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Abstract

Background: The Baculovirus Expression Vector System (BEVS) is a very popular
expression vector system in gene engineering. An effective host cell line cultivation
protocol can facilitate the baculovirus preparation and following experiments.
However, the counting of the number of host cells in the protocol is usually
performed by manual observation with microscopy, which is time consuming and
labor intensive work, and prone to errors for one person or between different
individuals. This study aims at giving a bright field insect cells counting protocol to
help improve the efficient of BEVS.

Method: To develop a reliable and accurate counting method for the host cells in the
bright field, such as Sf9 insect cells, a novel method based on a nonlinear Transformed
Sliding Band Filter (TSBF) was proposed. And 3 collaborators counted cells at the same
time to produce the ground truth for evaluation. The performance of TSBF method was
evaluated with the image datasets of Sf9 insect cells according to the different periods
of cell cultivation on the cell density, error rate and growth curve.

Results: The average error rate of our TSBF method is 2.21% on average, ranging from
0.89% to 3.97%, which exhibited an excellent performance with its high accuracy in
lower error rate compared with traditional methods and manual counting. And the
growth curve was much the manual method well.

Conclusion: Results suggest the proposed TSBF method can detect insect cells with
low error rate, and it is suitable for the counting task in BEVS to take the place of
manual counting by humans. Growth curve results can reflect the cells’ growth manner,
which was generated by our proposed TSBF method in this paper can reflected the
similar manner with it’s from the manual method. All of these proven that the
proposed insect cell counting method can clearly improve the efficiency of BEVS.

Keywords: Cell counting, Transformed sliding band filter, BEVS, Microscopy image
processing
Background
Biology background

The baculoviruses are double-stranded DNA viruses containing a large genome up to

180,000 bp, and are arthropod specific viruses with two different phenotypes during

different infection stages [1,2] including budded viruses (BVs) and occlusion-derived

viruses (ODVs). Depending on the distinct structural and biological characteristics, the
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baculoviridae family can be divided into four genera: α-baculovirus, β-baculovirus, γ-

baculovirus, and δ-baculovirus [2,3]. Traditionally, these kinds of arthropod specific

viruses are employed to control insect pests in soybean fields, cotton bollworm and

helicoverpa armigera. Very recently, with the development of microbiology and vir-

ology, the special properties of high level expression for very late genes make them

suitable vectors for the delivery of foreign genes. So far, Autographa California Multiple

Nucleopolyhedrovirus (AcMNPV) and lesser extent Bombyxmori Nucleopolyhedrovirus

(BMNPV) are broadly applied as alien gene vectors to produce recombinant proteins in

many hosts [2,3].

The baculovirus expression vector system (BEVS) has been widely used to express

heterologous genes in various cell lines since the mid 1980’s [4]. With recent advances

in cell culture and molecular manipulations, many special media, transfection reagents

and expression vectors have been developed for applications. As an excellent expression

system, BEVS contains efficient promoters that can provide ideal production of the re-

combinant proteins. Its host insect cell lines, serum-supplemented or serum-free

growth media and infection strategies also allow optimal virus production and gene ex-

pression. In addition, the scalable process for the culture of insect cell lines makes the

downstream processing more convenient in labs. Together, these advantages enable its

large-scale applications in gene expression and protein production. Furthermore, the

broad range of susceptible cell lines and the nature in cells entrancing without toxic

and replication make baculovirus an excellent tool for studying the expression and

function of genes, which allows the BEVS to be successfully applied to gene therapy,

pharmaceutical and vaccine productions.

Figure 1 explains the classical protocol of recombinant-baculoviruses production and

gene expression using the Bac-to-Bac Expression System. Firstly, a recombinant donor

plasmid is constructed, and then the plasmid was transformed into DH10BAC E.coli
Figure 1 Recombinant baculoviruses and gene expression protocol using the bac-to-bac expression
system; step 1. Construction of donor plasmid; step 2. Production of bacmid; step 3. Recombinant bacmid
preparation; step 4. Production of recombinant baculovirus.
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competent cells (step 1 in Figure 1) to produce recombinant Bacmid through homolo-

gous recombination (step 2 in Figure 1). After preparing of recombinant Bacmid (step 3

in Figure 1), the host insect cells, are transfected by the extracted Bacmid. Finally, the re-

combinant baculovirus containing a cloned gene is prepared from the product of insect

cell disruptions (step 4 in Figure 1).

