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Abstract

The phonetic properties of six Malay vowels are investigated using magnetic resonance
imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory
parameters during speech production. To resolve image blurring due to the tongue
movement during the scanning process, a method based on active contour extraction
is used to track tongue contours. The proposed method efficiently tracks tongue
contours despite the partial blurring of MRI images. Consequently, the articulatory
parameters that are effectively measured as tongue movement is observed, and the
specific shape of the tongue and its position for all six uttered Malay vowels are
determined.
Speech rehabilitation procedure demands some kind of visual perceivable prototype of
speech articulation. To investigate the validity of the measured articulatory parameters
based on acoustic theory of speech production, an acoustic analysis based on the
uttered vowels by subjects has been performed. As the acoustic speech and articulatory
parameters of uttered speech were examined, a correlation between formant frequencies
and articulatory parameters was observed. The experiments reported a positive
correlation between the constriction location of the tongue body and the first formant
frequency, as well as a negative correlation between the constriction location of the
tongue tip and the second formant frequency. The results demonstrate that the
proposed method is an effective tool for the dynamic study of speech production.

Keywords: Vocal tract shape, Articulators’ movements, Malay vowel sounds, Active
contour, Acoustic parameters, Formant frequencies
Introduction
The investigation of articulator shape during speech production can facilitate the

understanding of the mechanisms of speech production. According to the acoustical

theory of speech production [1], understanding speech production requires consider-

ation of the vocal tract as an acoustical tube as its cross-sectional area changes during

the speech production process [2]. Various studies were performed to support this theory

when it was first suggested. From the 1940s to the 1970s, a large number of radiography

experiments were conducted to collect the data that revealed the shape of the vocal tract

during speech production. For subsequent research on acoustic speech production, the

collected data were employed to develop early analog models for articulation. In the
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succeeding decades, continued research coupled with the advent of computers resulted

in remarkable advancements in modeling the articulatory and acoustic processes. In

addition, articulation models have been used to study the more complex aspects of

modeling, such as the three-dimensional shape of the tongue and its movements

[3-10].

Different instruments have been used by researchers to measure the shapes of the

vocal tract and articulators. The X-ray CT method is a powerful tool for this purpose.

As a considerable part of the entire vocal tract length that is observed by X-ray CT

imaging, 3D information that indicates the shape of the vocal tract, as well as tongue

shape and movement pattern, is obtainable [11]. Nevertheless, this method presents

certain drawbacks that decrease the use of such a system including the harmful effects

on humans in relation to the X-ray imaging instrument. Dynamic data on tongue

movement in the oral cavity can be provided by an X-ray micro beam and electromagnetic

articulography [12,13], which are categorized as point tracking tools. Ultrasound scanners

can supply dynamic images of moving structures in the oral cavity, such as the tongue

surface in both midsagittal and transverse planes [14,15]. Nevertheless, ultrasound trans-

mission properties limit the use of such devices to mapping anterior airway surfaces.

The disadvantages of using the aforementioned methods motivate us to employ the

MRI system in this study. One of the most significant points concerning MRI for

non-medical purposes is its ability to provide images similar to those obtained by X-ray

CT but without any side effects from radiation. MRI is unconstrained by the positioning

of a subject in obtaining images of different directions and angles. Images of each slice of

the vocal tract are obtainable with an acceptable quality for speech production study.

Many researches have been done on dynamic or static study of vocal tract based on

MRI. Technology development in magnetic resonance imaging has made investigation

of articulators during speech production feasible. Real-time MRI for speech production

has been studied in different languages [16-18] such as French [19], German [20],

Swedish [21], European Portuguese [22,23], Finnish [24], Czech [25] and Japanese [26].

In Malay language, however, no research has been performed on this matter. Here,

dynamic study of prolonged Malay vowels is performed. Investigating the production of

Malay vowels would be helpful in diagnosing articulation disorders. In particular, the

data such as this could be useful as a standard vowel pronunciation of normal people

which can be compared with other data to determine any disorder in this matter.

K-space in acquisition techniques including partial Fourier or spiral acquisition

method is frequently used for increasing the temporal MR resolution [16,27,28].

