multiplicative speckle noise into additive via logarithmic
transformation, then to decompose the vector space of the noisy image into signal and
noise subspaces. Image enhancement is achieved by nulling the noise subspace and
estimating the clean image from the remaining signal subspace. Linear estimation of
the clean image is derived by minimizing image distortion while maintaining the
residual noise energy below some given threshold. The real US data for validation
purposes were acquired under the IRB protocol (200210851-7) at the University of
California Davis, which is also consistent with NIH requirements.

Results: Experiments are carried out using a synthetically generated B-mode
ultrasound image, a computer generated cyst image and real ultrasound images. The
performance of the proposed technique is compared with Lee, homomorphic wavelet
and squeeze box filter (SBF) in terms of noise variance reduction, mean preservation,
texture preservation and ultrasound despeckling assessment index (USDSAI). The
results indicate better noise reduction capability with the simulated images by the SDC
than Lee, Wavelet and SBF in addition to less blurry effect. With the real case scenario,
the SDC, Lee, Wavelet and SBF are tested with images obtained from raw radio
frequency (RF) data. Results generated using real US data indicate that, in addition to
good contrast enhancement, the autocorrelation results shows better preservation of
image texture by SDC than Lee, Wavelet and SBF.

Conclusion: In general, the performance of the SDC filter is better than Lee, Wavelet
and SBF in terms of noise reduction, improvement in image contrast and preservation
of the autocorrelation profiles. Furthermore, the filter required less computational time
compared to Lee, Wavelet and SBF, which indicates its suitability for real time
application.
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Introduction
Ultrasound (US) imaging is one of the most commonly used medical imaging due for
diagnostic purposes to its many advantages such as portability, the noninvasive nature,
relatively low cost and presents no radiation risk to patient. These features have made
the US imaging as the most prevalent diagnostic tool for health practitioners over other
more sophisticated imaging techniques such as CT scan, MRI or PET. Unfortunately,
like SAR, US images exhibit a speckle pattern and its statistical model is identical to
single-look SAR amplitude signals. Speckle in ultrasound has adverse effect in such a
way it causes reduction in image contrast resolution. In [1], Bamber and Daft show that
speckle in US images cause reduction of lesion detectability by approximately a factor
of eight.
An US machine works by introducing into the body of interest a low-energy pulse

of sound with frequencies typically between 3 and 30MHz by a transducer probe that
touches the patients’ skin surface. Upon travelling through the body tissue, some of
the pulses get attenuated while some small portion of the pulse energy are scattered
back to the probe. The scattered pulse is then received by the same probe to pro-
duce echo signals which are processed to form two-dimensional images, also known
as sonogram. This two-dimensional anatomical maps are called B-mode (brightness)
images [2].
In principle, US images provide information about internal tissue structures which

resulted from interaction between anatomical tissues with the transmitted ultrasound
pulse. Due to interaction between ultrasound waves with tissue, backscattered echo sig-
nals are produced, in the form of reflection, scattering, interference and absorption.
These echo, resulted from coherent summation of ultrasound scatterers, carry informa-
tion about the tissue under investigation. The nature of coherent summation of such
signals gives rise to an interference pattern known as speckle [3].
The despeckling techniques applied in US and SAR imagery can be classified into

four main groups, namely, linear and non-linear filters, adaptive speckle filters, wavelet-
based filters and anisotropic diffusion-based (AD) approach. In linear filtering technique
[4,5], the multiplicative speckle noise is first converted into an additive noise by apply-
ing logarithmic transformation to the speckled image followed by a Wiener filter in
order to reject the resultant additive noise. The despeckled image is fully recovered
by applying exponential transformation onto the output of Wiener filter. The tech-
nique, which convert the multiplicative speckle noise into an additive one, are commonly
referred as homomorphic despeckling methods. The Wiener filter is the oldest approach
to image denoising, is optimal in the sense of minimum mean-square error (MSE)
and is space invariant linear estimator of the signal for images degraded by additive
white noise.
The nonlinear filters are possible alternative to the standard linear filters, and the

