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Abstract

Background: Subcutaneous veins localization is usually performed manually by medical
staff to find suitable vein to insert catheter for medication delivery or blood sample
function. The rule of thumb is to find large and straight enough vein for the medication
to flow inside of the selected blood vessel without any obstruction. The problem of
peripheral difficult venous access arises when patient’s veins are not visible due to any
reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc.

Methods: To enhance the visibility of veins, near infrared imaging systems is used to
assist medical staff in veins localization process. Optimum illumination is crucial to
obtain a better image contrast and quality, taking into consideration the limited
power and space on portable imaging systems. In this work a hyperspectral image
quality assessment is done to get the optimum range of illumination for venous
imaging system. A database of hyperspectral images from 80 subjects has been
created and subjects were divided in to four different classes on the basis of their skin
tone. In this paper the results of hyper spectral image analyses are presented in
function of the skin tone of patients. For each patient, four mean images were
constructed by taking mean with a spectral span of 50 nm within near infrared range,
i.e. 750–950 nm. Statistical quality measures were used to analyse these images.

Conclusion: It is concluded that the wavelength range of 800 to 850 nm serve as the
optimum illumination range to get best near infrared venous image quality for each
type of skin tone.

Keywords: Intravenous catheterization, NIR imaging, Illuminants, Subcutaneous veins,
Image quality
Introduction
Hyperspectral and multi spectral imaging are well established systems used for remote

sensing, satellites imaging, agriculture, physics and military applications. Recent years,

these systems grasped attention of researchers in the field of biomedical imaging, espe-

cially where the standard imaging techniques fail to provide the desired outcomes [1].

Hyperspectral sensor captures the spectral information of an entire field of view for

each band (or wavelength) storing the collected information as a data cube which con-

tains spatial information for each wavelength or band, depending on the characteristics

of the system used [2]. Hence, high spectral resolution will provide the ability to

analyze data on wavelength or sub-wavelength scale. Furthermore, it also provides the
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ability to see beyond the visible range in order to acquire more information about the

scene. For the case of skin and veins detection, hyper spectral venous imaging allows to

look deeper below the skin in near infrared (NIR) range to find the best wavelength

range for better contrast between skin and veins. This paper presents the analysis

of hyperspectral data for the pre-selection of wavelength ranges suitable for the

illumination in the process of veins localization.

Intravenous (IV) catheterization is the first and one of the most important steps in

majority of medical treatments. Studies have reported that around 80% of all hospitalized

patients and several outpatients need IV catheterization for blood sampling, medication de-

livery, transfusion and infusion of fluids to the patients [3,4]. The localization of veins is a

tedious process which has to be done by medical practitioners prior to IV catheterization.

Veins are usually localized by sight and/or feelings by pressing (with fingers) the targeted

area of patient’s body, mostly forearm and hand. These methods of veins localization are

approximate, depends on practitioner skills and often fail for the patients whose veins are

neither easily visible nor be localized with feelings. The probability that a patient have

veins non-visibility problem is high for people with dark skin tone, young children (espe-

cially infants), obese and dehydrated patients. The veins non-visibility problem leads to

multiple attempts of catheter insertion which cause unnecessary pain and trauma to the

patients. Studies have reported that failure to first attempt in general population is around

12 to 26% and it is worse in children 24 to 54% [5-7].

There are many devices available to help medical staff to better visualize the non-

visible veins of patients. These devices use one of these techniques: Trans-illumination,

Photo-acoustic, Ultrasound and NIR imaging. All these techniques have different ad-

vantages and drawbacks but NIR imaging is considered the most suitable for veins

localization in catheterization process [8,9]. Indeed, NIR imaging uses non-ionizing

light rays to penetrate deep inside skin tissues to acquire the image of venous structure.

In electromagnetic spectrum, there is a low absorption window within NIR region, in

which light can penetrate deeper inside skin tissues. This is due to the low absorption

spectra of hemoglobin, oxy-hemoglobin and water which are main absorbers of radiations

in skin. The span of this low absorption window is from 750 to 950 nm within NIR region

[10]. Different NIR imaging devices use different wavelength or range of wavelength out

of this low absorption window to illuminate the target site [11-14]. In [8] a NIR imaging

method for subcutaneous veins localization is reported. In this work the illumination

range used was spanning the full NIR low absorption window i.e. 740–950 nm (7 wave-

lengths with 8 LEDs for each). This lighting system can be used on a bench top system

which has no power and space limitation but not suitable for a battery powered portable

systems. In [9] no prior classification of skin is done with respect to skin tones. A mono-

chrome camera with CMOS sensor was used to acquire images. For illumination 6 diffe-

rent wavelengths (740,770,810,840 and 910 nm) were used in 63 different combinations.

