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Abstract

Background: Spinal-like regulators have recently been shown to support complex
behavioral patterns during volitional goal-oriented reaching paradigms. We use an
interpretation of the adaptive spinal-like controller as inspiration for the development
of a controller for a robotic limb. It will be demonstrated that a simulated robot arm
with linear actuators can achieve biological-like limb movements. In addition, it will be
shown that programmability in the regulator enables independent spatial and temporal
changes to be defined for movement tasks, downstream of central commands using
sensory stimuli. The adaptive spinal-like controller is the first to demonstrate such
behavior for complex motor behaviors in multi-joint limb movements.

Methods: The controller is evaluated using a simulated robotic apparatus and three
goal-oriented reaching paradigms: 1) shaping of trajectory profiles during reaching;
2) sensitivity of trajectories to sudden perturbations; 3) reaching to a moving target.
The experiments were designed to highlight complex motor tasks that are omitted in
earlier studies, and important for the development of improved artificial limb control.

Results: In all three cases the controller was able to reach the targets without a priori
planning of end-point or segmental motor trajectories. Instead, trajectory spatio-temporal
dynamics evolve from properties of the controller architecture using the spatial error
(vector distance to goal). Results show that curvature amplitude in hand trajectory paths
are reduced by as much as 98% using simple gain scaling techniques, while adaptive
network behavior allows the regulator to successfully adapt to perturbations and track a
moving target. An important observation for this study is that all motions resemble
human-like movements with non-linear muscles and complex joint mechanics.

Conclusions: The controller shows that it can adapt to various behavioral contexts which
are not included in previous biomimetic studies. The research supplements an earlier
study by examining the tunability of the spinal-like controller for complex reaching tasks.
This work is a step toward building more robust controllers for powered artificial limbs.

Keywords: Adaptive control, Arm motions, Goal-oriented reaching, Tunable regulator,
Biomimetic
Background
Adaptive spinal-like controllers have recently shown to be versatile regulators for

sensory-based limb control. In particular, investigators have shown that a substantial

contribution can be made by the motor centers in the spinal cord during motor re-

sponses and execution [1-8]. As such, it is assumed that they can be used to develop

more life-like controllers for artificial limbs. Here, we aim to investigate the adaptive
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spinal-like controller (ASC) [9] on a robotic platform and test its proposed applicability

for the control of a robotic limb, with particular focus on its tunability, using various

complex reaching tasks. It is also of particular interest for this research to demonstrate

that a linear non-biological robot arm can replicate biological-like reaching behaviors

of a non-linear musculoskeletal system using this modified ASC.

Earlier studies of volitional reaching mechanisms relied mainly on an implicit domin-

ant contribution from higher CNS motor centers. Those controllers typically consign

the spinal cord to a subordinate role in the execution of pre-planned motor behavior

[10-16]. This is based on evidence of activity in the higher CNS before motion onset,

which suggests that motor actions are pre-planned centrally and then executed as

context-dependent movements. Such movement planning strategies can provide excep-

tional similarities to biological data for several tasks, particularly regarding the charac-

teristic speed profiles and smoothness of movement trajectories. This approach to

motor control advocates that the cerebellum [11,12] and the motor cortex function for

the most part independently from spinal motor centers. However, it is unclear how re-

flex pathways [17-21] or central pattern generators [1,2] would interact with these fun-

damental structures. Others suggest that rather than pre-planning motion kinematics

or dynamics, an inherent equilibrium in the mammalian muscular system guarantees

smooth motion [14,15,22]. That is, as the length-tension properties of the muscles in a

limb change, the shifting equilibrium position itself defines a movement trajectory to

reach a goal. This theory advocates that the properties of spinal reflex circuits can be

exploited by the brain to simplify movement problems. In any case, the spinal cord is

still regarded as a medium for higher-level motor planning, but its natural characteris-

tics can influence the execution of the motor task and reduce the complexity of neces-

sary central interventions.

More recently, physiological studies have shown that spinal motor centers include

complex programmability and computational capacity [1-5]. For example, Tresch

et al.’s [2] work examined spinal motor networks in vertebrates. They demonstrated

that these networks link muscles with shared pathways that elicit complex movements

even when separated from higher CNS function. Additionally, spinal motor centers

demonstrate an inherent intrasegmental coupling for complex motor tasks [23,24]. This

suggests that some sensory-based motions could originate in the spinal-cord itself, as

opposed to relying solely on central commands. Ultimately, they argue that it is more

likely for a central pattern generator (CPG) to exist in the spinal-cord, while strongly

coupled brain and spinal motor areas would generate a volitional motor task. McCrea

and Rybak went on to suggest that the CPG may be a two-level system which includes

a rhythm generator and a pattern formation circuit [25]. The rhythm generator would

maintain period and phase of a motor oscillation while the pattern formation circuit

consists of spinal interneurons and motoneurons for muscle recruitment. These pattern

formation circuits are reminiscent of spinal reflex topologies. These complex systems

responsible for coordinated muscle activity patterns have long been believed to be

responsible for sensory based neuromuscular response, but investigations into their role

for volitional movement control have only recently begun.

Interestingly, it has been shown that these spinal circuits could possibly be modulated

by downstream projections from reach related neurons in the superior colliculus

[26-28]. It is known that a major efferent pathway from the superior colliculus is to the
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cervical spinal cord for coordinated motor control. It is assumed that the reach related

neurons which discharge in the underlying layers project downstream to the spinal

motor centers much like the discharges to the visual areas [29,30].

Kurtzer and colleagues [31] also demonstrated that spinal reflex-based motor centers

can exhibit intelligent motor functions that resemble internal models. In particular, they

demonstrated that reflex responses to perturbations changed in order to account for

limb geometry, applied torques, and joint motion. This is also related to the anticipa-

tory discharges in Renshaw cells which are known to play a role in estimating sensory

feedback – i.e., an expected efference copy [32,33]. These reflex motor circuits in the

spinal cord are thus assumed to have significant programmability for volitional motor

tasks, as leveraged by our previous work [9].

Raphael, Tsianos and Loeb [5] recently demonstrated how a spinal-like regulator

(SLR) based on known spinal reflexive circuitry can perform 2 DOF wrist movements.