most popular one is the median filter. It has the advantage of preserving edges and
is very effective at removing impulsive noise. The median filter sorts the intensi-
ties in the neighbourhood window of the reference pixel and calculates the median
value of the sorted data. The denoised pixel is obtained by replacing the original ref-
erence pixel value by the median value calculated for the particular neigbourhood
window [6-8]. The main problem is that the median filter would blur edges and
tiny details.
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Wavelet-based denoising techniques continue to generate great interest among the
computer vision and image processing community. Some of the proposed wavelet-
based speckle filters are presented in [9-15]. The success of the technique is due to
the fact that in the wavelet domain, the noise is uniformly spread throughout the
coefficients, while most of the image information is concentrated in few significant
ones. In other word, the wavelet-transformed images tend to be sparse and conse-
quently, noise removal can be achieved by properly suppressing or thresholding the
small coefficients that are likely due to noise. The wavelet-based denoising techniques
involve three major steps, 1) perform a 2-D wavelet transform, 2) modify the noisy
coefficients using a shrinkage function, and 3) perform a 2-D inverse wavelet trans-
form [16,17]. In general, the most critical step in wavelet denoising techniques is
the modification of wavelet coefficients. The classification of the different type of
wavelet denoising is typically based on it different approach in modifying the noisy
coefficients.
The adaptive speckle reducing filters such as Lee, Kuan and Frost can be applica-

ble to both US and SAR images. The methods are developed based on multiplicative
model of speckle noise. The methods are based on two assumptions, 1) the recorded
image and the speckle noise are statistical independence [18], and 2) a constant ratio
of noise standard deviation to mean throughout the image. The second assumption is
valid in homogeneous regions. Each of these filters achieved speckle reduction via spa-
tial filtering in a square-moving window known as kernel. The filtering is based on
the statistical relationship between the centre pixel and its surrounding pixels within
a processing window. The typical window size are 3 × 3, 5 × 5, and 7 × 7. With the
window-based techniques, the selection of window will greatly affects the quality of the
processed image. If the window is too small, the noise filtering algorithm is not effective,
where as if the window is too large, subtle details of the image will be lost in the filtering
process.
The squeeze box filter (SBF) which can be classified as an iterative technique, reduces

speckle noise by suppressing outliers as a local mean of its neighborhood [19,20].
Based on the fact that speckle is a stochastic process where outliers inevitably occurs,
the proposed SBF achieves noise reduction by iteratively removes the outliers. Specif-
ically, the image pixel outliers are defined to be local minimums and local maximums
determined from a 3 × 3 window. Each outlier will be replaced by a local mean deter-
mined from a window centered on the outlying pixel. The outlier pixel value is not
used in computing the local mean. After all the outliers are replaced by the local
means, the process is repeated until a predetermined number of iteration is reached
or until convergence is attained. In [19], experimental results showed that the SBF
improves the image quality in terms of contrast enhancement, structural similarity
and segmentation result. Although an effective speckle reduction, the SBF however
still has artifacts in the form of blurred edges and irregular intensity pattern around
edges [21].
In this paper, a subspace-based technique to reduce the speckle noise in US images, is

proposed. Fundamentally, the proposed technique is an extension of the original work
of Ephraim and Van Trees [22], in speech enhancement towards 2-dimensional signals.
The underlying principle is to decompose the vector space of the noisy image into a
signal-plus-noise subspace and the noise subspace. The noise removal is achieved by
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nulling the noise subspace and controlling the noise distribution in the signal subspace.
For white noise, the subspace decomposition can theoretically be performed by apply-
ing the Karhunen-Loeve transform (KLT) to the noisy image. Linear estimator of the
clean image is performed by minimizing image distortion while maintaining the resid-
ual noise energy below some given threshold. For colored noise, a prewhitening approach
prior to KLT transform, or a generalized subspace for simultaneous diagonalization
of the clean and noise covariance matrices, can be used. The fundamental signal and
noise model for subspace methods is additive noise uncorrelated with the signal. But,
in US images the noise is multiplicative in nature, so a homomorphic framework takes
advantage of logarithmic transformation, in order to convert multiplicative noise into
additive noise.
The paper is organized as follows. Firstly, the statistic of speckle noise in US images

is described. Secondly, the principle of subspace and how it can be extended to speckle
noise removal is presented. In specific, this second section covers the proposed subspace
technique and its implementation in speckle noise filtering followed by experimental
results to determine optimum value of Lagrange multiplier. The subsequent section
presents the experimental results to validate and evaluate the performance of the pro-
posed filter. The performance evaluation of the proposed technique is divided into
three main categories, 1) using simulated B-mode US images 2) using Field II gen-
erated images and 3)using real US images in comparison to Lee filter, wavelet filter
[23,24] in homomorphic framework and SBF technique [19]. The final section concludes
this paper.
For clarity, an attempt has been made to adhere to a standard notational convention.

