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Abstract

Background: Although the quality of reconstructed results can be improved with
the increment of the number of measurements, the scale of the matrices involved in
the reconstruction of fluorescence molecular tomography (FMT) will become larger,
which leads to the poor efficiency of the process of tomographic image
reconstruction. In this paper, we proposed a new method for image reconstruction
of FMT based on compressed sensing, in which a scheme of grouped sources is
incorporated.

Methods: The forward equations are implemented using the finite element method
(FEM). The reconstruction model is formulated under the framework of compressed
sensing theory. The regularization term and the total variation penalty are
incorporated in the objective function. During the reconstruction of FMT, the sources
are divided into two groups for iteration in turn. One group of sources is employed
in the first iteration of inverse problem, and the other group is employed in the next
iteration.

Results: Simulation results demonstrate that the computation time and mean square
error (MSE) of the reconstruction with our algorithm are less than those with the
traditional method. The proposed algorithm can reconstruct the target with
enhanced contrast and more accurate shape.

Conclusions: The proposed algorithm can significantly improve the speed and
accuracy of the reconstruction of FMT. Furthermore, our compressed-sensing-based
method can reduce the number of measurements.
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Background
Optical molecular imaging has important applications in many fields such as molecular

biology and clinical diagnosis, where disease-specific tracers are combined with the

optical methods to detect and localize the abnormalities at their molecular stage [1].

Optical molecular imaging techniques further impart the potential ability to prevent and

treat the lethal diseases. As one of the emerging optical molecular imaging techniques,

fluorescence molecular tomography (FMT) plays a significant role and attracts conside-

rable new interest due to its high sensitivity, low cost, and high-throughput capability [2].

FMT has been developed as a tomographic method to yield a robust modality for
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fluorescent reporters [3,4]. FMT can be utilized in the studies of drug discovery, tumor

diagnosis and therapy assessment. In this imaging modality, an external source of excita-

tion light is needed to irradiate the tissues and then the injected fluorescent markers ab-

sorbs the incident light [5,6]. Upon releasing the energy, the fluorophore emits the light at

a longer wavelength and the fluorescent molecule decays to its ground state. The emission

light is measured by measurement devices at the surface of the tissue. Monitoring the

fluorescent markers is able to collect a large amount of functional information. The images

of the absorption coefficient, fluorescent lifetime and the fluorescent yield can be recon-

structed from the measured data and a mathematical model of light propagation [7].

Two processes are required to reconstruct the image of FMT. First, a forward model

is utilized to map the parameters to the measurable data. Second, an inverse problem is

used to calculate the spatial distribution of the optical and fluorescent properties when

the measured data and sources are given. Ntziachristos et al. presented a normalized

Born approximation to reconstruct the distribution of fluorochromes with different

concentrations embedded in the media [8]. In image reconstruction of FMT, the quality

of reconstructed results can be improved with the increasing number of measurement

data. However, the scale of the matrices involved in the reconstruction will become lar-

ger, which may slow down the process of solving the tomographic inverse problem.

Therefore, a new method based on compressed sensing (CS) is proposed in this paper

to tackle such a problem and accelerate the reconstruction process. CS is an innovative

information theory, which is able to recover sparse signals with the under-sampled

measurements [9,10]. Therefore, the CS-based method of FMT is capable of recon-

structing the tomographic images with high speed and low cost from less number of

measurements. This will provide potential benefit for biomedical applications. Besides

the measurements, source is another important factor to determine the efficiency of

the reconstruction. Since the fluorescence molecule is excited to emit the fluorescence

light by the source, the position and number of sources can greatly affect the recon-

structed results. The quality of reconstruction can be improved with the increased

number of sources, which may lead to larger scale of matrix and higher computational

requirements involved in the reconstruction process [11]. In [12], a model-order reduc-

tion approach is proposed for reduction of the system complexity. However, the trans-

formation matrix is needed to be constructed with the Wilson–Yuan–Dickens basis

vectors or the Lanczos basis vectors in the Krylov subspace. Therefore, we propose to

implement the CS-based reconstruction with the grouped sources, which can improve

the efficiency of the reconstruction process. Simulation results demonstrate that our

proposed method can significantly speed up the reconstruction process with high re-

construction accuracy.
Methods
Forward model

In general, light propagation in the near infrared spectral window is well modelled by

the radiative transfer equation (RTE). In order to reduce the computational complexity,

the diffusion equation is employed instead. The diffusion equation is the simplest non-

trivial approximation that results from the P1 approximation to RTE [13]. The diffusion equa-

tion is widely utilized in the modelling of the light propagation in tissue. Mathematically,
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the following diffusion equation depicts the process of excitation light propagation in

the frequency domain [14].