Information provided by different vocal tract measurement techniques has been

used in developing some kinds of biomechanical simulation tools for simulating

the movements of the muscles in vocal tract [29,30]. The simulation tool [31] has

been employed in some further studies to determine the functions of vocal tract

organs [32-35].

However blurring of some parts of the acquired image is still a drawback for this

technology because during the scanning time the subject needs to remain to be stationary

(see [36,37] for the challenges in MRI study of articulation). As a remedy for the blurring

problem, in some studies, a stroboscopic method is employed to recapture some images

for the same speech in different periods in order to produce a reliable MR sequence [38].

However, some limitations for this method are apparent. For example, the speaker needs
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to repeat the utterances several times. Not all mistakes by the speakers can be avoided

since exact repetition is not possible. In other words, a main bottleneck for this research

is that many effective factors during articulation change from one speaker to another,

which is referred to as interspeaker variability [39]. This variability can be categorized as

anatomical and psychological features [28,40-42]. In addition, in Malay language no study

of speech production based on dynamic MRI has been done so far. Consequently,

this study is considered a pioneer in the framework of the dynamic study of speech

articulation in Malay language based on MRI.

MRI however presents certain disadvantages, such as the duration of the scanning

process. Sometimes scanning takes several minutes, which can be tedious for subject.

In the study of the pronunciation of phonemes, the subject is required to utter the

speech sound several times [43], which can be strenuous. Additionally, because of partial

blurring, the images obtained by MRI are sometimes of unacceptable quality. Another

drawback of MRI is the low image contrast between tissues with low hydrogen content

and airways. Consequently, segmenting the scanned image to determine the regions

occupied by airways (such as the oral cavity) can result in errors [44]. In MRI, the

quality of the object in an image depends on the thickness of the scanned tissue.

Usually, MRI provides clear and undistorted images from the object with the thickness of

at least 3 mm. Moreover, the loud sound produced by the gradient coils during scanning

interferes with the voice of subject during the recording process. Despite these drawbacks,

an MRI system provides valuable information on the vocal tract shape that is formed as

subject’s uttered speech. To address the image-blurring problem during the scanning

process, this study proposes image processing techniques including active contours for

the use of MRI in studying articulation. The results indicate that these techniques enable

the measurement of articulation parameters efficiently.

Research was previously conducted using a 3D reconstruction of the vocal tract (from

MR images) for speech simulation [27]. The study employed the region growing

method to obtain axial slices from the vocal tract. However, as slices of the vocal tract

are obtained, the tongue performs several partial movements as the subject pronounces

a phoneme and it is difficult to stay absolutely still for a prolonged time. Consequently,

scanned images of certain regions on the tongue boundaries may be of insufficient

quality given that even minor tongue movement blurs the scanned images. Thus, the

accuracy of evaluating the vocal tract slices by region growing techniques decreases. As

a remedy, researchers have suggested the use of human operators to trace the boundaries

of the oral cavity and region growing methods that require the determination of the initial

seeds in the growing regions [45]. Most of the relevant methods mentioned in literature

[22,40,43,46-48] are semi-automatic and consequently require human intervention,

making the process tiresome for specialists, and therefore, prone to error. In this paper,

we employ an active contour that focuses on the tongue tracking. By determining the

number of control points of the active contour with an automated method, we control its

degree of freedom, thereby enabling a smooth and relatively accurate evaluation of the

tongue boundary even when this boundary is partially blurred in MR images.

Active contours, or “snakes”, are mathematical models that define deformable curves

on the image domain. These methods, categorized as deformable models, are of special

interest for medical image segmentation [23,47,49]. In this framework, internal and exter-

nal forces influence the deformation of the curves. Internal forces are dynamically defined
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and computed from the curve characteristics, and external forces are obtained mostly

from the image in which the active contour is applied.

According to the literature, active contours are divided into two categories: geometric

[50-55] and parametric active contours [56,57]. Kass et al. in 1987 were the first to

attempt the development of an active contour based on the energy minimization of

splines and external constraints, including the energies defined by the image edges that

deform curves. To smoothen the curves, the authors defined an internal energy based

on curvature. However, the weak points of their active contour model, including sensitiv-

ity in the selection of initial points and its inability to track non-convex objects, motivated

modifications to their model.