Lower case boldface characters will generally refer to vectors. Upper case characters will
generally refer to matrices. Vector or matrix transposition will be denoted using (.)T and
R
m×m denotes the real vector space ofm × m dimensions.

Signal and noise model in ultrasound images
Consider matrix G to be the noisy observation of the original image, W . Let denote ξm
and ξa as the set of corrupting multiplicative and additive speckle noise components,
respectively. The noisy US image can be expressed as [4,9,11,25]

G = Wξm + ξa. (1)

Generally, in medical US images, the effect of the additive speckle noise (such as sen-
sor noise) is considerably less significant than the multiplicative component [4,9,11,25].
Taking the assumption that the speckle is fully developed and the additive term can be
neglected, equation (1) can be expressed as

G = Wξm. (2)

Applying the logarithmic function to both side of (2), we get

log(G) = log(W ) + log(ξm). (3)
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Expression (3) can be rewritten as

Y = X + N , (4)

where Y ,X and N are the logarithms of G,W and ξm respectively.
The statistical theory to describe US speckle are drawn from the literature of laser optic

by Goodman in [26]. Goodman mathematically models speckle as an accumulation of a
large number of complex phasors z, to be denoted as z = a + jb, also known as complex
random walk. These complex phasors, z can have either constructive or destructive rela-
tionship with each other. Applying central limit theorem to the random walk will results
in a signal having two-dimensional Gaussian probability density function (PDF) in the
complex plane,

PZ (z) = 1
2πv2

exp
(

−|z|2
2v2

)
, (5)

where v2 is the variance of the Gaussian distributed in-phase/quadrature (IQ) compo-
nents. Equation (5) is simply the product of two independent Gaussian density functions
with zero mean and variance v2 and referred to as a circular Gaussian probability den-
sity function. Using the law of conservation of probability, the PDF of speckle phasors
magnitude, A = √

a2 + b2 is given by

PA (A) = A
v2

exp
(

− A2

2v2

)
, A ≥ 0. (6)

For the intensity format, I = A2, the PDF is given by [27]

PI (I) = 1
2v2

exp
(

− I2

2v2

)
, I ≥ 0. (7)

The equation in (6) and (7) are respectively, known as Rayleigh PDF and exponentional
PDF. In B-mode US signal, the magnitude A is the quantity of interest since the image
is form using envelope detection, in which the phase components are removed. The his-
togram of the pixels in homogeneous area marked as “A” is shown in Figure 1 which shows
a distribution consistent with Rayleigh distribution.
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Figure 1 An US image (a) and histogram of the homogeneous region A (b).
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The subspace-based techniques for noise reduction
In this section, we derive the linear spatial-domain constraint (SDC) estimator, which
minimizes the image distortion while constraining the energy of residual noise. The fun-
damental principle is to decompose the vector space of the noisy image into a signal
subspace and noise subspace. The decomposition of the space into two subspaces can be
done using either the singular value decomposition (SVD) or the eigenvalue decomposi-
tion (EVD). The noise removal is achieved by nulling the noise subspace and controlling
the noise distribution in the signal (signal + noise) subspace. We begin with derivation of
time (spatial) domain constraints estimator which minimizes the image distortion while
constraining the energy of residual noise. Using the signal X and an additive noise model
N , the noisy image matrix can be expressed as Y = X + N . In this case, the error signal ε
obtained from the linear estimation, X̂ = HY is given by

ε = X̂ − X = (H − I)X + HN = εX + εN , (8)

where εX represents the image distortion, and εN represents the residual noise [22]. Defin-
ing the energy of the image distortion ε̄X

2, and the energy of the residual noise ¯εN 2

as

ε̄X
2 = tr

(
E

[
εTX εX

])
, (9)

¯εN 2 = tr
(
E

[
εTNεN

])
, (10)

where E [·] is the expected value, the optimum linear estimator can be obtained by solving
the following spatial-domain constrained optimization problem [22,28]

min
H

ε̄2Xsubjectto
1
m

ε̄2N ≤ σ , (11)

where σ is a positive constant.
The optimum estimator is the sense of Eq. (11) can be found using the Kuhn-Tucker

necessary conditions for constrained minimization [29]. It involves solving a constrained
minimization problem by applying the method of Lagrange multipliers [30]. Specifically,
H is a stationary feasible point, if it satisfies the gradient equation of the Lagrangian,

L(H , λ) = ε̄2X +λ
(
ε̄2N − mσ

) = tr
(
(H − I)RX (H − I)T

)
+λ

(
tr

(
HRNHT

)
− mσ

)
,

(12)

where λ ≥ 0 is the Lagrange multiplier, and

λ
(
ε̄2N − mσ

) = 0 for λ ≥ 0. (13)