No conclusion on final selection of illumination range was made.

This paper discusses the outcome of the analysis done on hyperspectral images for

optimum illumination selection for the four classes of skin tones. A dataset of 80 subjects is

made by scanning the forearm of each subject with a hyperspectral camera setup (detailed

in next section). As the analysis studies the skin tone, the subjects are separated equally into

four different classes based on the luminance measurement of their skin, obtain from a

chromameter. To define optimum ranges suitable for illumination, NIR window is divided
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into four sub-bands (50 nm each) and mean images are formed for each sub-band. These

images are analyzed using mean square error (MSE) and universal image quality index (Q)

to define the best wavelength ranges where the image quality is highest when compared to

the mean reference image.
Hyperspectral image acquisition setup
Hyperspectral imaging approach has been adopted to get deeper understanding of the

effect of illuminants on the skin tissues and veins contrast. The idea was to acquire and to

process hyperspectral images in visible and NIR range. The hyperspectral image acquisi-

tion system is shown in the Figure 1. Specim® Spectral Camera PS V10E has been used; it

has the ability to acquire images in the visible as well as the NIR range i.e. 380 to

1055 nm with a spectral resolution of 2.8 nm which is the width of each band of captured

spectrum. Total number of bands are 1040, which give an average distance of 0.65 nm be-

tween each central wavelength. This camera provides a high spatial and spectral reso-

lution with adjustable field of view to be scanned. We acquired the images of forearm

area of each subject, as the subcutaneous veins of this region are of our interest. Projector

lamps (halogen) with a constant illumination range from 350 to 2500 nm were used to il-

luminate the targeted region. Each acquired hyperspectral image is in the form of cube

with the spatial resolution of 450 × 1310 and 1040 spectral bands. A complete image

of the scene on every single wavelength is acquired and saved in the form of cube (see

Figure 2). This hyperspectral approach allows us to look deeper into the spectral re-

sponse of skin tissues and veins against the wavelength of illumination.

Spectral DAQ software from Specim® was used to set the camera parameters and data

acquisition. The angle for mirror scanner was set in the way that it should scan only

the forearm region of the subject, allowing minimizing the data size of each hyper-

spectral cube for each patient. The scanning time of hyperspectral image for one sub-

ject is about 40s. It depends on the selected scanning range of mirror scanner used with

Specim VNIR Image sensor. Our targeted area was the fore arm region of subject,

hence around 21° of scanning range (which covers the region from elbow to the tip of

subjects fingers) is selected. The distance of mirror scanner is set to be about one meter
Figure 1 Hyperspectral image acquisition setup.



Figure 2 A hyperspectral cube, acquired from the hyperspectral image acquisition setup.

Shahzad et al. BioMedical Engineering OnLine 2014, 13:109 Page 4 of 13
http://www.biomedical-engineering-online.com/content/13/1/109
from the subject’s position. The spectral images acquired are in the form of data cubes

which are saved in environment for visualizing images (ENVI) compatible formats to be

further processed. MATLAB is used to read the raw data cubes using ENVI toolbox.

A total of 80 volunteers were recruited for the data acquisition process. Most of these

volunteers were students having body mass index (BMI) in healthy range .On the basis

of BMI, 51 subjects have classified in healthy range, 7 in underweight, 15 in overweight

and 7 in obese category [15].

Patients having higher BMI are more likely to have non-visible veins; this is due to

deeper veins due to higher proportion of fat in the hypodermis layer of skin [6,16]. The

plot of BMI spread is given in Figure 3.

Skin tone classification
The skin tone is an important factor which affects the veins localization process.