As Figure 1 shows, the hosts, such as Sf9 insect cells, are critical for producing the

recombinant baculovirus and the insect cells’ density (1 × 106-2 × 106 cells/ml) are very

important for the follow-up experiments. An effective culture protocol of insect cells

can facilitate the virus preparation. In spite of its key rolls, the counting of insect cells

usually takes lots of time and is labor intensive by traditional methods in lab because it

is usually manipulated by humans under microscopy. Moreover, traditional methods

are even prone to cause errors without being repeated by different people. It should be

noted that there are still no efficient computer-aided methods to solve these problems

in regard to the BEVS protocol. In this paper, we propose a bright field insect cell

counting method based on the Nonlinear Convergence Index Sliding Band Filter to im-

prove the protocol efficiency.

Related works

Cell counting is an indispensable and essential problem because it directly affects the

efficiency of many cell-based gene expression systems like BVES. Traditionally, this task

is usually performed by microscopic-based counting. For example, the Neubauer,

Burker and Fuchs-Rosenthal chambers are well known methods for counting cells in

different cell concentration of interest [5]. However, all of these methods have to be

manually manipulated and therefore are prone to cause errors for the same person or

different persons. Furthermore, most of them require frequent repetitions for valida-

tions [6]. In the 1940s, Wallace Coulter introduced a suspended particles counting

method in a fluid to provide an automatic cell counting tool without lab worker de-

pendencies, which is a milestone in solving cell counting automatically [5]. Following

this milestone, automated human blood counting tools based on microscopic image

analyses with high performance became commercially available. However, there are still

many defects to be improved [7-9]. All of these defects should be addressed in order to

develop automatic cell counting and analysis tools to facilitate the cell based experi-

ments. In this paper, we focus on an image processing based insect cell counting

method for BVES. To the best of our knowledge, there are no existing methods that

have the same purpose with our proposed method. Beyond that, the proposed method

can also be applied to other kinds of cells under microscopy with a bright field.

As a basic problem of computer-aided biology experiments, microscopic cell image

analysis in a dark field has been explored by many researchers. Image processing based

cell counting methods have been widely used for cell-based biological experiments dur-

ing the past decades, especially for red blood cells and white blood cells [10]. Detecting

and counting cells in microscopy images for biological systems is a key factor that af-

fects system efficiency. Traditionally, classical computer-aided methods solve this prob-

lem by applying image segmentation, which is a fundamental but difficult problem in

computer vision. These methods mainly focus on cell images with high contrast be-

tween cells and their background; this can be described as the dark field cell identifica-

tion problem. Several image filters and segmentation methods were employed for cell
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identification and counting in microscopy images, such as, watershed transform-based

methods [11], morphological operators-based methods [12], gray level threshold based

methods [13], contour or region-based methods [14], minimum-error-threshold

histogram-based methods [14], and Artificial neural network (ANN) was also used for

investigating the same problem [14]. On the other hand, various commercial or free

software have been developed for solving cell counting in different image datasets, such

as ImageJ and Cellprofiler [7]. However, most of these methods and software mainly fo-

cused on processing some types of cells or cell lines and cannot be applied to other cell

types. Another problem regarding these methods is that they are either semi-

automated or require re-adjusting parameters on the same images to obtain accurate

results. Additionally, the aforementioned methods and commercial software cannot ob-

tain accurate results without human interventions, and some methods must be manip-

ulated by experienced biology technical staffs that are trained in digital image

processing. It can draw a conclusion that more robust and reliable tools are needed for

the biotechnologist in larger cell image data sets. Furthermore, another challenge we

have faced is the bright field cell counting which has had rare attentions so far.