They demonstrated that complex motions were easily obtained without exhaustive pre-

planning and that their spinal-like circuit ensured stable movements. Their investiga-

tions also demonstrated that the SLR performs exceptionally well in motor learning

tasks. The same research group recently extended their work to include multi-segment

symmetric planar reaching systems to demonstrate how spinal-like circuits can also fa-

cilitate stabilization for redundant musculature [34,35]. These important findings were

also supported by a similar system defined in [9]. Equally significant, their spinal-like

models show that motor tasks can be learned over time and that the learning changes

based on the mode of the controller. Clearly, these findings are significant for not only

describing modern interpretations of neuromuscular control of movement, but also in

defining vastly improved systems for rehabilitation and neuroprosthetic limbs [36].

We use the ASC defined in [9] to test applicability and biomimetic control for a

multi-joint robot limb using bi-segmental planar reaching tasks over various ranges in

the workspace. The novelty will show that programmability in the ASC enables distinct

spatial and temporal changes to be independently defined to create kinematic scalability

for limb movement tasks without solving/optimizing inverse kinematics models. The

controller described in our earlier works for biological simulations [9] is revised to rep-

resent a two-link simulated robot arm (linear actuators). Earlier it was shown that the

controller can perform biological-like reaching motions without planning using non-

linear muscle models. Here, it will be demonstrated that the same controller can per-

form biological-like tasks using a non-physiological robotic platform, and a powerful

tunability that scales movements. By demonstrating that the ASC can define biological-

like reaching behaviors using a non-physiological system, it is believed that it can be

used to develop more life-like artificial limb controllers. In this article, we use the ASC

to explore two hypotheses: (1) Spatial scaling: trajectory curvature can be tuned using

the inherent spinal gains rather than the normally assumed pre-planned trajectories or

kinematics in cortical areas; (2) Temporal scaling: bell-shaped speed profiles of the end-

point along its trajectory are an intrinsic property of the ASC that can be manipulated

to define a desired amplitude or shape (e.g., scaling movement amplitude and speed).

Motions are simulated in Matlab using a model of a robotic arm whose unusual seg-

ment geometry is intentionally chosen to test the controller’s kinematic tunability – this

makes scaling more difficult than in symmetrical limbs such as in our previous studies

[9] or in [34]. This simulation study of a robot apparatus provides a simplified test bed
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that allows the behaviors of the controller to be examined without the additional com-

plexities of a non-linear system. It should not be assumed that this robot arm, and its

properties, will be used as a prosthetic limb. We demonstrate that the ASC is capable

of performing complex motions that earlier biomimetic controllers fail to accomplish

including tracking moving targets, adapting to dynamic environmental conditions, and

an ability to maintain end-point accuracy at high speeds [10,14]. As a result, it provides

a novel alternative for the development of artificial arm controllers during volitional

reaching tasks that require feedback, intrinsic stabilizing effects, feasibility in a variety

of movement contexts, and programmability for motion goals. This work is a step to-

ward developing a prosthetic limb regulated by the ASC.
Methods
Robot apparatus

In order to test the controller using simulations, we first parametrically model an

Adept Cobra s350 SCARA robotic arm (Adept Technology Inc., USA) as a platform for

feasibility tests. This robot is typically regulated by a SmartController CX controller that is

programmed using the proprietary Adept A + language. Control of the robot is normally

limited to an extrinsic coordinate space (e.g., selection of desired end-point coordinates)

and does not allow for the user to specify the motor inputs; however we bypass the safety

protocols in the A + software in order for the ASC to be able to directly apply voltage to

the motors. In this mode, a voltage applied to the robot motors is converted into a motor

encoder position change. For example, when ~0.5 volts are applied to the motor for

16 ms, the encoder position moves by 850 bits – and there are 9104 encoder bits per

degree. All other specifications relating to motor capabilities, and the SmartController CX

can be found in the documentation provided by the manufacturer.

The robot arm is a two-link, 2-DOF system whose joints (shoulder and elbow) rotate

uniformly in both directions. For our experiments, the robot’s servomotors minimize

the effects of interaction torques [37-39] between the segments (Figure 1, dashed lines)

since they prevent involuntary motion in the motors/segments. Note that this is unlike

a real multi-muscle system under load where interaction torques are a significant com-

ponent of the kinematics, and the motors themselves (muscles) are highly non-linear.

We examined this as well as the effect of feedback delays in earlier work [9] with no

significant changes in performance. Additionally, the distance from the shoulder to the

elbow, ls, is 12.5 cm, and the distance from the elbow to the wrist, le, is 22.5 cm.

We employ standard system identification (SID) methods discussed in earlier works

[40,41] in order to generate parametric model approximations relating input voltage

levels to motor positions (i.e., limb angles). In short, this process involves applying a

zero-mean white noise signal (i.e., voltage) as input to the plant, recording the resulting

output from the plant (i.e., encoder position), and then defining a transfer function

relating input/output. By applying voltages to both motors during identification, the

multi-segment dynamics are also represented and are included in the models. The

resulting transfer function provides a parametric approximation of the system – eqs.

(6) and (7). Thus, the identified models provide an approximation of the input voltage

vs. output that achieves a desired rotation as well as the dynamics of the interacting

segments associated with these changes. Consequently, it should be understood that



Figure 1 The adaptive spinal-like controller for a two joint planar robot arm. Here, ecs and ece are
primary shoulder and elbow motor drives based on weighted visual error from the superior colliculus (SC);
efs and efe are ‘efference copy’ motor predictions based on expected plant behavior from the Renshaw Cells
(RC), and Ks and Ke are gains which can internally modify the controller signals. The combined input to the
motorneuron (Mn) drives the motors for each segment. Direct intrasegmental connections via interneurons
(dashed) are not used in this study since the motors rotate bidirectionally and the dynamic brakes negate the
interaction torques. Here, the internal models imbed the combined effect of motor dynamics, sensory-derived
mechanical perturbations and internal controller signals - hence predicted states can reflect and compensate
for mechanical perturbations. Refer also to Figure 2.
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the kinematics/dynamics of the hardware system are included in these parametric

models. The robot arm is modeled at 62.5 Hz. These parametric models will be used to

approximate the “Models” and “Plants” of the control schematic during simulations

(Figure 1) while visual feedback is provided by Matlab. To simplify, we assume the

Plant (i.e., motor unit) and Model (i.e., efference copy or internal approximation) are

identical at each joint/motor. Note that the robot motors can receive servomotor input

voltages from 0 ± 10 volts. However, the simulated robot arm is restricted to have a

normal operating range of 0 ± 2 V, so that the rotational speeds remain close to those

of human movements (approx. 60-80 deg/s) [42]. Accordingly, the parameter set in all

simulations ensures that all unperturbed motor drives remain in the 0 ± 1 V range

(Table 1).