Williams and Shah in [57] introduced the greedy snake algorithm. They employed a

fully discrete method to compute the movement of the snake. For this purpose, the

neighborhood pixels of each snake point were used to identify the minimum energy

obtainable for the movement. Furthermore, an efficient method for evaluating the

curvature of discrete curves was employed.

In our experiments to investigate tongue shape and movement, the materials we

considered include the pronunciation of a preselected set of Malay vowels. To this end,

our subjects were made to lie on an MRI scanner were asked to pronounce the Malay

vowels. The mouth region of the head, including the oral cavity, tongue, and lips, was

examined during the experiments. The active contour employed in this approach

required tracking the tongue in the MRI frames. To prevent lengthy computations of

more sophisticated active contour algorithms, the greedy active contour model was

employed. Image preprocessing techniques including morphological filtering were

applied to MR images to ensure effective performance despite partial image blurring.
Methods
MRI scanning parameters and image acquisition protocol

Medical ethic approval was obtained from University of Malaya Medical Center (UMMC)

before conducting the experiments. The MR images for this study were obtained using

a General Electric SignaHDX 1.5 Tesla scanner. T1-weighted sagittal MRI data on two

subjects (one male and one female) for six different Malay vowels were acquired using

the imaging protocol described in Table 1 and anatomical information of subjects are

summarized in Table 2. Such information can help readers to compare the data in the

current work with other data sets. Moreover, information on the physical dimensions
Table 1 MR parameters for vocal tract image acquisition

MODE MR Echo, using 8 channel cardiac coil

TE 4.5 ms

TR 65 ms

ETL (echo train length) 18ms

Flip angle 70 degree

FOV 36 cm

Matrix 256 × 256 pixels

Resolution 1.057 pixels/mm

Slice thickness 7 mm



Table 2 Anatomical information of subjects

Subject

Male Female

Age 27 25

Height 167 cm 151 cm

Weight 64 Kg 52 Kg

Head circumference 56.5 cm 55.5 cm

Neck circumference 32 cm 30 cm
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of a subject enables clear envisioning of an individual’s body structure. The scanning

protocol employed in this study was adopted to pre-synchronization technique which

automatically triggered the scanner based on heartbeat of the subject [43]. Meanwhile the

subjects used headphones to listen to the operator’s commands and their heartbeats for

synchronizing their articulation with their measured cardiac. The subject started their

speech after receiving the command from the operator and at the same time of hearing

their heartbeat. They continued to articulation until hearing their 6th heartbeat. Then

they inhaled and waited for the next command from the operator. This procedure was re-

peated for 6 times to ensure having enough MRI frames. As the triggering was performed

based on the heartbeats of the subjects and the subjects attempted to make their

utterances synchronic with their heartbeats, the utterances were synchronized with

the scanning process. Consequently, MRI frames from several periods of articulation

were provided from each vowel.

To reduce image blurring during image acquisition, the subjects were required to

maintain vocal tract shape (i.e., hold the mouth position constant for a certain period)

as they pronounced the vowels. Prior to the scanning, the subjects performed phonation

practice. Some assumptions were made on the basis of a scanning protocol, described as

follows. To reduce the intensity of the sounds heard by the subjects during the imaging

process, the subjects were asked to use earplugs.

Afterwards, they were positioned on the MRI table in a comfortable state. Pieces of

cloth were placed under their heads to limit their head movement to a minimum. We

positioned the heads of the subjects in the center of the magnet. As the experimental

condition that must be taken to the consideration is the head, particularly the upper

jaw of the subject, it should not move during the experiments. Prior to each image

acquisition session, a sagittal localizer was used to provide an appropriate field of view

for the scanning location. Subject utterances during the scanning were recorded but

due to the noise of the environment, the recordings were not reliable.