In this paper, we propose an effective cell counting method for the insect-baculovirus

expression system using Transformed Sliding Band Filter (TSBF), which is a new

image-based microscopy cell counting method under a bright field. The TSBF method

is based on a nonlinear filter, Sliding Band Filter (SBF), which was proposed for lung

nodule detection and dark field fluorescein stained cell nuclei identification [15-17],

and was also employed for density packed cell counting in another work of our group.

This filter is based on gradient vector convergence which is capable of detecting low

contrast cell nuclei and cytoplasm information lost in the background noise [15]. It can

also reduce the uncertainty caused by noise. Furthermore, the parameters of the filter

are directly related to cell shape and size, which leads to easy and intuitive setup by the

biotechnologist who knows little about image processing techniques. In our method,

we evaluated the gradient vector convergence in the bright field, and transformed the

convergence index in the SBF filter to fit the location we want to detect. The results

show that the TSBF method can be applied to insect cells in different infecting stages,

and can improve the efficiency in the BEVS protocol.

Methods
Workflow of our proposed pipeline

Firstly, after collecting the image dataset, images of region A1 through A5 in Figure 2

were selected manually as shown in Figure 2. Our approach to insect cell counting in

bright field microscopy images is based on local TSBF image filtering. The distributions

of gradient vectors for cells in bright and dark fields were compared, and then the SBF

filter was transformed according to the gradient vectors in the bright field to make it

match the cell gradient vector distribution manner well. Like most work on cell identi-

fication and counting, our approach conducts cell image enhancement as an initial step.

Given the enhanced images by TSBF, a non-maximal suppression filter was applied to

search local maxima. Subsequently, cell centers were tentatively associated with the lo-

cations of maxima responses.

After cell detection, the accuracy of the TSBF method was analyzed and compared

with the manual method, and this yields the final result of our approach. In this



Figure 2 Cell detection diagram, using example images from the Sf9 insect cells dataset illustrating
our approach.
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section, the characteristics for cell images in both dark and bright fields are introduced.

Finally, an evaluation method is introduced for comparing with manual counting and

some computer-aided approaches.

Host cell preparation

As the host of baculovirus, there are four types of insect cell lines commonly used for

BVES applications as listed in Table 1. These insect cell lines support various levels of ex-

pression and differential glycosylation with the same recombinant protein [18]. We choose

the most widely used cell type, Sf9, a clonal isolated from the Spodoptera frugiperda cell

line IPLB-Sf21-AE, as the host cells, which was support by Harbin Veterinary Research

Institute, CAAS.

After recovering from liquid nitrogen, Sf9 insect cells were diluted by SF900 II

complete medium (Cat. No. 10902-088, Invitrogen Inc., USA) with 10% fetal bovine

serum (Cat. No. A15-043, PAA Inc., Austria) and 1% double-antibiotic (Penicillin and

Streptomycin, Takara Inc., Japanese). Cell suspension with a density of 5 × 105 cells/mL

was prepared at 27°C for the counting task in different concentrations. After the
Table 1 Commonly used insect cell lines in BVES

Insect species Cell line

Spodoptera frugiperda Sf9

Spodoptera frugiperda Sf-21

Trichoplusia ni Tn-368

Trichoplusia ni High-Five™ BTI-TN-5B1-4
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density reaches 2 ~ 3 × 106 cells/mL, the population of the insect cells grow exponen-

tially and various kinds of experiments were conducted during this period. When its

density reaches 5 ~ 6 × 106 cells/mL, it comes into the stationary phase with no growth

of cells and descends.

Manual counting data collection

Insect cell densities in a suspension culture medium are usually calculated by a

Hemacytometer, because it includes enough regions to evaluate both low and high con-

centration of insect cells [5], see Figure 2 for details.

Traditionally, the insect cells are diluted at a certain ratio using Sf900 II medium ac-

cording to the period of cell cultivation. Then, they are injected into the chamber where

the volume (the depth and area) is standardized. The cell number SquireIn sec t _ cell from the

field was obtained by the visual inspection in 1 mm2 regions in the chamber. Finally, the

density of insect cells VolINC is calculated by Eq. 1.

VolINC ¼ SquireIn sect�cell � CDepth � Cellcct ð1Þ

Where Cdepth is the depth of the chamber and Cellcct is the concentration of the in-

sect cells.