Note that this is a high-power robot that can reach its maximum speed in a very

short time leading to un-human like speed profiles (e.g., near-instantaneous speed

changes). Thus, the dynamics are low pass filtered to limit the bandwidth to the

human-like range. For example, this is implemented in the simulation by using a dy-

namic ratio, i2/302 on the initial internal spatial error; where i is the sample number
Table 1 Default parameter set for simulations

Parameter Value

Ke 1

Ks 1

ls 12.5 cm

le 22.5 cm

Matlab sampling rate 62.5 Hz

Non-perturbation motor drive 0 ± 1 Volts

Perturbation 1 Volt
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from samples 1 to 30. Then, after the first 30 samples of the simulation the dynamic

ratio is held at 1. Note that this does not affect the behavior of the controller, only the

initial dynamics due to sudden changes in voltage. In any case, this is not a limitation

caused by the biomimetic controller or its implementation since the results match

those in [9], rather the robot apparatus is too powerful and we wish to examine reach-

ing in the dynamic range seen in human data.
Controller topology and its simulation

Figure 1 demonstrates the controller design based on the spinal topology from Figure 2.

Since the motors are linear and bi-directional, the agonist-antagonist pair from [9] is

reduced to a single lumped unit for each segment. In addition, spinal efference models

of the shoulder and elbow dynamics are represented by the Renshaw cells (RC) as per

their role in estimating limb dynamics [32,33]. We assume that feedback-based effer-

ence models of the limb dynamics contribute to the involuntary (reflexive) motor

intelligence presented in [31] – for the schematic we assume positive feedback, but

negative feedback can be easily achieved by a reversal of stimulus (e.g., negative values).

We select positive feedback due to the work in [43] which shows that recurrent excita-

tion is the initial response of the reflex during perturbations; but, inhibition can also

occur. Also note that the intrasegmental projections (dashed lines) would correct for

interaction torques but are not needed in this robot study (see above and [9]).
Figure 2 Spinal-like motor circuit. Proprioceptive stimuli from spindles produce sensory signals that
innervate interneurons (IN) or motoneurons (Mn) directly. Interneurons provide inhibitory and excitatory
pathways to both antagonist/agonist Mn and IN while Renshaw Cells (RC) provide an efference copy to the
circuit. The spinal-like circuit demonstrates cross-connections and symmetry while activating antagonist
Mn groups.
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The ASC is driven by an error vector (eq. 1) computed by the superior colliculus

[26-28]; where T is the target coordinate, H is the hand coordinate, x and y represent

the axes, and θ is the angle between the error vector in the horizontal plane and the x-

axis (Figure 3). Previous studies demonstrated that the direction of motion (e.g., toward

or away from the body) correlates with the activation of specific muscle groups, and

that the projections of the error along the x and y directions (eqs. 2 and 3) correlate

with activations in the shoulder and elbow actuators, respectively [3,4,9]. The vector is

updated by vision using visual feedback (dashed-dot line, Figure 1) throughout the

motion – also see [9]. The distributed error vectors (eq. 2 and 3) are then scaled by

gains Ks and Ke (eq. 4 and 5) to tune motions based on limb geometric context and/or

desired movement metrics (e.g., speed, duration, etc.) while preserving the appropriate

multi-segment coordination. Then, the combined motor ‘go’ signal from each Mn

drives the robot motors (Plants). Here, we demonstrate how these projections contrib-

ute to biomimetic control of a robotic arm, however future studies will demonstrate
Figure 3 Experimental setup for the first experiment. Shows one set of concentric targets numbered 1
to 24 (squares) with an initial starting point (triangle). The x and y axes are illustrated in relation to the
hand, and angle θ is given for an arbitrary target (#3 - white square). The target error is the magnitude
distance between the target and the hand. These variables are used to solve eq. (1)-(5). Also observe the
asymmetric geometric relationship between the upper arm, ls = 12.5 cm, and the forearm, le = 22.5 cm.
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how these projections can be applied to artificial limbs by emulating the discharges of

the superior colliculus.

ErrorXY ¼ TX−HX ;TY−HY½ � ð1Þ
ErrorX ¼ ErrorXYj j cosθ ð2Þ
Errory ¼ ErrorXYj j sinθ ð3Þ

ecs ¼ KsErrorX ð4Þ
ece ¼ KeErrorY ð5Þ

In Figure 1, the primary motor drive for each joint, ecs and ece, of the ASC is a

“visually” perceived hand-to-target error vector [26-28,44-49] in a plane weighted by

tunable gains. The shared magnitude of the error vector effectively interconnects the

two sides of the controller despite the absence of direct intrasegmental connections,

while the trigonometric weightings are smooth and prevent the “discontinuous bound-

aries” discussed in [3]. Terms ecs and ece are scaled by tuning gains Ks and Ke.

It was shown previously [3,4] that the magnitude of this error can suffice as a motor

command for both the shoulder servo-motor, eq. (4), and elbow servo-motor, eq. (5), if

given appropriate directional signs with respect to the rotation directions of each joint.

That is, if the y-error is positive, then the arm will extend away from the body, whereas

if it is negative it will bend inwards. Similarly, if the x-error is positive the arm will ro-

tate clockwise, and vice-versa. This also agrees with evidence that the superior collicu-

lus encodes stimuli via gain fields based on the magnitude and direction of perceived

targets [26] – we assume Ks and Ke arise from this.

The projected errors (ecs, ece) are then combined with the efference copy estimates

(efs, efe) to define each plant’s motor drive as per Figures 1 and 2. The efference copy

estimates are determined by the output of the models for each segment which predict

the expected output of the actual plant. Recall, these models are represented by unique

transfer functions which determine what is expected to result from a given motor input –

eqs. (6) and (7). Moreover, it should be understood that visual feedback is not necessarily

needed after the initial target selection. For example, if visual information is removed

from the controller during a movement, the remaining efference model feedback

loops would continue to react to a ‘step’ error. We refer to feedback at the spinal

level as a ‘model’ in order to denote the presence of a reasonably accurate internal

measure of the motor state. Realistically, it could just as easily rely on signals from

proprioceptive or spindle reflexes in the biological case, or on segment sensors in the

robot case.