∇⋅ Dx rð Þ∇Φx r;ωð Þ½ �−kx r;ωð ÞΦx r;ωð Þ ¼ −Qx r;ωð Þ ð1Þ

In equation (1), the subscript x denotes the properties at the excitation wavelength;

Dx (r) and kx (r,ω) represent the optical diffusion coefficient and decay coefficient,

respectively; Φx(r, ω) and Qx (r,ω) denote the photon density and excitation light

source, respectively; ∇ represents the gradient operator.

The other diffusion equation, which depicts the generation and propagation of fluo-

rescent light, is of the form:

∇⋅ Dm rð Þ∇Φm r;ωð Þ½ �−km r;ωð ÞΦm r;ωð Þ ¼ −
ϕμaxf rð Þ
1−iωτ rð ÞΦx r;ωð Þ ð2Þ

In equation (2), the subscript m denotes the parameters at the emission wavelength;
i ¼ ffiffiffiffiffiffi
−1

p
; Φm (r,ω) represents the photon density; Other quantities that are included in

equation (2) are the fluorescence lifetime τ(r), the fluorescence quantum efficiency ϕ,

the diffusion coefficients Dm (r), and the decay coefficients km (r,ω). Further, kx,m (r,ω)

and Dx,m (r) can be obtained below:

kx;m r;ωð Þ ¼ μax;mi rð Þ þ μax;mf rð Þ þ iω
cn

ð3Þ

Dx;m rð Þ ¼ 1

3 μax;mi rð Þ þ μax;mf rð Þ þ μ′sx;m rð Þ
h i ð4Þ

where μax,mf (r) are the absorption coefficients due to fluorophore; μax,mi (r) are the
absorption coefficients due to nonfluorescing chromophore; μ′sx;m rð Þ are the isotropic

scattering coefficients, and cn = c/n represents the velocity of light in tissue.

The numerical solutions for the excitation and emission density distributions in

equations (1) and (2) are obtained using the Robin type boundary conditions, which

take the form as follows:

n rð Þ⋅ Dx;m rð Þ∇Φx;m r;ωð Þ� �þ bx;m rð ÞΦx;m r;ωð Þ ¼ 0 on ∂Ω ð5Þ

where n(r) is outward facing normal vector for the boundary ∂Ω, bx,m (r) are the
Robin boundary coefficients at excitation and emission wavelengths, which depend on

the optical refractive index mismatch at the boundary [15].

The forward equations can be computationally implemented using the analytical

methods or the finite element method (FEM). Basically, analytical methods may lead to

inaccurate results due to simplified assumptions of properties or geometry [16]. The

most significant superiority of FEM is versatility. Thus FEM is applicable to inhomogeneous

property distributions and complex geometries. Herein we solve the forward equations with

FEM. To facilitate a finite element solution of the forward equations, the reconstruction

domain Ω is discretized into P elements with N vertex nodes. By means of the basis functions

ψi (i = 1,2,…,N), the solution Φx,m can be represented by Φx;m ¼
XN
i¼1

Φxi;miψi [17]. Hence,

making use of finite element discretization of equations (1) and (2), we can yield the matrix

equation as shown below:
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AxΦx ¼ Qx ð6Þ
AmΦm ¼ Qm ð7Þ

Inverse problem

The inverse problem is to recover the distribution of tissue parameters x with a series

of boundary measurements y as well as several sources. Let us denote the forward operator

by F. Thus, the inverse problem can be represented by:

x ¼ F−1 yð Þ ð8Þ

According to the Taylor series expansion [18], the linear inverse problem can be
expressed by the following matrix form:

Δy ¼ JΔx ð9Þ

where Δx denotes the changes in the optical properties, Δy denotes the residual data
between the predicted and measured data, and J denotes the Jacobian matrix.

Compressed sensing

One important condition of CS is sparsity, which means that either the signal itself or

its representation in an appropriate basis is sparse or compressible [19]. A discrete

signal x ∈ ℝN is said to be r-sparse, if x contains r nonzero entries (r < <N). A discrete

signal x ∈ℝN is said to be r-compressible, if x can be represented by r large coefficients

and other coefficients are small in magnitude. Basically, most medical images have sparse

representations in some orthonormal basis (e.g., wavelet, Fourier). That is:

x ¼ Ψθ ð10Þ
where x is the original image vector, θ is the transformed vector, and Ψ denotes the

orthonormal basis.