Typically, visual evaluation for insect cells is calculated from 4 or 5 regions. An ex-

ample of the 4 regions and 5 regions are B1, B2, B3, B4 and A1, A2, A3, A4, A5, respect-

ively, as shown in Figure 3. In this paper, we mainly focus on region A1 through A5.

Image data set acquisition

Sf9 insect cell images were collected using optical model of Nikon Te2000 confocal mi-

croscopy with 20 × 10 (objective × eyepiece) for finding counting region and 40 × 10

(objective × eyepiece) for performing the cell counting task in BEVS. For each 24 hours

until cells grow into the stationary phase, 3 samples were collected separately and marked

as sample 1, sample 2 and sample 3 according to the collected sequence. Microscopic im-

ages of region A1 through A5 were collected separately from each sample.

Differences of cell images in dark and bright field

Traditionally, the cells in the dark field appear to have a higher intensity in the center

than the edge, and this can be described as a rounded convex region [15]. This region

is defined as: the region’s equi-contours of intensity are concentric and all gradient vec-

tors in the area toward the center. Figure 4(a) presents the round convex region related

to image intensity considered in this paper. Figure 4(b) shows a typical round convex

region image in a dark background Red arrows indicated the convergence directions of

gradient vectors.

Cells in single plane dark field images always exhibit individual nuclei with discon-

tinuities in the boundary. As it is widely known, the distribution of genetics materials

(such as DNA) always concentrates at the center of the cell nuclei area in a living cell,

which is related to the image intensity after staining by fluorescence dyes. Figure 5(a)

shows a single plane micrograph in both the ONL (Outer Nuclear Layer) and INL

(Inner Nuclear Layer) of human retinal. http://www.bioimage.ucsb.edu/image-processing/

retina.

http://www.bioimage.ucsb.edu/image-processing/retina
http://www.bioimage.ucsb.edu/image-processing/retina


Figure 3 Scheme of Hemacytometer with nine 1 × 1 mm2 squares with 0.1 mm depth. The A1 toA5
region is divided into 1/25 mm2 regions, and the B1 to B4 region is divided into1/16 mm2 regions.
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The retinal ONL cells were stained by nuclei dye, TO-PRO (excitation wavelength

642 nm, emission wavelength 661 nm). Image data sets was published in [19]. The ret-

inal cell DNA concentrated at the center of each cell leading to the intensity of cell nu-

clei appears much higher than the edge in the single plane cell image. Thus, the

individual cell in the dark field can be simulated as simple, nearly circular shapes,

which refers to a rounded convex region. Figure 5(b) presents the gradient vector dis-

tribution of each cell. In addition, after being enhanced by the SBF filter, as depicted in

Figure 5(c), the center was enhanced.
Figure 4 Scheme of rounded convex region. (a) Map of Round convex region with image intensity;
(b) Distribution of Gradient Vectors in the Convex Region.



Figure 5 Comparison of gradient vector distribution and SBF filter enhancement results between
the dark field and bright field. (a) Retinal cells image in the dark field. (b) Distribution of gradient vector
for each retinal cell in (a). (c) Result of SBF filter enhancement on (a). (d) Sf9 insect cells in the bright field.
(e) Distribution of gradient vector for each insect cell in (d). (f) Result of SBF filter enhancement on (d).
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Unlike the dark field, insect cells in the bright field usually shows the whole living cell

body and the cytoplasm is not visible compared with the cell membrane. Figure 5(d)

shows the insect cells in the bright field compared with the retinal cells in the dark field

(Figure 5(a)). The boundaries of an insect cell in the bright field shows a clearly bound-

aries of cytoplasm and the edge exhibited discontinuity between inside and outside of

the cell. The gradient vector around the cell membrane area shows convergence toward

the cytoplasm center and divergence away from the cell membrane toward the back-

ground, and this was modeled as a transformed rounded convex region enhanced by

our proposed method discussed in part B. Figure 5(e) indicated the gradient vector dis-

tribution inside and outside of the insect cells. Unfortunately, as shown in Figure 5(f ),

the SBF filter does not work in the bright field, and it can only detect the region of the

cell membrane instead. Figure 6(a) to (f ) exhibited the detection results of comparison

between the TSBF and SBF method in the 3rd and 5th day. TSBF can detect the center

of each cell as one, but the SBF can only detect the cell membrane region and it detect

one cell as two, three or even more cells.