In the controller (Figure 1), the sensory input gains, Ks and Ke, modify the weight of

error projections to the joints, and/or change the relative distribution of the error pro-

jections between joints. Ks and Ke are interpreted to regulate the input to the system

much like projected scalings from the Colliculi that have been observed in the literature

[26-28,44-49] – i.e., discharges from reach-related neurons in the underlying layers of

the superior colliculus. It is expected that these relative gains change both the kinemat-

ics and dynamics of the system, as expected from modulations in loops. All simulations

of the controller were developed in Matlab (Mathworks, MA). Also see Appendix A for

more information.
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Experimental paradigms
Simple reaching (4 cm and 7 cm vectors)

Target/arm locations - The first experiment consists of a center-out reaching task to 12

targets (Figure 3). The hand will begin at the center position, reach to a target, move back

to the starting position, then reach to another target, etc. The 12 targets are placed in a

concentric circular pattern with uniform radial distances from the initial starting point –

the large amplitude motion has a 7 cm radial target distance, while the smaller amplitude

motion has a 4 cm radial distance. This setup will be used to evaluate the controller’s be-

havior in omni-directional motions for both small and larger reaches. The larger motions

will be performed at a single set-point to highlight behavioral changes due to larger reach-

ing motions. The small amplitude reaches are repeated using various robot arm geometries

throughout the workspace to identify behavioral changes due to a changing set-point. In

addition, the small amplitude motions will include a second concentric target circle with a

2 cm radius for comparison (Figure 3). Five sets of the smaller target patterns are distrib-

uted throughout the workspace. Note that this is not possible for large amplitude motions

due to the size of the useable workspace. Therefore, each target set will have a different ini-

tial arm configuration while the relative target positions are all identical. The coordinates,

in centimeters, of the initial hand positions for the reaching tasks are: (3.5, 29.75)1, (11.5,

275)2, (15, 20.75)3, (24.5, 12.75)4, and (25, 3.75)5. The shoulder joint is defined as the origin

with co-ordinates (0, 0).

Tuning path curvature – For both small and large reaches, the motion is repeated whilst

changing the gain ratio, Ks/Ke, until a user defined criteria for “hand path straightness” is

attained for each target or directional motion. When tuning Ks and Ke relative to one an-

other an incremental iteration will be implemented to slowly increase one gain relative to

the other, and repeated through trial and error until the desired relationship is achieved.

The objective is to determine whether tuning of the input error weight-ratio (Ks/Ke) is

alone sufficient to achieve relatively straight trajectories. Therefore, theoretically optimal

search algorithms (i.e., learning) are not required for this feasibility study. The unusual arm

geometry (forearm length = 2× upper arm length) exacerbates the difficulty of producing

straight movement trajectories for the end-point and is intentionally selected as a more

challenging test-bed for this proof of principle. The user defined criteria for straightness is

achieved if the amplitude of trajectory deviation orthogonal to the path is less than 0.15 cm

(i.e., ~2.1% of reach amplitude) or if the iterative gain increments do not further straighten

the curvature. Finally, the motion is considered to be complete when the hand is within

0.1 cm of the target, marking the end of the simulation. This, and other experiments, will

also be compared to the motions achieved with trajectory planning theories, as described

in [10] to serve as a reference for biological-like motions.
Perturbations during large reaches (7 cm)

The second experiment examines larger reaching tasks with and without sudden pos-

ition changes due to external perturbations. For this paradigm, perturbations are

applied as additional voltage to the plants to change the motor outcome. Recall, that

since the SID models of the plants include the dynamics of the multi-segment system,

these perturbations do not represent a change in motor ‘go’ signals, but instead an ex-

ternal contribution which alters the dynamics. The results are comparable to our earlier
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findings for a multi-muscle system with perturbations induced in the biomechanics [9]

and are thus assumed valid. This experiment is chosen in order to reproduce earlier

perturbation experiments performed in [31]. We select an initial set-point at an arbi-

trary position and select a target location approximately 7 cm from the starting point.

Here, the controller gain-ratios will be kept constant using values determined in experi-

ment 1 for the relevant direction (Table 2, Cases 3, 7 and 11). The perturbations are ap-

plied as sudden and large voltages added to the control drives of both shoulder and

elbow simultaneously and in the same direction (Figure 1). The efference models are

assumed to rely on both expectant motor output and proprioception, thus the pertur-

bations are applied to the plant at a time, t, and the model (efference copy loop) would

see this change at time, t + 1 (Figure 1). The efference models receive copies of all

intended driving signals and any perturbation via proprioceptive feedback. Similar to

[31], these perturbations are applied in two ways: (a) filtered impulses; and (b) sus-

tained perturbations lasting ~0.5 s (see Figure 4). The magnitudes of these perturba-

tions are equal to the half of the maximum expected servomotor input (0.5 V) in the

absence of perturbations; hence these are very large perturbations. The motions with

perturbations will be performed in 3 directions to illustrate consistency.
Pursuit of moving target

The third experiment will determine how the controller behaves when reaching to a

moving target which ‘jumps’ unexpectedly from one location to another. The initial target

position is arbitrarily selected as (9.6, 17) cm and moves every 0.25 s in (+1, -0.5) cm

coordinate jumps, until it reaches (12.6, 15.5) cm. In addition, the elbow and shoulder

controller gains are set to a fixed ratio found in the same manner as in experiment 1. It is

predicted that the hand will reach the final, stationary target in all cases, but with notice-

able trajectory shifts each time the target jumps. Ultimately, the controller will be demon-

strated as an adaptive system with “visual” integration allowing tracking in the presence of

target position changes. Similar results can be demonstrated with any starting position as

long as the target and its jumps remain visible and in the feasible workspace.
Table 2 Gain ratios to straighten motion paths to targets at location 3 experiment 1

Target Ks Ke
Normalized

Target Ks Ke
Normalized

Ks : Ke Ks : Ke

1 41 1 1 : 0.024 13 17 1 1 : 0.059

2 5 1 1 : 0.154 14 5 1 1 : 0.200

3 3 1 1 : 0.333 15 2 1 1 : 0.500

4 1 1.5 1 : 1.500 16 1 1 1 : 1.000

5 2.0625 1 1 : 0.485 17 2.0625 1 1 : 0.485

6 1 1 1 : 1.000 18 1 1 1 : 1.000

7 39 1 1 : 0.025 19 15.5 1 1 : 0.065

8 6 1 1 : 0.167 20 4.5 1 1 : 0.222

9 2.5 1 1 : 0.400 21 2 1 1 : 0.500

10 1 1.5 1 : 1.500 22 1 1 1 : 1.000

11 2.0625 1 1 : 0.485 23 2.0625 1 1 : 0.485

12 1 1 1 : 1.000 24 1 1 1 : 1.000



Figure 4 Pulse and sustained perturbations. The perturbation time plots are given for pulse
perturbations (red line) and sustained perturbations (blue line). Notice that each perturbation reaches 0.5
Volts – this is equal to half the maximum possible motor drive for the plant in addition to the actual motor
drive; e.g., if the plant is being driven internally by 0.5 volts, and a 0.5 volt perturbation is also applied, the
total motor drive with perturbation will be 1 volts.
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Gains, target distance and hand speed