A central idea in the CS theory is to acquire the signal x with the projection measurement

vector y ∈ℝM as follows:

y ¼ Φx ð11Þ

where Φ is a measurement matrix with a size of M ×N.
Substituting equation (10) into equation (11), we have:

y ¼ ΦΨθ ð12Þ

According to the CS theory, the sparse solution θ in equation (12) can be obtained
by solving the constrained optimization problem as follows:

min ‖θ‖1 subject to:

y ¼ ΦΨθ ð13Þ

where ‖‖1 denotes l1-norm.
The unknown signal x can be ultimately recovered by equation (10).

Compressed-sensing-based image reconstruction of FMT with grouped sources

For the linearized reconstruction, the perturbation from a homogeneous background

or reference medium is relatively small in volume [20]. Therefore, sparsity can be
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pre-assumed for the linearized tomographic imaging problem. Typically in biological

media, sparsity may be true if a very good reference medium is available. Thus, a

transformation basis such as the Fourier basis can be utilized to reinforce the sparsity of

the solution to equation (9) (i.e., Δx) as follows

Δx ¼ ΨΔ~x ð14Þ

Based on the discussion in the above two sections, the problem of image reconstruction
of FMT under the framework of CS theory can be expressed by:

Δy ¼ JΨΔ~x ð15Þ

According to equation (13), the sparse solution Δ~x in equation (15) can be solved by:

min Δ~xk k1 s.t.:

Δy ¼ JΨΔ~x ð16Þ

To implement CS-based reconstruction of FMT, the reconstruction model is

formulated by:
Figure 1 Schematic of the iteration reconstruction based on the grouped sources. (a) Sources
without grouping, (b) sources of blue group, and (c) sources of red group.
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arg min
Δ~x

E ¼ Δy − JΨΔ~xk k22 þ λ Δ~xk k1 þ αTV ΨΔ~xð Þ ð17Þ

where E is the objective function, ‖‖2 denotes l2-norm, λ denotes the regularization
parameter [21], and α represents the parameter determining the sparsity. Basically, it will be

useful to incorporate a total variation penalty into equation (17), which can be solved via

the nonlinear conjugate-gradient method [22]. After obtaining the sparse solution Δ~x , we

can recover the solution Δx in equation (9) by the transform as equation (14).

As mentioned before, the measurements are generated with the excitation source for

FMT. Therefore, the source placed in different position can provide different informa-

tion to reconstruction. Furthermore, the number of sources can also affect the recon-

struction results. More number of sources will improve quality of reconstruction,

whereas the scale of the Jacobian matrix will increase. Consequently, the computational

burden of the whole reconstruction may increase. Thus, in order to tackle such a problem,

a scheme of grouped sources is proposed to improve a basic CS-based reconstruction of

FMT. In this scheme, the sources are divided into two groups. One group of sources is

employed in the first iteration of inverse problem, and the other group is employed in the

next iteration. Two groups of sources can provide more information for image reconstruc-

tion than only one group of sources, which may improve the quality of reconstruction.

More importantly, in this way, the number of rows in the Jacobian matrix can be reduced

to only one half of that in the Jacobian matrix with all sources. Suppose the number of ver-

tex nodes, sources, and measurements are N, S, and M, respectively. The computational

complexity of solving the forward equations of FMT will be O (N3) + O (N3). Basically,
Figure 2 Simulated phantom for tomographic reconstruction with a single target. Single target with
absorption coefficient μaxf of 0.4mm−1, and the background medium with absorption coefficient μaxf of 0.06mm−1.
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the direct calculation of the Jacobian matrix with all sources needs S × (N + 1) FEM for-

ward calculations. With the scheme of grouped sources, the calculation of the Jacobian

matrix is reduced to only S
2 � N þ 1ð Þ FEM forward calculations. Thus, the computational

requirements for the Jacobian matrix can obviously be reduced using the proposed algo-

rithm. This is helpful for reducing the computational burden of the tomographic inverse

problem. In addition, the iterative reconstructed results from one group of sources will

offer a good initial guess for the next iteration of reconstruction from the other group of

sources. Figure 1 shows the illustration of the grouped sources strategy. In Figure 1(a), the

sources without being grouped are illustrated with black rectangles. Figure 1(b) and (c)

display the two groups of sources with blue rectangles and red rectangles, respectively.