Figure 6 Sf9 insect cell detection comparison between TSBF and SBF method. (a) TSBF detecting
result on the 3rd day. (b) TSBF detecting result on the 5th day. (c) Magnification of part of (b). (d) SBF
detecting result on the 3rd day. (e) SBF detecting result on the 5th day. (f) Magnification of part of (e).
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Cell detector design using TSBF

Cell detection is an important task in cell counting and recognition, which is usually

achieved by intensity threshold or image segmentation [20]. However, these methods

assume that cells are isolated from each other in a dark field [21,22]. In this paper, in-

sect cells in images appeared as ring structures with different intensities. The most

challenging problem in cell detection is that images in this case are obtained by bright

field microscopy. In addition, most of the aforementioned approaches require ideal en-

vironments that do not have irregular illumination, channel cross talk and noise caused

by the microscopy [20].

In this paper, a new method for insect cells counting is proposed, which uses image

filtering to enhance certain features on gray level images [23]. Considering most of the

linear filters have small support regions, i.e., m ×m pixels where m ∈ {2, 3, 5......}, in this

paper, a Transformed Sliding Band Filter with larger support regions is employed to en-

hance insect cells in a bright field. TSBF was originated from a nonlinear filter, the

Sliding Band Filter (SBF), a member of the Convergence Index (CI) family.

The CI family was design for enhancing the rounded convex region in digital images,

and was based on the maximization of CI at each pixel of spatial coordinates (x, y). The

Convergence Index is defined by the following formulations:

Convergence Index x; yð Þ ¼ 1
Pn

X
mR;nRð Þ

cos α mR; nRð Þ ð2Þ

where (x, y) is the coordinate of the interesting pixel, Pn is the number of pixels in the

support region R, α(mR, nR) is the angle between the gradient vector computed at pixel

(mR, nR) and the line connected (x, y) and (mR, nR).

There are several members in the CI family, such as CF (Coin Filter), IF (Iris Filter),

ARF (Adaptive Ring Filter) and the SBF [24,25]. The differences in these members are

the definition of the support region R. The SBF filter has a band with a fixed width
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support region, the average convergence index in band width can be maximized by

changing the position of the band in each radius direction. Figure 7(a) depicts the

scheme of the support region in SBF. The definitions of the SBF filter is as follow:

SBF x; yð Þ ¼ 1
Pn

XPn
rad¼1

max
Rmin<r<Rmax

1
Bwþ 1

Xrþ Bw=2ð Þ

r− Bw=2ð Þ
Conv rad; nð Þ

0
@

1
A ð3Þ

With
Conv rad; nð Þ ¼ cos φrad−α φrad; nð Þð Þ
φrad ¼ 2π rad−1ð Þ

N

α φrad; nð Þ ¼ arctan
GradnC

GradnR

� �

where GradnC and GradnR are the column and row gradients at image position n, respect-

ively, Pn is the number of support region lines irradiated from the center pixel (x, y), Bw is

the sliding band width, r is the position of the band center in the support region line ran-

ging from Rmin to Rmax, and cos(φrad − α(φrad, n)) is the angle between the gradient vector

at (φrad, n) and the direction of φrad.