The solution to Eq. 12 is a stationary feasible point that satisfies the gradient equation,
∇HL(H , λ) = 0, thus we obtain

∇HL(H , λ) = 2(H − I)RX + 2λHRN = 0, (14)

thus,

HSDC = RX(RX + λRN )−1. (15)

Since the noise is assumed to be white, then RN = v2nI where v2n is the noise variance and
I is the identity matrix. Hence, the solution for the optimum estimator HSDC is given as

HSDC = RX
(
RX + λv2nI

)−1 . (16)
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Before the final form of the optimal estimator HSDC is considered, it is worthy to
note that there is a strong empirical evidence indicating that the transformed covariance
matrix of most images by the eigenvectors of the RX have some eigenvalues small enough
to be considered as zeros. This means that the number of basis vectors for the pure image
is smaller than the dimension of its vectors.
To verify this key statement, we plot the eigenvalues of two ultrasound images of cap-

tured from a patient, as shown in Figure 2. The images shown in Figure 2 correspond
to malignant and benign tumor obtained from biopsy-verified studies. The image size
is 1556 × 360 pixels where the x-axis giving the lateral sizes and the y-axis giving the
axial sizes. Specifically, for the malignant tumor, the patient was diagnosed with IDC
(Invasive Ductal Carcinoma) and for the benign tumor, the patient was diagnosed with
fibroadenoma. The RF frames are recorded at 17 frame/second and a total of 12 seconds
of data are acquired using a linear transducer array from the Antares® System. In order to
obtain the B-mode ultrasound images, the URI Offline Processing Tools (URI-OPT) run
on MATLAB platform is used to convert the RF data to the B-mode images as shown in
Figure 2.
The eigenvalue plot in Figure 3, it shows that some of the eigenvalues of matrix RX

are close to zero, which indicates that the energy of the clean image is distributed
among a subset of its coordinates and the signal is confined to a subspace of the noisy
Euclidean space. Since all noise eigenvalues are strictly positive, the noise fills in the
entire vector space of the noisy image. In other word, the vector space of the noisy
image is composed of a signal-plus-noise subspace and a complementary noise sub-
space. The signal-plus-noise subspace or simply the signal subspace comprises vectors
of the clean image as well as of the noise process. The noise subspace contains vectors
of the noise process only. Using eigendecomposition of RX = U�XUT , Eq. (16) can be
expressed as

HSDC = U�X
(
�X + λv2nI

)−1UT . (17)

The link between the maximal oriented energy and the signal subspace as well as
between the minimal energy and the noise subspace were established in [31]. Using the
eigendecomposition analysis [31], in which the �X,i = �Y ,i − v2n, we can improve the
form of model matrix HSDC in Eq. (17) by removing the noise subspace and estimating
the clean image from the remaining principal signal subspace
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Figure 2 Uncropped B-mode ultrasound images of breast tissue, malignant tumor (left) and benign
tumor (right). Courtesy of Ultrasonic Imaging Laboratory at University of Illinois at Urbana-Champaign.
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Figure 3 Eigenvalue profile of RX , generated from the US images in Figure 2.

HSDC = U1�X1
(
�X1 + λv2nI

)−1UT
1 . (18)

In the implementation of SDC, a proper selection of signal subspace dimension r and
Lagrangian multiplier, λ are critical in order to achieve the best noise reduction tech-
nique. For subspace dimension, a method based on eigenvalues is proposed in [31,32]
whereas the Lagrangian multiplier is to be empirically determined. As with any other
noise filtering technique, the value noise variance needs to be estimated. In this case, the
noise variance can be estimated using the last trailing end of the smallest singular value
as outlined in [31].
When dealing with ultrasound data, the SDC is implemented in homomorphic frame-

work where the noisy image is first log-transformed prior to SDC filtering. This transfor-
mation will convert the multiplicative nature of the speckle to an additive on. The final
form of the despeckled image is recovered by performing antilog on the output of the
SDC filter. The implementation detail of SDC are given as follows,

1. Apply the homomorphic transformation to the noisy image, Y = log(G).
2. Estimate the noise variance, v2n.
3. Compute the dimension of signal subspace, r.
4. Using the estimated r in step 3, apply eigendecomposition on RYl , then extract the

basis vectors of signal subspace U1, and their related eigenvalues �
(i)
X = �

(i)
Y − v2n.