Speech corpus

To conduct a dynamic study of vowel production, we asked the subjects to pronounce

several repetitions of six prolonged Malay vowel sequences (/a/, /e/, /ә/, /i/, /o/ and /u/)

during the scanning process. In addition to the MRI scanning process, for acoustical

analysis of the speeches, the subjects were asked to pronounce the same Malay

vowels for 5 s each at a comfortable pitch and loudness level. The speech sounds

were recorded using a Shure SM58 microphone in a regular room environment. The

mouth-to-microphone distance was fixed at 2–3 cm. Gold-Wave digital audio editor

software was used to record the speech sounds at a sampling rate of 20 kHz with 16-bit
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resolution. There was no co-articulation either in the recording speech nor in MRI

scanning process. To date, no dynamic MRI-based study has been performed on the

production of prolong Malay vowels.
Formant frequencies extraction

Besides MRI data for the study of the articulatory parameters, the Praat software was

used to determine formant frequencies of the prolonged vowels of the subjects [58]

based on the recordings. The following standard formant settings were used: 5500 Hz of

maximum formant frequency for female and 5000 Hz for male subjects, five for-

mants, 25 milliseconds of window length, and a dynamic range of 30 dB. There were

two possibilities for extracting formant frequencies using Praat, namely, Praat manual ex-

traction as well as the extraction of automatic formant frequencies using Praat scripting.

In this study, the formant frequencies were obtained using the automatic method, and the

average values were used instead of the middle point value; this decreased the possible

error of the Praat calculation of formants because instead of one point for each sample,

several points were extracted from each sample and then the average was calculated. The

number of points used for each sample depended on the sample length, and it was equal

to the length of the sample divided by the length of the window frame (25 milliseconds).
Instrumentation and data collection

In a large number of MRI studies [27,43,45,59], authors dismiss the focus on the contour

extraction of MRI frames. The reason can be an implicit assumption that high-resolution

MR images with acceptable contrast and quality are collected. Consequently, image

processing software extracts contours for the quantitative investigation of articulatory

parameters. In general, however, this supposition does not hold. As the tongue moves

during imaging, blurring is unavoidable. Under these circumstances, the extraction of

tongue contours in advance is a challenging task.

Numerous methods are used to enhance acquisition of MR image sequences and

appropriate trigger systems have been proposed. In clinical practice, however, the trigger-

ing method based on electrocardiogram monitoring is performed in some studies [43,59].

To increase the temporal resolution for real-time imaging, researchers put forward some

other techniques [16,27,28]. In these methods, images are acquired at different speeds on

the basis of ultrafast imaging sequences. Multiple echoes during the imaging process are

employed. However, because of partial motion of subject during scanning process motion

artifacts are observed in the yielded images.

To resolve blurring in MR images, we propose an active contour-based method for

extracting tongue contours in MRI frames. By determining the control points of active

contours, the tongue contours can be traced even when the tongue is partially blurred.

If the blurring is not severe, the traced contours are reliable for the experiments.

Otherwise, the blurred frames are ignored and other frames are used for analysis.
Active contour

Kass et al. [56] were the first to develop a framework in which a deformable snake

moves toward an object as a result of constraint forces imposed via an energy

minimization strategy. The term “snake” arises from the way that the active contour
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moves to minimize energy. By applying some modifications to the active contour

model of Kass et al. including the use of a fully discrete method for the snake movement,

Williams and Shah [57] created the greedy snake algorithm. In this model, for each point

located in the neighborhood of a snake control point v(si), three energy terms were

computed. Afterwards, the combined energy was obtained by the summation of the

three energies as follows:

Ecomb x; yð Þ ¼ α sið ÞEela x; yð Þ þ β sið ÞEcurv x; yð Þ þ γ sið ÞEimg x; yð Þ ð1Þ

where Eela(x, y) denotes the elasticity energy, Ecurv(x, y) stands for the curvature energy,

Eimg(x, y) is the image energy, and (x, y) are the indices to the pixels in the neighborhood,

where

v sð Þ ¼ x sð Þ
y sð Þ

� �
ð2Þ

The elasticity energy is obtainable by the following formula:
Eela x; yð Þ ¼ �d− v sið Þ−v si−1ð Þk k ¼ �d−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x sið Þ−x si−1ð Þð Þ2 þ y sið Þ−y si−1ð Þð Þ2

q
ð3Þ

Where �d denotes the average distance between all the points in the snake. The curvature

energy for the neighborhood is

v siþ1ð Þ−2v sið Þ þ v si−1ð Þk k2 ð4Þ

The last term in Equation (1), Eimg(x, y), indicates the effect of energy on the processed

image; this energy forces the snake points to be attracted to the object of interest. This

term is computed thus:

Eimg ¼ − ∇ Gσ x; yð Þ � I x; yð Þ½ �k k2 ð5Þ

where Gσ(x, y) stands for a two-dimensional Gaussian blurring filter with a standard
deviation of σ. The filter is used to blur the image gradient, thereby influencing the

snake by the image gradient from a larger distance.