The SBF was employed to develop a cell segmentation method in Quelhas’ work [15],

but it detects only convergence or divergence in the dark field. However, the cell mem-

brane in the bright field is distinct from the background with the location of both con-

vergence and divergence, see Figure 7(c) and (d), and cytoplasm is not visible. This

leads to the Conv(rad, n) in SBF filter does not fit the bright field cell area. By ignoring

the affection of divergence and convergence in the bright field, we transform the
Figure 7 TSBF for cell detection. (a) Schematic of the SBF supports region; (b) Sf9 insect cells under
microscopy; (c) image filtered by TSBF; (d) cell detected results on the same image using non-maximal
suppression.
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convergence index in SBF to facilitate it to fit the cell membrane area well. In this

paper, the Transformed Sliding Band Filter (TSBF) is given by:

TSBF x; yð Þ ¼ 1
Pn

XPn

rad¼1

max
Rmin<r<Rmax

1
Bwþ 1

Xrþ Bw=2ð Þ

r− Bw=2ð Þ
ABS CIð Þ þ ω � Gv rad; nð Þð Þ

0
@

1
A ð4Þ

with
ABS CIð Þ ¼ Conv rad; nð Þk k
Gv rad; nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GradnC

2 þ GradnR
2

p

where ABS(CI) is the absolute value of the convergence index at pixel (rad, n), this
eliminates the characteristic of divergence and convergence at the edge of cells, Grad

(rad, n) is the gradient value at pixel (rad, n), ω is a weight parameter designed for the

image variation on uneven illumination and out of focus (we set ω = 1 in this paper as

the default value). After applying the TSBF filter to insect cells, filter output results in-

dicate that the cell centers are associated with the locations of filter local maximal

value.

The classical SBF filter was employed by the image processing community to enhance

the edge and center in the rounded convex region. In this paper, we use transformed

SBF, named TSBF to detect cells in the bright field. The given insect cell image, as

shown in Figure 7(b), was processed by our designed TSBF filter, and the results show

that the center of cell was enhanced by this method, as shown in Figure 7(c). Further-

more, the enhanced center was assumed as the center of each cell.
2

1 1

1 1

1

1 

   ( , ) { , 2 1,...} [0, ] [0, ] 

2        (max ,max ) ( , );

3        ( , ) [ , ] [ , ] 

4             ( , ) (max ,max ) 

5                    (max ,max ) ( ,

k l n n W n H n

k l k l

k l k k n l l n

I k l I k l

k l k l

∈ + ∩ − × −
←

∈ + × +
>

←

forall 

do

odllarof

nehTfi

1

1 1

1 1

);

6        ( , ) [max ,max ] [max

          ,max ] [ , ] [ , ] 

7              ( , ) (max ,max ) 

8                      goto failed;

9         MaxlocAt( max ,max );

10  

k l k n k n l

n l n k k n l l n

I k l I k l

k l

∈ − + × −
+ − + × +

>

forall 

do

nehTfi

     failed;

Algorithm 1: 2D (n+1) × (n+1)-Block NMS 
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A local Non-Maximum Suppression (NMS) was applied to detect the local maximal

value which was the assumed cell center, details of the NMS were listed in Algorithm 1,

where W and H represent the width and height of a given image, and position (k, l) and

(k1, l1) are pixels in the (n + 1) × (n + 1) region [26,27]. In this part, the NMS can be for-

mulated as the local maximum search, where one local maximum, excluding itself is

greater than all its neighbors. 2D square images of (n + 1) × (n + 1) centered on the pixel

were under consideration in this paper.

Cell detector evaluation

The proposed TSBF method for detecting cells in a bright field was tested on the insect

cell image datasets collected using the protocol of BEVS. To evaluate the accuracy of

the proposed method, an error rate estimation process was employed. We used manual

counting results as the GT (Ground Truth), and then the performance of the proposed

cell detector was evaluated by the error criterion according to equation five and equa-

tion six.

ERT ¼ DA−GTj j
GT

ð5Þ

TERT ¼ ERT
NT

ð6Þ

with
GT ¼ Ns1 þ Ns2 þ Ns3

3

DA ¼ Ds1 þ Ds2 þ Ds3

3

Nsi ¼ Sample�isui þ Sample�idai þ Sample�izhang
3

; i ∈ 1; 2; 3f g

where Error Rate of TSBF (ERT) is the relative error rate at a certain cell density calcu-
lated using the TSBF filter, Total Error Rate of TSBF (TERT) is the total error rate of

all cell density calculated using TSBF, NT is the number of cell samples in different

densities, GT is the Ground Truth, Sample _ i is cell density of a sample from a certain

time counted by our lab collaborators. Nsi is the average number of Sample _ i. For ex-

ample, after recovering from the liquid nutrition, cell suspension with a density of 5 ×

105 cells/mL was made by an experienced lab collaborator as the starting point, 3 sam-

ples were collected each 24th hour until the 216th hour (the 9th day) and then counted

by 3 lab collaborators and the proposed method.