5. Select the best value of λ, then compute the optimum linear estimator,

HSDC = U1�X1
(
�X1 + λv2nI

)−1UT
1 . (19)

6. Compute the clean image, X̂ = HSDC · Y .
7. Reverse the homomorphic effect by taking the exponential of the X̂ as follows

Ŵ = 10X̂ . (20)
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Figure 4 Test image.

In essence, reversing the homomorphic effect in step 7 converts the logarithmic form
of the filtered image to a linear form prior to image display.

Optimum value of the lagrangemultiplier

To find the best λ value for SDC, a test image made up is created as shown in Figure 4.
The test image is made up of synthetic patterns, specimens from Broadatz texture set,
geometrical shapes, and some alphabets with different size. In particular, the bright
and dark strips on the upper left corner closely resemble clinical ultrasound images of
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Figure 5 SNR of the despeckled test image in 4 obtained at different λ values.
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Table 1 PSNR (in dB) values for despeckling of the test image in Figure 4

Noise variance Noisy Lee Wavelet SBF SDC

0.02 20.61 19.88 21.66 21.68 21.73

0.04 18.98 19.73 20.56 20.49 20.60

0.06 16.80 19.46 18.18 19.05 19.84

0.08 14.61 18.96 15.61 18.23 19.11

0.10 11.69 18.07 12.26 17.81 17.67

carotid artery at the far wall [33]. The test image is selected as it combines different
critical features of typical US images. The Broadatz texture is to assess on how well
the filter can preserves the texture of the original image. Besides, the different geo-
metrical shapes and alphabets of different sizes are included in order to evaluate the
filter capability in preserving edges and fine details of the image. Lastly, the selection
of bright and dark strips that closely resemble clinical US images of carotid artery is to
assess the filter capability in preserving the artery wall and its edges. The experiment
is conducted by corrupting the test image speckle noise of variance extends from 0.03
to 0.05 and λ ranging between 1 and 105. The signal-to-noise value (SNR) calculated
as

SNRdB = 10 log10
v̄2X
MSE

, (21)

where MSE represents the mean-square error, given by

MSE = 1
mn

m∑
i=1

n∑
j=1

(
X

(
i, j

) − Y
(
i, j

))2 , (22)

is used to indicate the denoising effect of the SDC. The results are shown in Figure 5.
The results in Figure 5 show that the SDC is not too sensitive to the selected value of

the Lagrange multiplier. Notably, the results in Figure 5 show that for high noise level,
(v2n > 0.04) the despeckle effect of the SDC, measured in terms of the SNR, shows
improvement by 1 dB to 1.5 dB, as the Lagrange multiplier varies from 1 to 40. For lower
value noise level, (v2n ≤ 0.04) the SNR improvement is around 0.3 dB as the Lagrange
multiplier varies from 1 to 10. In general, the results in Figure 5 show better SNR val-
ues for higher values of the Lagrange multiplier. However, it should be noted that high
value of λ may results in oversmoothed images and cause loss of details. Consequently,
the rule of selecting λ is that for noise variance less than 0.04, λ should be selected to
be around 10 and with noise variance greater than 0.04 it should be selected to be less
than 40.

Figure 6 Restoration of test image in Figure 4 at noise variance, v2n = 0.03. From left to right, Original,
Lee filter, Wavelet filter, SBF and SDC filter.



Yahya et al. BioMedical Engineering OnLine 2014, 13:154 Page 11 of 18
http://www.biomedical-engineering-online.com/content/13/1/154

Lateral distance [mm]

A
xi

al
 d

is
ta

nc
e 

[m
m

]

−20 −10 0 10 20

35

40

45

50

55

60

65

70

75

80

85

90

Figure 7 Uncropped US image of a computer generated cyst phantom.

Results and discussions
The experimental results presented in this section can be divided into 2 parts. In the
first part, the performance of the proposed SDC technique is compared with Lee [34],
homomorphic wavelet filter [35] and SBF technique [19] using a simulated speckle image.
With a known noise-free image, the performance of SDC is measured in terms of Peak
Signal-to-Noise Ratio (PSNR) defined as

PSNR = 20 log10
(

255√
MSE

)
, (23)

Figure 8 Restoration of cyst image generated from Field II simulation. From left to right, Original, Lee
filter, Wavelet filter, SBF and SDC filter.
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Table 2 Normalized variance in denoised images of the cyst phantom in Figure 8