Finally, we will test the ASC’s capability to scale its motions based on desired move-

ment criteria. As in the previous two experiments, the elbow and shoulder controller

gains are set to the fixed ratio found acceptable in experiment 1, for the associated

reach direction. This experiment will examine two concepts: (1) how hand path speed

profiles change as a fixed target is placed further away from the hand while maintain-

ing the same movement direction and controller parameters; (2) how a trajectory

maintains its ‘straightness’ while increasing the hand-path speed for the same reach

amplitude. Both experiments will start with hand positions at (9.6, 24) cm. The first

paradigm will move to four targets located at (9.6, 17)1, (9.6, 19)2, (9.6, 21)3 and (9.6,

23)4 cm and will compare how the speed and curvature change for each motion using

the default parameter set. The second paradigm will consist of a single 7 cm reach to

(9.6, 17) cm, executed with different weights on Ks/Ke (the ratio is preserved) to deter-

mine if the spatial trajectory is adaptive despite different hand path speed. Gain scaling

will include 0.5*(Ks/Ke), 1*(Ks/Ke), 2*(Ks/Ke) and 4*(Ks/Ke), with reference ratio fixed

at 15/1.
Results
Robot joint models

The parametric equations which model the robotic system’s shoulder, Ms, and elbow,

Me, joint are in equations 6 and 7. These equations represent the SID models described

in the methods section for the robot apparatus and used as per Figure 1. These models

describe the input/output relationship of the system and include the dynamics of the

multi-segment system. Recall, during data acquisition for identification, the motor

drives were limited to 0 ± 2 Volts (10 Volt robot maximum) to maintain slower speeds
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according to robot specifications, account for possible perturbations, and maintain a

linear operating bandwidth.

Ms ¼ 0:2303þ 0:2048z−1 þ 0:2306z−2

1−0:7207z−1 þ 0:3863z−2
ð6Þ

Me ¼ 0:07856þ 0:06819z−1 þ 0:07838z−2

1−1:161z−1 þ 0:3639z−2
ð7Þ

Simple reaching

Figure 5 demonstrates how center-out movements can be straightened based only on

iterative gain changes. Here, we compare highly curved motions (dotted black lines)

with default gains (Ks = Ke = 1) and straightened motions (solid black lines) with tuned

gains – we also provide a reference movement (orange lines) based on the trajectory

planning method [10]. The curvature amplitude is measured using the longest orthog-

onal line from the reference to the curved motion.

The untuned trajectories are heavily curved due to the large differences in the

length of the forearm segment compared to the upper arm segment (~2:1 ratio).

Also, each motion profile demonstrates its own curvature based on the direction of

the target relative to the hand. When comparing default and tuned results, it is

evident that significant straightening was achieved by simple gain tuning methods.

Figure 5 shows that the hand path curvature amplitude to target 1 reduced by
Figure 5 Center out reaching motions. (a) Center-out trajectories for 12 targets with untrained gains
(dotted black line) and tuned gains (solid black line) as well as the trajectory planning path (orange line);
The initial central hand position corresponds to case 3 in Figure 6. Also, the hand path speed is given in
(b) for the motion to target 3; (c) Real center out reaching motions (right hand) as reported in [54];
d) point-to-point human reaching motion and the corresponding hand path speed as reported in [51].
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2.65 cm (92.9%); the hand path curvature amplitude to target 2 reduced by 3.69 cm

(97.8%); the hand path curvature amplitude to target 3 reduced by 1.53 cm (95%),

etc. The tuned motions also have very similar motion profiles and hand path speeds

(Figure 5b) when compared to the trajectory planning reference. Also, plots from

biological reaching studies are shown in Figure 5c and d as a comparison. Figure 6

shows similar trends for tuned profiles in all five areas of the feasible workspace.

Some of the trajectories are intentionally left untuned (red) to demonstrate how tar-

get positions and arm geometry naturally affect the shape of trajectory paths. Thus,

as the set-point changes the trajectory can automatically straighten or widen with-

out changing the gains (upper left, cases 3&4 in Figure 6). Similarly, the tuned gains

for identical motion directions for two different arm configurations are different

since arm geometry alters the motion characteristics.

Figure 6 provides insets next to each reaching task with associated gains shown as

normalized vectors with respect to the largest ratio for the motion. The direction of

each arrow coincides with the target directions relative to the hand for each motion,

and a longer arrow indicates a larger gain ratio required for straightening. Table 2

quantifies this relationship by showing the normalized Ks/Ke gain ratios for the

straightened motions around central target position #3. These “optimum” gain ratios

change in relation to the target patterns in the work space and with the arm’s initial
Figure 6 Hand paths while reaching to 24 targets in 5 locations (4 cm & 2 cm distant). The circular
insets show the normalized magnitudes of gain ratios after tuning for each direction. They are plotted
within a unit circle as arrows in the direction of the target from the hand. This demonstrates that gain
tuning is dependent not only on target location relative to the hand, but also on the concurrent arm
configuration, particularly here as the forearm approaches and crosses the horizontal line y = 12.5 cm
(tangent to the elbow y-limit). Note that some trajectories are left untuned intentionally (red traces) – Figure 5
has already demonstrated that all directional motions can be tuned. Notice that these red trajectories naturally
straighten or naturally become more curved as the configuration of the arm changes between target sets 1
through 5.



Stefanovic and Galiana BioMedical Engineering OnLine 2014, 13:151 Page 14 of 25
http://www.biomedical-engineering-online.com/content/13/1/151
geometry, as seen in the Figure 6 insets. Also to straighten trajectories, note that the

important aspect of these (Ks, Ke) pairs is not their individual values, but rather the

ratio between them.