People with darker skin are more likely to be affected with a non-visibility of their

veins . In order to achieve better results of veins viewing in subjects having different

skin tones, we classified the skin into four classes. These classes are: Fair, Light-brown,

Dark-brown and Dark. CIE L*a*b values for each subject were obtained with the help

of chromameter (Konica Minolta Inc.,). Data from three different locations for each
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BMI index: 1-18.4: Under weight , 18.5-24.9: Healthy, 25-29.9: Over weight,
30 and above: Obese  [15].

Figure 3 BMI histogram plot of the 80 subjects in dataset.
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forearm per subject were acquired so as to infer a mean value. The chromometer is

placed on wrist, central and near elbow region of each subject to get three readings.

An average value of luminance (L*) for each subject is then fed into a Fuzzy C-Mean

(FCM) algorithm. FCM is a clustering technique which allows the data to belong to

two or more clusters at the same time. Based on the membership degree, decision

of the parent cluster is made for each data point [17]. As a result, skin tone of each

subject has been classified into one of the four classes. The FCM objective function is

given by Eq.1 as follows:

Jm ¼
XN

i¼1

XC

j¼1
umij kxi − cjjj2; 1 ≤ m < ∞ ð1Þ

Here N is the number of data points, C is the number of clusters, m is any real num-

ber having value greater than 1, xi is the ith data point, uij is the degree of membership

of current data point in the cluster J and cj is the centroid of cluster j.

Figure 4 depicts the classification of skin tone in four different classes using FCM

classifier. The membership function is constructed by applying Gaussian fitting to the

data set. The small bar lines on x-axis show the occurrences of the L* value in data set.

Note at same point on x-axis multiple occurrences can be possible but those are shown

by single bar only. Figure 5 shows the digital colour image (zoomed) of skins that be-

longs to the four different classes (i.e. fair, light brown, dark brown and dark).

Quality analysis of mean images
A mean NIR image (Im) was created for each subject, by taking mean of bands over

a spectral range from 750 - 950 nm. This spans the whole NIR low absorption

window. The low absorption window is the range of wavelength from 750 to 950 nm

in which main absorbers of skin have low absorption coefficient, which allows the

radiations (NIR light) to penetrate deeper in the skin tissues [10]. These mean NIR

images serve as reference images since the contrast per pixel (cpp) for these images is

higher than the mean images obtained in other spectral regions. Moreover, the noise,
Figure 4 Skin tone classification using FCM in to four classes: fair, light brown, dark brown
and dark.



Figure 5 Digital (zoomed) image of four skin classes: a) fair, b) light brown, c) dark brown and
d) dark skin. Images acquired with Canon EOS 500D indoor fluorescent lighting.
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present in each band (of 2 nm) is reduced in the mean image due to its highly random

nature. The idea is to find the optimum illumination range within NIR region. There

are no hard boundaries between bands and the spectrum seems continuous. Four sub-

mean images are created by taking mean of bands in the following ranges:

Im: mean 750-950 nm

Image-1: mean 750-800 nm

Image-2: mean 800-850 nm

Image-3: mean 850-900 nm

Image-4: mean 900-950 nm

From the hyper spectral dataset, 12 subjects from each skin class were selected ran-

domly. With the data from selected subjects, mean reference image called Im and four

sub-mean images, named Image1-4, were created for each subject of all four classes.

Figure 6, Figure 7, Figure 8 and Figure 9 depicts reference images Im and four sub-

mean images for a random subject among each skin class. These sub-mean images

were then analyzed with the reference of mean reference image Im.



Figure 6 Im (reference image) and four sub-mean images for fair skin subject.
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The ultimate users of images are human beings. The most trustworthy way of quality

assessment of images is subjective analysis. It is based on human visual system (HVS).

The mean opinion score (MOS) is measured by the human viewers. However, this

measure is expensive and time consuming [18]. Furthermore, the MOS is severely af-

fected by the image viewing conditions. In this work objective image quality assessment

is chosen due to the following reasons.

1. Human subjects are unable to distinguish between image quality of all sub-mean

images since they look quite similar.

2. Contrast between veins and skin tissues cannot be determined fairly based on the

human visual system.

3. The acquired NIR images are fed to veins detection algorithm which provide an

objective assessment observation.

Objective quality measurement is important for machine vision applications. Mathema-

tical measures are used to measure and compare the image quality w.r.t. reference images.