Finally, the stopping criterion for the snake movement depends on the minimum

number of points moving in each stage, as well as the maximum number of iterations

allowed for the snake. The stopping criterion is given as follows:

v sð Þt−v sð Þt−1�� ��
n

< thstop ð6Þ

where vector v(s)t contains the indices to the snake points at time step t and v(s)t − 1
contains the snake points at time step t - 1. n and thstop denote the total number of

control points in the snake and a threshold for the stopping criterion [60].

Tongue properties from an articulatory perspective

As mentioned, the upper boundary of the tongue is critical for producing vowel sounds.

As a result, the active contour aims at tracking the upper boundary of the tongue. For

this purpose, some preprocessing steps such as dilation and erosion operations are

performed to obtain the initial points for the active contour. The initial points of the

active contour employed in this study are divided into two groups: upper initial points

and lower initial points.
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Obtaining initial points for the active contour

The upper initial points are obtained from the oral cavity because the tongue movements

are restricted to the oral cavity region. Figure 1(a) presents one of the investigated MRI

frames. Given that the initial points of the active contour are the same for all the frames,

a frame containing the largest oral cavity is more appropriate for our purpose as it results

in initial points with highest distance. Under this circumstance morphological operation

can extract the oral cavity more efficiently and certainly morphological filtering does not

remove a part of oral cavity as a redundant segment.

Oral cavities appear in MRI frames as dark regions; thus, by applying a threshold near

the zero level, they are discriminated from the other parts of the images. Determining

an appropriate value for the threshold can be accomplished by a human operator as well as

by a histogram-based algorithm. The threshold determined for this step of preprocessing

(thI) is obtained as follows:

0:06: IMmax−IMminð Þ þ IMmin ¼ thI ð8Þ

After discriminating the oral cavity, performing a number of morphological operations
including opening operation with disc-shaped structure element can help provide a
Figure 1 (a) One of the MRI frames of male subject investigated in this study; (b) the cavities
obtained after the preprocessing operations; (c) a shape obtained from the oral cavity to provide
the initial points of the active contour; and (d) the initial points of the active contour (lower in red
and upper in yellow).
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smooth area that is representative of the tongue location. The upper boundary of the oral

cavity is also obtained in the preprocessing step.

Figure 1(c) presents the part including the oral cavity and the upper part of the

tongue, that are obtained from the morphological operations. The shape in Figure 1(c)

has been obtained by applying the threshold on Figure 1(a), followed by applying the

closing operation with a spherical structure element on the corresponding segment in

Figure 1(b). The initial points of the active contour are selected from the boundary of

the obtained shape as shown in Figure 1(d). The lower initial points of the active

contour are immovable (fixed points) because lower boundary of the tongue are obtained

by some preprocessing rather than using the active contour. As a result, the points are

selected from the lower boundary of the shape obtained in the previous step.

In addition to the contours of oral cavity region, other contours of the image are

provided by applying threshold (computed by Equation 8) to the image, followed by

segmentation using connected component operations and employing morphological

filtering. In particular, after applying threshold, a binary image containing a large num-

ber of segments is obtained. Some of the redundant segments are filtered out based on

their size and their proximity to the segment of the jaws. Dilation of the jaws segment

with a certain size of a disc-shaped structure element can help in finding these seg-

ments. Following the removal of the redundant segments, contours of the segments are

obtained by using morphological operations. In particular, a subtraction of dilated seg-

ments from their eroded version results in contours of the segments (Figure 2).
Figure 2 A sample of MRI frame of male subject. The contours provided by the proposed method. The
blue contours have been provided from the active contour while the white contours obtained
from preprocessing.
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Results
Under the aforementioned protocols, a variable number of MR images were acquired

from the subjects as they produced the vowel sounds. Therefore, the dynamic study of

vowel production is feasible. The average frame rate obtained by this method was 5

frames/second. The resolution of each frame was 1.057 pixels/mm. The active contour

parameters α, β, γ, σ, maximum iteration, and thstop employed to obtain the contours

were 1.2, 1 and 5.2, 5, 200, and n
10, respectively. The values of the active contour parameters

were obtained by a manual trial and error experiment on one frame from a male subject.