Trajectories in presence of perturbations while reaching

Figure 7 shows that the controller behaves differently when subjected to pulse and

sustained perturbations. For example, when comparing the perturbed trajectories to

the initial unperturbed movement (black line), there are noticeable differences

in the corresponding hand path speeds. The motions with impulse perturbations

(red lines) have shorter deviations from the unperturbed motion and larger hand

path speed changes than the movement with sustained perturbations. For example,

the hand path speeds during pulse perturbations change on average change by

9.5 cm/s with respect to the unperturbed motion, whilst the sustained perturbations

cause speed changes of approximately 5 cm/s. Also, the perturbations cause a peak

trajectory deviation of approximately 0.25 cm for both motions. Notice also that

the perturbations can have accelerative effects (Figure 7b,c) or deceleration effects

(Figure 7d) depending on the arm geometry and the direction of motion. These re-

sults show that the controller changes the hand path speeds change with the
Figure 7 Sensitivity of hand path and segment trajectories to applied perturbations. Here, error
vector magnitudes are tuned to produce a straighter path by emphasis of shoulder over elbow. The
remaining parameters in the controller are identical to those in Figure 5. Notice that the trajectories for
each hand path speed in (b), (c) and (d) refer to the same path labels in (a); solid black line (no
perturbations), blue line (sustained perturbations), red line (pulse perturbations), green line (trajectory
planning motion). Finally, observe that the speed profiles are not identical for each motion even though
the initial hand-target distance is identical in magnitude. Also, motion (d) completes sooner – it is caused
the geometric configuration and changes in motor drive of the shoulder/elbow with respect to one
another. For more information see Figure 10. For each hand speed plot, the sustained perturbation time is
shown as a dark grey bar, while the pulse perturbation time is shown as a black bar.
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perturbation in order to maintain the trajectory profile. To add to this, it is of

interest to note that the efference copy feedback is more dominant when respond-

ing to pulse perturbations (Figure 8b) whilst visual feedback is more dominant

when responding to the sustained perturbations. This agrees with the delays ex-

pected from proprioceptive and visual feedback and is an important observation not

described by earlier biomimetic controllers.

Notice that motions in all three directions show similar perturbation effects for both

trajectory and speed indicating that the phenomenon is not directionally dependent.

Like before, the perturbations can either slow the hand-path speed (Figure 7d) or speed

it up (Figure 7c). A reference with respect to the trajectory planning path is also given

(green line) with similar speeds.
Reaching to a moving target

Figure 9 demonstrates that the controller is able to reach to moving targets without

changes to the controller parameters or movement planning. Instead, the controller redis-

tributes the motor commands based on each newly perceived target error (Figure 9a). In

this case, the motions are executed with a fixed error gain ratio for a straight large reach

in the direction of the last target (solid blue line) except for the motion to the original tar-

get position (blue dashed line). The hand path speed demonstrates bell-shaped peaks each

time a new target is identified (Figure 9b). The timing of the trajectory changes are syn-

chronized with the sudden x-y hand speed changes and with the target shifts (Figure 9b,

c). The hand initially moves toward the target at (9.6, 17) cm but when the target is shifted

to a new position, the trajectory also changes until the hand motion finally reaches the

final target position at (12.6, 15.5) cm. The target positions with respect to time are given

in Figure 9c; the solid line indicates the x-coordinate of the target and hand, while the

dashed line indicates the y-coordinate. Figure 9b demonstrates that as the error vector

changes with target shifts, multiple peaks occur as if reaching to multiple targets.
Controller scaling of movement

Possibly the most intriguing results are shown in Figure 10, where the hand path trajec-

tories are all smooth, with single-peaked speed profiles. However, when the target dis-

tance from the hand is increased by uniform amounts (2 cm), the hand path speed

peaks also increase in amplitude uniformly (by approx. 8 cm/s). Also, the time of move-

ment remains similar. Therefore, Figure 10a-b demonstrates that movements of differ-

ent amplitudes can be completed in the same time, because an increased error drive (i.

e. loop gain) increases the speed of the motion as in any PD control system. The con-

troller did this automatically in Figure 10a-b without any changes in parameters. Fig-

ure 10c-d, on the other hand, demonstrates that the controller can execute the same

motion at different speeds. Notice that the hand path remains nearly identical in 9c,

despite four different movement speeds and durations shown in 9d. This behavior is

maintained up until the hand reaches a speed of approximately 60 cm/s. After this

considerable oscillations can manifest (not shown) at the end-point. Regardless, tuning

the temporal and spatial (curvature) properties of a movement can be done independ-

ently in this ASC. To the best of our knowledge this is the first biomimetic controller

to demonstrate these abilities.



Figure 8 Responses of the internal controller signals for motions in Figure 7c. Plots are shown
without perturbations (black lines), with pulse perturbations (red lines) and sustained perturbations (blue
lines). The control signals are given for the (a) visually driven error signals (ece and ecs); and (b) efference
copy feedback (efe and efs) . Data in (a) are recorded after the spatial error ratio adjustments, as shown in
Figure 1. Observe that there are noticeable variations between the profiles of the short-latency and long-latency
responses to the perturbations as described in [30]. In particular, we can see a dominant role of the shoulder
ecs for long-latency responses, and a more prominent role of the shoulder efs for short-latency response. The
sustained perturbation (S) time is shown as a dark grey bar, while the pulse perturbation (P) time is shown as a
black bar.
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Figure 9 Pursuing a jumping target. (a) The target (red stars) begins at position (9.6, 17) cm and moves
to (12.6, 15.5) cm. The hand trajectories (solid black line) noticeably change (at clear circles) each time the
target jumps. The motion with a stationary initial target is shown (blue dotted line), as well as the motion
directly to the final target position (solid blue line) and the trajectory planning motion (green line); (b) the
corresponding hand path speeds are shown; (c) hand positions (blue lines) reaching to target positions in
space (black lines) with respect to time given for x coordinate, and y coordinate. Notice that the multiple
bell-curve speed profile caused by jumping targets matches those for movement via intermediate-targets,
as reported in [10].
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Discussion
We demonstrate that the ASC is a versatile controller for goal-oriented reaching tasks

and that its structure promotes adaptive control, responsive behavior, motion tunability,

temporal and spatial scaling, and target tracking. To the best of our knowledge, this is

the first biomimetic feedback-based controller that reaches all of these milestones. This

preliminary study focused on the effects of gain tuning and how it affects motion

behaviors. Novel findings of this research include:

� Gain distributions for the 2 segments control path curvature and their

optimizations are dependent on target direction and limb geometry

� If a particular gain ratio is maintained, a reaching motion in any direction can be scaled

to various peak speeds without greatly changing the spatial trajectory of the hand.