Original Lee Wavelet SBF SDC

Region A 0.03 0.02 0.02 0.02 0.01

Region B 0.04 0.02 0.02 0.01 0.01

The value of 255 in Eq. (23) corresponds to the maximum possible pixel value and MSE
is defined as in (22).
In the second part, the performance of the proposed SDC technique is investigated

using a computer generated image and real US images. Here, the Lee filter is implemented
with 7 × 7 window size, the homomorphic wavelet is used with Daubechies length-eight
filter and a 7 × 7 window and the SBF technique is implemented according to the set up
given in [19]. The SDC is implemented as in The subspace-based techniques for noise
reduction section. The rank values and the noise variance of the different images are cal-
culated using the method outlined in [31]. As for the Lagrange multiplier, the value is
selected using the rule set in the previous section.
When using computer generated US or real US images, the noise-free image is not

available which is the practical scenario of denoising applications of US images. There-
fore, reference-free methods are used to quantitatively assess the denoising performance.
The reference-free methods in this work are mean preservation, normalized variance,
autocorrelation [36] and USDSAI [37]. Details on each assessment metric are as follows;

1. Mean Preservation: A good speckle filter will maintains the mean intensity within a
homogenous region.

2. Normalized Variance: The normalized variance indicates the performance of the
filter in homogeneous areas. This metric is given by

var
mean2

=
1
mn

∑m
i=1

∑n
j=1

(
X

(
i, j

) − X̄
)2

X̄2 , (24)

where X̄ corresponds to the mean value of the pixel. In general, lower normalized
variance values in the filtered image indicate better speckle suppression.

3. Autocorrelation: is another method of filter assessment in homogeneous area
where close autocorrelation profile to the original image indicates better texture
preservation. The autocorrelation form × n image X is given as [36]

ρ(x, y) =
1

(m−|x|)(n−|y|)
∑

i
∑

j X(i, j)X(i + x, j + y)
1
mn

∑m
i=1

∑n
j=1 X(i, j)2

, (25)

where X(i, j) is the grey value of pixel (i, j).
4. Ultrasound Despeckling Assessment Index (USDSAI): is a modified Fisher

discriminant contrast metric [37]. USDSAI gives an indication on how well a
despeckling algorithm reduces variances in homogeneous classes while keeping the
distinct classes well separated. The metric is defined as

Table 3 USDSAI value in denoised images of the cyst phantom in Figure 8

Original Lee Wavelet SBF SDC

1.00 2.10 1.80 3.07 3.00
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Table 4Mean preservation in denoised images of the cyst phantom in Figure 8

Original Lee Wavelet SBF SDC

Region A 127.74 127.87 126.73 134.87 126.48

Region B 125.60 125.69 123.80 133.02 125.17

USDSAI =
∑

k �=l
(
meanCk − meanCl

)
∑K

k=1 varianceCk

, (26)

where |Ck| denotes the number of pixels in class Ck . If a despeckling filter produces
classes that are well separated then the numerator in 26 will be large. Conversely, if
the intraclass variance is reduced, then the denominator will be small giving large
value of USDSAI indicating desirable image restoration and enhancement.

Evaluation of SDC performance in simulated speckle noise scenario

In this experiment, the capability of the SDC technique in reducing the speckle noise
is tested and compared with Lee, homomorphic wavelet and SBF technique. The per-
formances of the noise reduction techniques are measured in terms of PSNR values as
tabulated in Table 1.
The results in Table 1 show clearly the better reduction of noise achieved by SDC

to Lee, Wavelet and SBF as the noise variance as the noise varies from 0.02 to 0.1. In
average, the PSNR value of the SDC is improved by more 3dB followed by SBF(2.9dB),
Lee (2.68dB) and Wavelet (1.1dB). However, in order to gain more insight into the
performances of the SDC, the denoised images of Figure 4 by SDC, Lee, Wavelet
and SBF are shown in Figure 6. Visual inspection of the denoised image by Lee in
Figure 6 clearly shows the blurring effect of Lee filter. The wavelet on the other hand
shows very close performance to the SDC except for some ringing effect which is
visible in the homogeneous part of the image. The SBF exhibits some blurred edges
with some noise are not removed around edges. In summary, SDC shows better noise
reduction capability and less blurring effect in comparison to Lee and SBF and com-
parable performance to Wavelet, but with significantly less artifacts and better details
preservations.