In fact, the solution to the inverse problem can be achieved by minimizing the following

objective function:

J xð Þ ¼ 1
2
y − F xð Þ½ �T y − F xð Þ½ � ð18Þ

where J (x) denotes the objective function measuring the discrepancy between the mea-

sured data y and predicted data F(x) with regards to the forward model. Therefore, the

overall reconstruction algorithm consists of following steps

(1) Set x = x0 with x0 being an initial guess;
Figu
refine
Set m = 0;

(2) if (m%2==0) then
re 3 Prior image used for one-target phantom. The prior image is used to generate the adaptively
d mesh for reconstruction of one-target phantom.



Figure 4 Adaptively refined mesh of tomographic reconstruction for one-target phantom. The
adaptively refined mesh has 122 nodes and 212 elements.
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Compute Δy and J at x with the first group of sources;

else

Compute Δy and J at x with the second group of sources;

end if

Set m =m + 1;

(3) Solve equation (17) with the nonlinear conjugate-gradient method;
Recover Δx using equation (14);

(4) Update x with x = x + Δx;
Calculate the corresponding objective function J (x) by equation (18);

(5) if (J(x) < δ) then
Stop and output x;

else

Return to step (2);

end if
1 Optical properties of one-target phantom

tion light μaxf (mm− 1) μaxi (mm− 1) μ′sx (mm− 1) ϕ τ(ns)

arget 0.4 0.04 5.0 0.3 0.8

kground 0.06 0.04 5.0 0.3 0.8

scent light μamf (mm− 1) μami (mm− 1) μ′sm(mm− 1) ϕ τ(ns)

arget 0.3 0.03 4.0 0.3 0.8

kground 0.006 0.03 4.0 0.3 0.8



Figure 5 Reconstruction results of absorption coefficient μaxf for one-target phantom. (a)
Reconstruction result with 30 measurements, and (b) reconstruction result with 18 measurements.
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Results and discussion
In this section, two simulation experiments were performed to test the efficacy of the

proposed algorithm: image reconstruction of a single fluorescence target, and two

closely spaced fluorescence targets. The synthetic measurement data are generated

from the diffusion equations as equations (1) and (2). In addition, random Gaussian

noise with a signal-to-noise ratio of 10 dB is applied to these synthetic measurement

data to simulate measurement error. The initial guess x0 in this study is set to 5mm−1.
Single fluorescent target

Figure 2 displays the simulated phantom with a single fluorescent target. The phantom

has eight sources and thirty detectors for the measurement.

Implementation of a finite-element simulation needs an appropriate mesh upon

which to simulate the reconstruction results. In order to reduce the computational bur-

den without greatly reducing the image resolution, the mesh used for reconstruction is

refined adaptively using the a priori image displayed in Figure 3. First, the reconstruc-

tion domain is uniformly discretized. Then, the uniform mesh is refined for the areas
Figure 6 Reconstruction results of absorption coefficient μaxf for phantom with a single target.
(a) Reconstruction result based on the traditional method, and (b) reconstruction result based on the
proposed method.



Table 2 Performance comparison of reconstruction methods for phantom with one
target

Methods Our algorithm Traditional method

Computation time (s) 163 217

MSE 4.39 × 10−4 4.79 × 10−4
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with large variations of the pixel values in the a priori image. Whether the mesh needs

to be refined is judged by following formula

D Xð Þ ¼ E X−E Xð Þ½ �2� � ð19Þ

where X denotes the pixel value in the prior image, D denotes the variation of pixel
values in the triangle, and E denotes the expectation operator. The corresponding tri-

angle will be refined when the variation is larger than the assumed threshold. In such a

way, the adaptively refined mesh can be generated. As shown in Figure 4, the adaptively

refined mesh has 122 nodes and 212 elements. The optical properties of the target and

the background with regards to Figure 2 are given in Table 1.

The reconstruction results of μaxf for the single target case from the traditional method

that without using CS are summarized in Figure 5. The tomographic reconstruction with

30 measurements is shown in Figure 5(a), and the reconstruction with 18 measurements

is depicted in Figure 5(b). It is seen that the quality of image reconstruction for the
Figure 7 Simulated phantom for tomographic reconstruction with dual targets. One of the targets
with low absorption coefficient μaxf of 0.3mm−1, the other with high absorption coefficient μaxf of 0.4mm−1,
and the background medium with absorption coefficient μaxf of 0.06mm−1.



Figure 8 Prior image used for two-target phantom. The prior image is used to generate the adaptively
refined mesh for reconstruction of two-target phantom.
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location of target as well as the contrast can be improved with the increasing number of

the measurements, which may lead to higher computational requirements.