Such decoupling of hand kinematics from dynamics makes it a very adaptable con-

troller for use in practical applications or in the study of reaching in primates. Future

work will explore these gain fields for dynamic tuning and how they are learned over

time for different directions and set-points.
Trajectory profiles adjusted by error projection weights

In the center-out reaching experiments (Figures 5 and 6), it was demonstrated that the

hand trajectories can be significantly straightened regardless of the target’s position rela-

tive to the hand, or the arm’s configuration (Figure 6). This was accomplished by tuning



Figure 10 Scaling of trajectory speed with reach amplitude and durations. (a) increasing initial target
distance in the same direction causes similar reach durations but larger hand path speed - the parameter
set is fixed with Ks/Ke = 15/1. The numbered trajectory paths in part (a) are matched with their hand path
speed in part (b). In (c) and (d), we maintain a constant initial error vector while multiplying Ks and Ke by
the same factor (preserve ratio); e.g., in (d) the solid black line’s Ks/Ke ratio is 15/1 (case 4 in (b)), the dashed
line is 7.5/0.5, the dotted line is 30/2, and the dash-dotted line is 60/4. All four conditions have identical
spatial trajectories (c), despite increases in path speed and concurrent decreases in reach duration (d).
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the ratio of error projection weights to each motor unit (or joint). The ratio for trajectory

tuning is dependent on the direction of motion to the target as well as the geometrical

configuration of the arm. Additionally, the distance to the target does not affect these ra-

tios, so the same ratio can be used to tune all reaches in the same direction at various dis-

tances. For example, in Table 1 the same ratios are used to tune the 4 cm reaches and the

7 cm reaches for each direction in Figure 6. Note that this is an important observation,

due to the asymmetric geometric properties of the robot arm; the robot forearm is twice

as long as the upper arm, while the two segments are nearly equal for humans. This coin-

cides with observations in [50] which suggest that biomechanical variations, even at the

wrist, can affect the motion trajectories of the entire arm. Furthermore, the dynamics of

the motion also change based on this gain manipulation. This represents an alternative in-

terpretation for motor learning and trajectory formation than explicitly planned motion

kinematics as discussed in [10]. For example, adjusting the gains for one segment relative

to the other allows the controller to be scaled so that the parts behave differently relative

to one another. In this study, the optimized gain-ratio was determined to be direction and

set-point dependent which is reminiscent of the discharges from reach related neurons in

the superior colliculus [26-28].

Notice that after tuning the majority of movement trajectories resemble those re-

corded in biological studies [10,50-53]. They are defined by smooth, slightly curved



Stefanovic and Galiana BioMedical Engineering OnLine 2014, 13:151 Page 19 of 25
http://www.biomedical-engineering-online.com/content/13/1/151
motions with bell-shaped speed profiles. This is demonstrated in Figures 5, 7 and 9

when comparing the motion’s characteristics to the trajectory planning reference.

Graham et al. [54] demonstrated that significant curvatures are present in untrained

arm motions but are straightened with increased practice and/or joint stiffness. Recall,

gain tuning in these experiments demonstrates the same progression from wide motions

to straight motions using an incremental trial and error technique. Ultimately, the gain ra-

tios proposed here could be interpreted in biology as changes in cell recruitment and/or

in synaptic gains between error maps and spinal pre-motor circuits, as discussed in [6,45].

Compensation for perturbations

Since our controller operates on the basis of sensory-motor interaction, the system

automatically adapts to the perturbations caused by sudden position changes. Figure 7

highlights this ability, where an initial position change due to a sudden mechanical per-

turbation causes the controller to compensate with force changes and sudden speed

bursts. When the perturbation ends, the controller settles back onto its original path.

Even though the trajectories are never explicitly planned, the motions in all three cases

adhere to very similar profiles and the disturbed hand path decays back to the un-

disturbed trajectory. Recall, this ASC includes segment interaction, scalability, and

sensory-specific network interactions. The ability of the ASC to quickly correct motions

is a direct result of these relationships [18] since circuit parameters (Figure 2) could be

modified based on proprioceptive changes or visual information. An observer on the

outside might interpret these results as requiring pre-computation of desired trajector-

ies but the same result is achieved here from the topology and built-in reflexes, not

pre-planning. Also, recall that this behavior evolves independently from the pre-motor

gains, Ks and Ke.
Reaching to moving targets

It is evident that the controller is able to reach moving targets (Figure 9) provided that

the target does not ‘out-run’ the hand motion; i.e. remains in the controller bandwidth.

Since the motion is based on perceived sensory stimuli [3,4] the motor commands will

change with visual target perception. Thus, motor pre-planning is not required. Due to

the fact that sensory signals are responsible for driving the system, it is evident that the

controller should be able to respond adequately to a variety of external effects. Without

the need to plan or correct with a pre-computed motion, the spinal-like controller

demonstrates an ability to adjust its motion plan based strictly on these sensory systems

and to return to a default trajectory despite the absence of planning. This behavior is

omitted from earlier biomimetic controllers, and it is unclear how planned or pre-

programmed strategies could be modified fast enough to account for sudden target

shifts or external limb perturbations. At this time, extensions to allow for visual and

cognitive delays have not been included. This will be included in a future biological

implementation of the controller.

The speed profiles in Figure 9b are also noteworthy. As the target shifts position, the

ASC readjusts its motor commands and the speed profile demonstrates multiple bell-

shaped curves. This is reminiscent of the multiple bell-shaped curves that are produced

when movements appear to pass through intermediate (virtual) targets to avoid an
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obstacle or to build a more complex movement [10]. Our results show this could also

be done without explicit planning, using only intermediate targets – visual or virtual.

This is a unique behavior inherent to the ASC that is seldom seen in earlier biomimetic

controllers. Again, recall that this behavior evolves independently from the gain levels,

Ks and Ke.
Scaling of trajectory size and speed

Figure 10 demonstrates how gain changes in the ASC can scale the trajectory and

speed of a motion. There is a consistent and smooth progression as the target dis-

tance is increased from the initial starting point. The controller supports reaches of

similar duration to targets at different distances by increasing the hand path speed

(Figure 10b) without any parametric changes, and without any loss of precision.