Afterward, these parameters were used for the whole of the experiments. According to the

examples of acquired MR images, which are shown in Figure 3, a low contrast region of

tongue can be extracted properly by using the proposed segmentation method.

Figure 3 shows the tongue and oral cavity contours obtained by the proposed

method. It is possible to measure quantitatively the articulatory parameters as shown in

Figure 3. For the production of each vowel, the tongue moves to form the appropriate

shape in the oral cavity. The shape of the tongue after its movement was observed and

measured to create a baseline for articulation disorder studies. Figure 4 presents the

plots of tongue contour coordination during the production of each vowel.

To investigate the movement of the tongue during vowel articulation, the average

of extracted contours for different frames was computed for each individual vowel.

Figure 5 presents the effect of tongue movement during articulation of Malay vowels.

The blurred parts represent the tongue contour movement while the bright white

parts belong to unmovable contours.
Figure 3 Samples of low and high contrast MR frames and the contours obtained by the
proposed method.



Figure 4 The tongue contours after the production of each vowel and positioning of the tongue in
a steady state.
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At first glance it is observable that the highest area of oral cavity is obtainable while

pronouncing vowel /a/. Comparing the tongue structure while pronouncing the vowel

/a/ and /ә/ a tongue tip and tongue body raising in vowel /ә/ is observable. In contrast,

a back raising of tongue is shown for articulation of vowel /e/ in comparison with /a/

and /ә/. Front raising of tongue in vowel /i/ is considerable. Tongue shape in vowel /o/
Figure 5 Tongue movement effect in different vowels.



Table 3 Articulatory parameters obtained in this study

Vowel Gender Articulatory parameter
Measurement (mm) of articulatory parameters by frame number