The reconstructed absorption distributions for the single target case using the different al-

gorithms are displayed in Figure 6, where Figure 6(a) shows the traditional reconstruction

result with 30 measurements, and Figure 6(b) depicts the reconstruction result based on the

proposed method with 15 measurements. As can be seen, the proposed algorithm can re-

construct the target with enhanced contrast and more accurate shape.

The accuracy of the reconstructions is analyzed quantitatively by computing the

mean square error (MSE) from the distribution of the optical properties for the recon-

structed data sets.

MSE ¼ 1
N

XN
i¼1

xcali −xacti

� �2 ð20Þ

where N represents the total number of nodes in the domain. The superscript cal
denotes the reconstructed results, and act denotes the actual distribution of the op-

tical properties.

The quantitative performance of reconstruction for the one-target phantom in terms

of the two metrics as computation time and MSE is given in Table 2 to further evaluate

the reconstruction quality. Examining this table, we observe that our proposed algo-

rithm can decrease the computation time of reconstruction as compared with the



Figure 9 Adaptively refined mesh of tomographic reconstruction for two-target phantom.
The adaptively refined mesh has 148 nodes and 264 elements.
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traditional method. Furthermore, Table 2 suggests that the proposed method can

provide relatively high reconstruction quality with low computational requirements.

Dual fluorescent targets

The simulated phantom with dual fluorescent targets of different shapes is illustrated

in Figure 7. The source–detector configurations of the two-target phantom are the

same as the single target case.

Figure 8 depicts the prior image, which is introduced to refine the mesh for recon-

struction. Thus, the adaptively refined mesh has 148 nodes and 264 elements as shown

in Figure 9. Table 3 outlines the optical properties of the targets and the background

with regards to Figure 7.

In Figure 10, the reconstructed images of μaxf for the dual targets case with 30 mea-

surements (see Figure 10(a)) and 18 measurements (see Figure 10(b)) are shown. The
Table 3 Optical properties of two-target phantom

Excitation light μaxf (mm− 1) μaxi (mm− 1) μ ′ sx (mm− 1) ϕ τ(ns)

Targets 0.3, 0.4 0.04 5.0 0.3 0.8

Background 0.06 0.04 5.0 0.3 0.8

Fluorescent light μamf (mm− 1) μami (mm− 1) μ ′ sm (mm− 1) ϕ τ(ns)

Targets 0.03, 0.04 0.03 4.0 0.3 0.8

Background 0.004 0.03 4.0 0.3 0.8



Figure 10 Reconstruction results of absorption coefficient μaxf for two-target phantom.
(a) Reconstruction result with 30 measurements, and (b) reconstruction result with 18 measurements.
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reconstructed results in Figure 10 are obtained based on the traditional method that

without using CS. We can also observe that the higher accuracy of locations of the dual

targets and the contrast from the reconstruction result can be achieved with the increa-

sing measurements. On the other hand, the computational burden of reconstruction will

become greater with more measurements.

Figure 11 depict the reconstructed absorption distributions for the dual targets case

using the different algorithms. The traditional reconstruction result with 30 measure-

ments and that based on our method with 15 measurements are shown in Figure 11(a)

and (b), respectively. We can observe that the shape and contour of the reconstructed

targets with the proposed algorithm are better than those with the traditional method.

Note also that the contrast can be improved with the proposed algorithm.

Table 4 lists the performance of reconstructions in terms of the computation time

and MSE for the phantom with dual targets to assess the reconstruction quality. As

can clearly be seen, the computation time and MSE of the reconstruction with our

algorithm are less than those with the traditional method. In other words, for the

dual targets case, our proposed algorithm can also improve the reconstruction speed

with high accuracy.
Figure 11 Reconstruction results of absorption coefficient μaxf for phantom with dual targets.
(a) Reconstruction result based on the traditional method, and (b) reconstruction result based on the
proposed method.



Table 4 Performance comparison of reconstruction methods for phantom with two targets

Methods Our algorithm Traditional method

Computation time (s) 225 288

MSE 2.50 × 10−4 2.82 × 10−4
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Conclusions
In this work, we developed an innovative method based on CS for image reconstruction

of FMT. A scheme of grouped sources is incorporated in the reconstruction process.

In comparison to traditional reconstruction approach, the CS-based reconstruction

algorithm has demonstrated significant advantages as faster speed and high accuracy.

Furthermore, the cost and the amount of measurements for image reconstruction

can be reduced with the CS-based reconstruction algorithm. This can be expected to

have a significant impact on the clinical applications of FMT.
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