This precision is maintained until the hand speed exceeds 60 cm/s (not shown),

then it would experience oscillations. Figure 10c-d show that spatially identical

hand motions can also be executed at increasing speeds by multiplying the error

gain ratio by an appropriate factor (i.e., task urgency). This result also coincides

with Gribble et al.’s work [55] which links arm stiffness with arm speeds and accur-

acy. In other words, multiplying the gain ratio in the ASC increases the combined

motor output which increases the stiffness of the system and the speed of the mo-

tion. Notably, the ASC’s hand motion accuracy is unaffected by such speed in-

creases, as opposed to earlier approaches such as the equilibrium point hypothesis

which fails to perform well at high speeds [56,57]. In any case, these results dem-

onstrate that it is simple to scale the movement tasks without any need for pre-

planning. Both dynamic and kinematic scaling are imbedded features of the spinal-

like system, making it an adaptive controller for reaching various paradigms.

By linking these results to biology, an alternate hypothesis can be offered for

movement control given the structure of the spinal circuits and their separable

spatial and temporal sensitivity to selected parameters. A potential role for cortical

or cerebellar projections onto the spinal system would be to modulate the gains of

sensory afferents, rather than directly modulate planned trajectories. Examples in-

clude: i) projection strength of visual errors onto motoneural circuits that are mod-

ulated in the Frontal Eye Fields and superior colliculus by location on the map and

by cognitive effects such as visual saliency or task instructions; or ii) the strength of

projections from limb-based sensors (like spindles) onto interneurons and motoneu-

rons that can be modulated by descending projections to the spinal cord and to

spindle γ fibers. In addition, this controller demonstrates an imbedded reflex modu-

lation similar to that seen in spinal motor centers [9,58,59]. In particular, sign

changes modify the dominance of “extensors” and “flexors” whilst the magnitude of

the gain affects the strength of the reflex. A recent publication also demonstrated

that EMG patterns of the controller when applied onto systems with non-linear

muscle approximations show biphasic and triphasic burst patterns as seen in biol-

ogy [9]. Since the above controller architecture automatically generates human-like

EMG profiles, it is expected that this controller can be applied to developed en-

hanced myoelectric control of artificial limbs or FES. This will be explored in more

depth in future studies.
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Conclusion
The ASC presents a novel interpretation of how spinal-like circuits can simplify the

planning task, so that instead of computing a trajectory, specific ‘modes’ for the

spinal-like circuits can emerge via parameter and muscle selection. We have shown

that this can happen automatically using the learned gain fields from the colliculi.

The ASC also exhibits novel characteristics that are not included in earlier biomim-

etic controllers including an adaptive performance for multi-joint arm movements,

and scalability for temporal and spatial motion tasks. Based on the results presented

above, the ASC resembled biological reaching data found in the literature for vari-

ous tasks despite using a non-biological robot arm, and can automatically change

behavior based on sensory information. Also, adaptive behavior (e.g., tracking mov-

ing targets, perturbations, etc.) is available independently of the system gains and

naturally evolves due to the structure of the controller. However, gains can also in-

dependently affect the characteristics of these motions. This is relevant in modern

applications because it provides a tunable system that is reflexively responsive to

stimuli. Future work on this study will examine the ASC’s application on a pros-

thetic limb and myoelectric stimulators.

Appendix A
Consider the controller in Figure 1. If we assume that the actuators have linear charac-

teristics and that we can lump agonist/antagonist actuators into a single bidirectional

plant, the system can be simplified in block diagram form as shown in Figure 11.

Here, P(s) is the plant, M(s) is an approximation of the plant, G is a gain, T(s) is the

error vector between the target and hand, V(s) represents the function which deter-

mines the hand spatial position, Y is the joint angle, U is the activation level, e is a

projection of the hand-target error, and D is the hand position.

In order to determine the input/output characteristics of the system, we find a simple

transfer function of the block diagram shown above. Here, we can present the transfer
Figure 11 Block diagram of the controller from Figure 1.
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function as a relationship between the output (joint angle) and the input (input hand-

target error), as follows:

D sð Þ ¼ YS sð ÞV sð Þ þ Y e sð ÞV sð Þ ðA:1Þ
YS sð Þ ¼ US sð ÞPS sð Þ ðA:2Þ
US sð Þ ¼ eS sð ÞGs−US sð ÞMS sð Þ ðA:3Þ

Reorganizing equation (A.3) yields,

US sð Þ 1þMS sð Þð Þ ¼ eS sð ÞGs ðA:4Þ

Therefore to simplify we acquire,

Us sð Þ ¼ eS sð ÞGs

1þMS sð Þ ðA:5Þ

Substituting equation (A.5) into (A.2),

Hs sð Þ ¼ Y s sð Þ
eS sð Þ ¼ GsPs sð Þ

1þMs sð Þ ðA:6Þ

Similarly, since the two segments of the controller are identical,
He sð Þ ¼ Y e sð Þ
ee sð Þ ¼ GePe sð Þ

1þMe sð Þ ðA:7Þ

By changing the gain (Ge or Gs) we affect the time constant of the system at the glo-
bal level through the gain of the external error loops. This can have important
Figure 12 Two link arm in space. S is the shoulder joint, E is the elbow joint, θs is the shoulder angle, θe
is the elbow angle, lu is the length of the upper arm and lf is the length of the forearm.
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implications for the controller since it can affect the segment contributions defined in

equations (A.6) and (A.7), and with them the hand trajectory. Thus, since both

segments have their own gain, the gains can be modified to affect both equations in the

same proportion (i.e., scale time constants to remain uniform), or the gains may be

configured to change the ratio of contributions in equations (A.6) and (A.7) with re-

spect to (A.1) (i.e., scale time constants to be different in eq. (A.6) and (A.7)), thereby

shaping trajectories. If the gains are properly selected, the controller will exhibit

tunable behaviours. This is confirmed in Figure 5.

Notice that equation (A.1) defines the hand position as some combination of eq. (A.6)

and eq. (A.7). In reality, the relationship is a simple geometric solution (Figure 12).

Geometrically, determining the position of the hand is a simple calculation as shown

in equations (A.8) and (A.9).

wx ¼ lu sin θsð Þ þ lf sin θs þ θeð Þ ðA:8Þ
wy ¼ lu cos θsð Þ þ lf cos θs þ θeð Þ ðA:9Þ

Where wx is the position of the hand on the x-axis, and wy is the position of the hand
on the y-axis. Thus, if equations (A.6) and (A.7) determine the joint positions based on

the activation of the actuator, a simple transformation to coordinate space determines

the hand position (wx, wy). With respect to Figure 11, equations (A.8) and (A.9) are

analogous to V(s).
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