Mean STD Variance
1 2 3 4 5 6 7

a

M

TTCL 19.47 21.57 25.25 28.67 27.88 24.73 20.78 24.05 3.5528 12.6226

TBCL 9.47 13.42 11.84 12.63 5.26 12.1 10.26 10.7114 2.7593 7.6137

LA 11.31 12.63 12.1 12.36 11.31 12.63 11.84 12.0257 0.5637 0.3178

F

TTCL 17.01 25.42 27.7 30.5 29.1 27.35 24.37 25.9214 4.4411 19.7238

TBCL 6.66 8.24 10.69 12.27 10.34 12.27 8.06 9.79 2.1835 4.7676

LA 4.91 8.76 13.32 15.42 10.86 12.09 5.08 10.0629 4.0235 16.1885

e

M

TTCL 11.57 12.63 13.68 14.73 16.05 14.47 13.15 13.7543 1.4799 2.1901

TBCL 8.21 9.79 8.47 11.36 11.1 7.94 10.05 9.56 1.3868 1.9233

LA 9.73 11.57 11.31 11.05 13.42 12.1 12.1 11.6114 1.1325 1.2826

F

TTCL 13.6 19.03 21.13 23.23 27.09 22.88 20.78 21.1057 4.1678 17.3706

TBCL 7.23 6.88 7.75 8.63 8.98 7.75 8.63 7.9786 0.7877 0.6205

LA 1.58 5.08 10.34 11.74 13.84 12.97 12.97 9.7886 4.6605 21.7201

ә

M

TTCL 12.31 15.47 19.68 21.52 25.47 23.63 20.73 19.83 4.5734 20.9164

TBCL 6.09 4.51 7.93 9.25 10.56 9.25 11.88 8.4957 2.5445 6.4743

LA 6.58 6.84 6.58 8.15 7.1 7.89 9.47 7.5157 1.06 1.1237

F

TTCL 13.67 21.38 23.48 25.76 30.67 25.06 22.6 23.2314 5.1701 26.7298

TBCL 3.33 5.96 5.78 5.96 7.01 5.96 6.13 5.7329 1.1343 1.2866

LA 3.86 11.74 10.34 8.76 12.27 7.71 10.51 9.3129 2.879 8.2887

i

M

TTCL 6.31 5.52 6.05 6.05 6.84 6.84 8.15 6.5371 0.851 0.7243

TBCL 1.84 2.37 3.16 4.21 5.79 3.68 1.84 3.27 1.4326 2.0523

LA 6.84 5.26 6.84 8.94 7.1 6.05 7.89 6.9886 1.1935 1.4243

F
TTCL 15.77 16.3 20.33 15.77 16.82 18.05 11.74 16.3971 2.6097 6.8105

TBCL 1.05 1.58 2.1 2.28 1.93 1.4 1.23 1.6529 0.4622 0.2136
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Table 3 Articulatory parameters obtained in this study (Continued)

LA 10.51 12.44 0.18 10.69 1.75 12.09 12.79 8.6357 5.3277 28.3847

o

M

TTCL 14.21 24.46 31.83 29.99 23.15 12.63 11.05 21.0457 8.4642 71.642

TBCL 5.67 10.14 8.04 8.04 8.3 4.36 8.3 7.55 1.9159 3.6706

LA 4.74 6.31 4.47 5.79 6.31 4.74 4.47 5.2614 0.8441 0.7125

F

TTCL 22.25 24.36 25.58 27.69 30.67 29.09 26.99 26.6614 2.8595 8.1765

TBCL 5.71 5.53 7.46 6.94 6.24 6.94 7.99 6.6871 0.9052 0.8194

LA 11.74 3.5 11.92 11.92 12.97 11.04 8.94 10.29 3.2426 10.5146

u/

M

TTCL 15.26 24.73 26.04 28.94 26.04 24.73 16.84 23.2257 5.1194 26.2082

TBCL 4.74 4.74 3.16 4.74 3.95 4.74 3.16 4.1757 0.7514 0.5647

LA 3.68 1.84 2.1 3.16 2.63 4.47 6.05 3.4186 1.4729 2.1696

F

TTCL 18.92 21.55 28.04 29.61 31.19 28.56 25.06 26.1329 4.4976 20.2287

TBCL 3.68 2.45 2.98 1.93 8.41 2.8 3.86 3.73 2.169 4.7046

LA 2.98 1.75 1.93 2.45 8.76 1.75 1.75 3.0529 2.5591 6.5489
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and /u/ is quite similar and both of the vowels show a considerable tongue back raising

but the observable difference is the lip aperture which is higher in vowel /o/. As a

summary back raising in vowels /o/, /u/, and /e/ are dominant while front raising in

/i/ and /ә/ are dominant.

In addition to the tongue shape for each vowel, three common articulation parameters

were measured [43,59]:

1. Tongue tip constriction location (TTCL),

2. Tongue body constriction location (TBCL), and

3. Lip aperture (LA; distance between the upper and lower lips).

The measurements are done with the coordinate system based on the palatal plane

which is an anatomical standard plane in the midsagittal slice and can be drawn based

on a line from the anterior nasal spine to the posterior nasal spine.

Table 3 presents the speech articulation parameters measured in this study. To

perform a comparative study of the tongue position for the articulation of different

Malay vowels, the TTCL and TBCL were measured. Figure 6 shows the measurement

of the articulatory parameters.

As expected from the standard IPA table, the TTCL and TBCL can provide information

on the tongue position in the mouth given the shape of the palate [61]. For the vowels /i/

and /ә/, for which the tongue is positioned in front of the mouth (close to the teeth)

during production, TTCL is lowest. The same holds for the TBCL. For the vowels /o/

and /u/, the tongue moves to the back of the oral cavity, which results in the highest
Figure 6 Understanding the articulatory parameters TTCL, TBCL, and LA.



Figure 7 The three articulatory parameters are (a) TTCL, (b) TBCL, and (c) LA. The bar shows the
average value of the articulatory parameters of each vowel, measured from the seven consecutive
MR frames.
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amount of TTCL because the tongue tip is positioned in the middle of the oral cavity.