Evaluation of SDC performance using a Field II simulated image

In this experiment, the computer model of a cyst phantom is generated using the MAT-
LAB Field II simulation [38,39]. The phantom contains five point targets; 6, 5, 4, 3, 2

Figure 9 Autocorrelation profile for Region A (top) and Region B (bottom) of cyst image in Figure 7.
From left to right, Original, Lee filter, Wavelet filter, SBF and SDC filter.
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Figure 10 Region A and B in the US images of the breast tissue of Figure 2.

mm diameter waterfilled cysts, and 6, 5, 4, 3, 2 mm diameter high scattering regions.
The resulted B-mode US image is shown in Figure 7. The “Cyst” phantom in Figure 7 is
composed of 3 constant classes and the filters ability to reduce speckle noise while keep-
ing the distinct classes well separated will be evaluated using normalized variance, mean
preservation, preservation of autocorrelation [31] and USDSAI assessment metric. Prior
to despeckling, the cyst image is converted into an 8-bit image of size 512 × 512 pixels.
In the first experiment, the normalized variance and mean preservation for the cyst

image are calculated over two selected regions labeled as A and B as in Figure 8. The nor-
malized variances of the two regions calculated before and after denoising for SDC, Lee,
Wavelet and SBF are presented in Table 2. The results in Table 2 show clearly the better
reduction of noise achieved by SDC compared to Lee, Wavelet and SBF over the two
homogeneous regions. In order to further verify the better better performance by the
SDC, the denoised images of Figure 7 by SDC, Lee,Wavelet and SBF are shown in Figure 8.
Visual inspection of the denoised images in Figure 8 clearly shows far less introduced
blurring effect, better noise reduction, and better contrast enhancements by the SDC in
comparison to the Lee, Wavelet and SBF. On the other hand, Figure 8 also shows that the
SBF introduces relatively similar blurring effect to Lee and Wavelet though it gives better
contrast enhancement values, measured in terms of USDSAI as tabulated in Table 3.
In addition to variance reduction, the values of mean preservation for the two regions

calculated before and after denoising for SDC, Lee, Wavelet and SBF filter are also eval-
uated and included in Table 4. The results in Table 4 indicate the better capability by Lee
to Wavelet, SBF and SDC in preserving the mean value in the computer generated cyst
image in Figure 7. The better mean preservation by Lee is highly expected because of the
averaging scheme of Lee filter which tends to maintain the mean value in the image.
In order to assess the capability of the different algorithms in texture preservation in the

denoised image, the autocorrelation in region A and B of the cyst image in Figure 7 are

Table 5 Normalized noise variance in the denoised images of real US images in Figure 2

Malignant tumor Original Lee Wavelet SBF SDC

Region A 0.012 0.003 0.001 0.003 0.003

Region B 0.009 0.004 0.001 0.004 0.003

Benign tumor Original Lee Wavelet SBF SDC

Region A 0.015 0.004 0.001 0.004 0.004

Region B 0.018 0.007 0.003 0.007 0.005
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Figure 11 Restoration of malignant tumor (top) and benign tumor (bottom) in Figure 2. From left to
right, Original, Lee filter, Wavelet filter, SBF and SDC filter.

calculated before and after speckle filtering and depicted in Figure 9. The autocorrelation
profiles in Figure 9 clearly show the better details preservation by the SDC in comparison
to Lee, Wavelet and SBF. Notably, the profiles by Lee, Wavelet and SBF exhibit wider
profiles in the neighbourhood of zero lag and largely deviated from the original at other
lags. On the contrary, the SDC shows close autocorrelation profile of the denoised image
to the original one in terms of shape and better preservation of the unit impulse structure
at zero lag value than Lee, Wavelet and SBF.

Evaluation of SDC performance using real US images

In this experiment, the performance of the proposed SDC is analyzed and compared with
Lee and Wavelet using ultrasound images captured from a patient as shown in Figure 2.
The images are biopsy-verified studies and presented with non-palpable tumors initially
detected by mammography [40]. These images are shown in Figure 2 for malignant and
benign tumor. In Figure 2, the patient with malignant tumor was diagnosed with invasive
ductal carcinoma whereas the patient with benign tumor was diagnosed with fibroade-
noma. The image size is 1536×256 pixels with the x-axis and the y-axis giving lateral sizes
and axial sizes of the image, respectively. The RF frames are recorded at 17 frame/second
and a total of 12 seconds of data are acquired using a linear transducer array from the
Antares® System. In order to obtain the B-mode ultrasound images, the URI Offline Pro-
cessing Tools (URI-OPT) run on MATLAB platform is used to convert the RF data to the
B-mode images as shown in Figure 2.
In the first part of this experiment, two homogeneous areas are selected and marked as

region A and B Figure 10. In order to assess the capability of the filters in reducing noise
in image, variances are calculated over these two regions before and after denoising the
image in Figure 2. The values of normalized variance are tabulated in Table 5. The results
in Table 5 indicate the better noise reduction capability by the Wavelet in comparison to
Lee, SBF and SDC which show a relatively comparable performance. However, in order