Results and discussion
We assume that the cell diameters in all images are about the same size, and that most

parameters of our method are intuitive. For the insect cell image dataset, the following

parameters were set based on direct visual inspections. For the cell detection, we evalu-

ated the cell diameters by direct observations. We set Rmin = 8 pixels, Rmax = 30 pixels

for the maximum and the minimal cell radius respectively; this is to make sure the sup-

port region of maximum radius covering the full cell. Regarding the remaining SBF fil-

ter parameters we adopt the default setting N = 32 [15], and d = 6, according to the

width of the cell edge in the image by direct observations.
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The proposed method was implemented on a desktop computer with an Intel 1.86

GHz CPU and 2GB RAM memory. The proposed approach is currently fully imple-

mented with MATLAB R2012a. Although the TSBF filter is a computationally intensive

operation, our method currently takes approximately 22 mins to perform the cell detec-

tion of a 512 × 512 pixel image and it will be improved to perform in less time by using

GPUs in the near future.

Cell counting is a complicated and tedious task in many cell-based experiments and

usually performed manually by microscopic observations. This leads to many problems

such as labor intensity, time consumption, and proneness to errors intro-and inter-

persons. Thus, effective cell detectors are needed for biotechnicians to master this task

during cell based experiments. Being an excellent cell detector in bright fields, it must

satisfy some criteria such as providing the accuracy and reliability of manual counting

results. In this paper, the introduced cell counting method in the bright field for insect

cells can facilitate the BEVS’s manipulation and improve its efficiency. We test our

method on confocal images of insect cells collected from different periods of cultiva-

tion. For each sample of insect cells, masks were employed to cover the A1 through A5

regions of the chambers separately in Figure 2, and then we manually calculated each

sample by 3 lab collaborators to create the ground truth for investigating the variations

among manual counting, the TSBF method and the SBF method.

Counting insect cells is usually performed manually by chambers under microscopy.

In addition, the results have to be repeated several times in the same view and then an

average number is taken as the relative accurate number. Compared with the manual

counting, the proposed method can obtain results with an intuitive parameter setting

and the variance on cell density per mL ranging from 7,000 cells to 200,000 cells. We

choose 3 samples each day to count the results by our method and manual counting

during the cultivation period. The samples were collected from the cultivation medium

by sequence and named sample 1, sample 2 and sample 3. Figure 8 compared the aver-

age density of cells between manual, TSBF, and SBF methods during the cultivation

period. After applying the TSBF method to the cell counting task, there is still a vari-

ance in counting results up to 200,000 cells per milliliter. Although there is an enormous

variation between these methods, it can be eliminated during the huge cultivation of in-

sect cells after evaluation by an experienced biotechnologist.

The error rate is an important criterion to evaluate the accuracy of a cell detector.

The average error rate of our TSBF method is 2.21% on average, ranging from 0.89% to

3.97% as shown in Figure 9. As an estimated value, the ideal cell density in the log

phase for experiments is 5.5 × 106. As an experimental experience in cell cultural, this

density is permitted during 5.3 × 106 ~ 5.7 × 106, and the difference is higher than 2%,

so this error rate can be eliminated in cell counting. In our research, the insect cells

were cultivated using the suspension method and they usually crowded together when

they were out of the shaker. Some of the cells still exhibited crowding after being

injected into the chamber, and these cells were usually identified as one cell by manual

counting but were detected as 2, 3 or more cells by the TSBF method. This may lead to

increase the total error rate as insect cells grow. To verify this hypothesis, we diluted

the cell suspension to make sure cells were separated from each other at the 4th and

8th day, and the results exhibited a decrease in error rate. But after cells grew into the

stationary phase, some cells were corrupted for lacking nutrition, and the TSBF method



Figure 8 Average cell counting results by 3 lab collaborators, the TSBF method and the SBF method
during the cultivation period.
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detected the bigger cell corruption as a single cell, which leads to an increase in the

error rate. Fortunately, insect cells in this phase were out of use for experiments. So,

this defect can be omitted.