Figure 7 Im (reference image) and four sub-mean images for light brown skin subject.
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The factors, like mean square error (MSE) and Universal Image Quality Index (Q) are

widely used to calculate the quality of images with a reference image which is considered

the best image of the scene [19]. In this work, these two factors are chosen to find out the

best range of wavelengths on which one can have good quality image.

Both images (Im and sub-mean images) are converted in to 1-D vector before calcu-

lating the MSE. For simplicity of notation, we named reference image Im as ‘x’ and the

sub mean image for which we want to calculate MSE and Q as ‘y’.

MSE ¼ 1
N

XN

i¼1
xi − yið Þ2 ð2Þ

Where ‘N’ is the total number of pixels in both images. Furthermore ’xi’ and ‘yi’ is the

ith pixel in image x and y respectively [20]. Image x is the reference image and Image y

is the one for which we want to calculate the MSE value. The universal image quality



Figure 8 Im (reference image) and four sub-mean images for Dark Brown skin subject.
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index is a measure that is independent of viewing conditions. The range of Q is [−1, 1]
and is defined by the following equation:

Q ¼ σxy
σxσy

� 2�x �y

�xð Þ2 þ �yð Þ2 � 2σxσy
σ2x þ σ2y

ð3Þ

Where �x ¼ 1
N−1

XN

i¼1
xi⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅�y ¼ 1

N−1

XN

i¼1
yi

σ2x ¼
1

N−1

XN

i¼1

xi − �xð Þ2; σ2y ¼
1

N−1

XN

i¼1

yi − �yð Þ2

σxσy ¼ 1
N − 1

XN

i¼1

xi − �xð Þ yi − �yð Þ

There are three components of Q in Eq.3; the first component is the coefficient of
correlation between images, the reference image and the one whose quality factor is



Figure 9 Im (reference image) and four sub-mean images for dark skin subject.
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being measured. With the second component, the relation of luminance of both images

is measured. Third component measures the similarity of contrast of both images.

In Figure 10 the mean value of MSE calculated for four sub-mean images for all 12 sub-

jects of each class is plotted. In this plot it can be observed that the MSE for the sub-mean

image (Image-2), which was formed by taking mean in the range of 800 -850 nm bands,

has the lowest value of MSE for all skin classes. The 4th image (Image-4) which was formed

by taking mean in the range of 900- 950 nm bands has the highest MSE for all skin classes.

The Q factor is plotted in Figure 11. In this plot the value of Q factor is higher for

Image-2 as compared to other 3 images except in case of fair skin. In that case the Q value

for Image-1 is slightly higher than Image-2, but the difference is not that big which can

lead to any conclusive remarks. The overall results are consistent with the MSE values.

Through this work, it is determined that the image (image-2) which was made with

the mean of bands in range 800-850 nm from multispectral data has the best quality.

The measure like MSE, PSNR and universal image quality (Q) is found best for this

range. Keeping in mind the image acquisition setup, it is concluded that the best quality

image is obtained in the spectral range of 800 – 850 nm. These findings will serve the



Figure 10 MSE plot for four sub-mean images of four skin classes.
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basis of optimum illumination selection for a NIR system for subcutaneous veins

localization. For this system, our choice will be the LEDs with a central wavelength

lying within 800-850 nm range. With this optimized illumination it is anticipated that

better quality and high contrast NIR images can be obtained.
Conclusion
Near infrared imaging is proven as a best technique in veins visualization systems. Op-

timized illumination is crucial for the low power, portable and wearable systems. A

hyperspectral analysis has been done in this work to get the best range of illumination

wavelength, for the better image quality and higher contrast. The NIR region is divided
Figure 11 Universal quality factor (Q) plot for four sub-mean images of four skin classes.
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into 4 sub regions and means images were formed from these sub-regions. These mean

images are analysed with objective quality measurement factors like MSE and Universal

Image quality Factor ‘Q’ to define best range for illumination. It has been found that

the range 800 to 850 nm provides best image quality. For Fair skin, the image quality is

slightly better in the range of 750 to 800 nm. For darker skin the overall range consid-

ered suitable is 800 to 850 nm. This infers that if we choose the illumination within this

range, we can have better image quality and higher contrast for venous images.

Future work is to make the prototype system with optimized illumination and com-

pare the results with a system with generalized illumination.
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