Table 6Mean preservation in the denoised images of real US images in Figure 2

Malignant tumor Original Lee Wavelet SBF SDC

Region A 5.29 5.30 0.72 12.80 5.29

Region B 7.49 7.49 0.87 14.90 7.46

Benign tumor Original Lee Wavelet SBF SDC

Region A 4.83 4.84 0.68 12.32 4.83

Region B 5.23 5.24 0.72 12.75 5.24
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Table 7 USDSAI value in denoised images of real US images in Figure 2

Original Lee Wavelet SBF SDC

Malignant 1.00 2.63 2.96 4.11 4.09

Benign 1.00 2.83 2.70 4.22 4.17

to gain more insight into the performance of the Wavelet and to aid the interpretation of
the results in Table 5, the denoised images by Lee, Wavelet, SBF and SDC are shown in
Figure 11. The results in Figure 11 clearly show that the main reason for the high noise
reduction values by the Wavelet in Table 5 is the intensive appearance of wavelet artifacts
in its denoised image. On the other hand, though the SDC gives approximately similar
values to Lee and SBF in Table 5, the denoised images in Figure 11 show clearly better
noise reduction and image details preservation.
In addition to the noise reduction capability addressed by the normalized variance, the

mean preservation capability is also tested and presented in Table 6. The results show the
better performance of Lee in preserving mean value and this performance is very close
to SDC. Notably, the mean value of Lee and SDC only differs by no more than 0.03. On
the other hand, the result on Wavelet and SBF indicates poor preservation of mean by
the two filters. In terms of contrast enhancement, given by the USDSAI values as shown
in Table 7, the SDC gives better contrast enhancement to both Lee and Wavelet but a
comparable performance to SBF.
To gain more insight into the performance of the three considered techniques, their

capability in preserving the characteristics of the original image is tested in terms of auto-
correlation profiles of the selected region, A and B as shown in Figure 12. The results in
Figure 12 give clear indication on the better preservation of the texture of the original
image by SDC in comparison to Lee, Wavelet and SBF. In fact, the SDC shows close auto-
correlation profile of the denoised image to the original one especially in term of shape
and better preservation of the unit impulse structure at zero lag than Lee, Wavelet and
SBF. Moreover, the autocorrelation profiles produced by Lee andWavelet shows widened
profiles at zero lag and largely deviated profiles from the original at other lags.
In the third experiment, the required computational time by Lee,Wavelet, SBF and SDC

to process the ultrasound images of Figure 2 are calculated and included in Table 8. The
filters are implemented on MATLAB platform using a computer with Intel(R) Xeon(R)
5607 @ 2.27 GHz processor and 8GB RAM. The results in Table 8 shows that the compu-
tational times of both SDC and wavelet are almost similar and less by nearly 3 times SBF
and 10 times than Lee (7 × 7).

Figure 12 Autocorrelation profile for Region A of malignant tumor (top) and benign tumor (bottom)
in Figure 2. From left to right Original, Lee filter, Wavelet filter, SBF and SDC filter.
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Table 8 Computational time (in second) of Lee, Wavelet, SBF and SDC for the US image in
Figure 2

Lee Wavelet SBF SDC

Benign 63.97 8.88 17.46 6.20

Malignant 63.57 8.77 20.52 6.30

Conclusions
A subspace-based denoising technique for US images is presented and tested. The pro-
posed technique, SDC is based on linear estimator and rank reduced subspace model
to estimate the clean image from the corrupted one with speckle noise. The perfor-
mance of the SDC is tested with simulated and real data, and compared with Lee and
wavelet. The results indicate better noise variance reduction capability with the simu-
lated images by the SDC than Lee, Wavelet and SBF in addition to less blurry effect.
With the real case scenario, the SDC, Lee, Wavelet and SBF are tested with images
obtained from raw RF data. The performances are calculated in terms of noise reduc-
tion, improvement in image contrast and preservation of the autocorrelation profiles.
The results indicate that SDC offer better texture preservation, measured in terms of
autocorrelation profiles and good contrast enhancement, measure in terms of USD-
SAI value. Finally, the computational complexity of the algorithms is compared and the
results show that SDC required the least computational time compared to Lee, Wavelet
and SBF.
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