The growth curve can reflect the insect cells growth manner. Drawing an accurate

growth curve in the pre-culture stage can enable bio-technologists to decide when to

seed baculovirus into insect cells and when to perform follow-up experiments. We

compared the TSBF method and manual counting method on the preparation of the

growth curve. Figure 10 shows the growth curve where the solid green line and dotted

blue line correspond to the manual and TSBF methods, respectively. The two curves
Figure 9 Error rate evaluation of the TSBF method and SBF method.



Figure 10 Growth curve comparison results between the Ground truth, TSBF method and SBF
method.
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match well before and during the exponential growth phase with little separation. But,

they do not match so well after the stationary phase. The reason for this is that the

TSBF method detects the cell corruptions as a single cell and therefore leads to a de-

tected cell density larger than the real density. Fortunately, the insect cells in this

period were in the decline phase and the cells were out of use which has no effect on

follow-up experiments, so the negative effect can be eliminated.

Cell counting is an important process in cell based experiments. Although various

methods and software have been developed to aid biotechnologists in performing this

task, most of the methods are limited in their application scopes and cannot be applied

to other kinds of cells or cell lines. The TSBF method can be applied to most cells like

insect cells in bright field microscopy to perform the cell counting task. Comparison

results between the TSBF and traditional image enhancement methods demonstrated

an excellent performance of our proposed method in insect cell image enhancement.

Figure 10 shows the comparisons between Laplacian of Gaussian (LOG), image thresh-

old and the TSBF method. Results show that the TSBF method proposed in this paper

can detect the insect cells with a higher filter resonance value in the center of the cell.

Comparing with the other two traditionally methods, only the LOG method can detect

the single cell in the image, but the background noise heavily affects the filter response

and the detecting result was not as good as the TSBF method. The image threshold

method merely detects the cell membrane area in the bright field images. More details

were shown in Figure 11(a) to (d). In addition, the TSBF method can also eliminate the

background noise in the image, as it is depicted in Figure 11(c).

Additionally, as a common scene for biological experimental workers, most of cells

cultivated in vitro usually exhibited the same morphology in bright field, and thus, all

of these cell lines’ counting task which needs Hemacytometer can be solved by our pro-

posed method.



Figure 11 Sf9 cell detection comparison between Laplacian of Gaussian (LoG) method (a), intensity
threshold method (b), TSBF method (c), and (d) was a magnification of parts in (c).
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Conclusion
In contrast to traditional methods, in this paper we presented a semi-automated cell

counting protocol for BEVS in bright field microscopy image datasets. Comparing with

the SBF filter, a transformed non-linear filter (TSBF) was employed to detect the insect

cells in the protocol according to the cells gradient vector distribution manner. Since

all four of the cell lines exhibited the same gradient vector distribution in the bright

field, we tested on the Sf9 insect cell rather than all the 4 cell lines. The proposed

method is adaptive and efficient.

To test the accuracy of the proposed cell counting method, we evaluated the error

rate. In experiments, the TSBF method showed an excellent performance with an aver-

age error rate of 2.21%, ranging from 0.89% to 3.97%, compared with human manual

counting by 3 lab collaborators. Also, the error rate of 2.21% can be eliminated in cell

counting during cell cultivation. In addition, growth curve evaluation indicates that the

TSBF method can be applied to the protocol of BEVS for its host cell density evaluation

and growth stage identification.

The ultimate goal of this study is to help biotechnologists count the host cells of

baculovirus in the BEVS protocol. As demonstrated in our experiments, the proposed

method is very accurate compared with manual counting. Therefore, the application of

our proposed bright field cell counting method can clearly benefit the protocol of BEVS.

Finally, as a non-linear filter, the TSBF method is computationally expensive. Thus, our fu-

ture work is aiming to improve the method so it runs in less time by using GPUs.

Part of this work was introduced in a conference paper of EMBC 2012 [28].
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