Consequently, it has the largest distance to the palate. Figure 7 illustrates the value of

the measured articulatory parameters TTCL, TBCL, and LA of the male and female

subjects for the different Malay vowels.
Discussion
As Figure 7(a) shows, the TTCL values of vowels /i/ and /ә/ are the lowest compared

to those of the other vowels because they are front vowels and the TTCL parameter

must be lower for the back vowels. Conversely, the back vowels /o/ and /a/ have the

highest TTCL.

In addition, Figure 7(b) presents the TBCL, which represents the height of the tongue

in the articulation of different vowels. Given that /i/ is a high vowel, the value of the

TBCL is at its lowest, while the vowel /a/, which is a low vowel, has the highest TBCL.

Moreover, Figure 7(c) presents the LA value, which represents the lip aperture for the

different vowels. The highest LA value is generated for vowel /a/ while the lowest is

observed for vowel /u/. This result is attributed to the requirements in which the lips

should be completely open when the vowel /a/ is articulated, but should be closer together

when the vowel /u/ is produced.

Among the most significant parameters in speech analysis are formant frequencies,

which have a crucial function in speech diagnosis and therapy applications. The relation-

ship between the articulatory parameters obtained using MRI and formant frequencies

has been studied [62]. The first formant frequency (F1) corresponds to vowel openness

(vowel height). TBCL represents the height of the tongue. Thus, the TBCL value is related

to F1. Our hypothesis on the direct positive correlation between F1 and TBCL is sup-

ported by the experimental results and the subjects’ formant frequencies, which are

extracted from their voices. This hypothesis is also supported by Figure 8. The second

formant frequency (F2) corresponds to the front vowels. The back vowels have low F2

frequencies, whereas the front vowels have high F2 frequencies. The back vowels have
Figure 8 Correlation between F1 and TBCL.



Figure 9 Correlation between F2 and TTCL.
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a high TTCL, whereas the front vowels have a low TTCL. Thus, we hypothesize that

TTCL has a negative or indirect correlation with F2. This hypothesis is supported by

the values of the subjects’ second formant frequencies, which are extracted from their

voices. Figure 9 also shows the correlation between TTCL and F2, as well as that

between TBCL and F1. The detail of the first and second formant frequencies are

shown in Table 4.
Conclusion
In the study of speech articulation, MRI imaging yields helpful and precise information

on the shape of articulators, as well as their position during speech production. Moreover,

their dynamics can be appropriately investigated for the study of their temporal functions

during articulation. However, the movement of articulators is an issue that demands

higher temporal imaging resolution for a more accurate quantification. In this study, a

proposed approach for this problem has been examined based on an image processing

technique that uses active contours. After applying preprocessing methods to the MR im-

ages, we obtained the initial points for the active contours. Afterwards, the active contour

was applied to the MRI frames. Consequently, the tongue contour was appropriately

traced for the study of speech articulation parameters.
Table 4 Formant Frequency values with STD

Vowel F1 male F1 female F2 male F2 female

a 420.48 ± 13.57 767.95 ± 12.25 1231.05 ± 25.17 1562.41 ± 27.54

e 358.12 ± 6.03 692.99 ± 7.03 1578.04 ± 24.33 2059.27 ± 22.54

ә 333.12 ± 2.72 654.43 ± 2.34 1324.39 ± 50.29 1711.98 ± 48.65

i 228.99 ± 0.60 490.61 ± 0.04 1738.69 ± 4.63 2624.81 ± 4.21

o 371.59 ± 5.26 620.58 ± 5.65 918.09 ± 2.03 1245.83 ± 2.38

u 326.49 ± 5.21 502.72 ± 4.86 754.98 ± 25.44 1157.55 ± 23.76
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In the experiments, six Malay vowels were produced by the male and female subjects,

and the articulatory parameters were measured using the proposed algorithm. The

specific tongue shape and position for all the six Malay vowels were also obtained. The

experiments demonstrated the correlations between acoustic speech and articulatory

parameters. Specifically, the first formant frequency (F1) was positively correlated to

TBCL, whereas the second formant frequency (F2) was negatively correlated to TTCL.

The observations during this study can be helpful for researches regarding speech

synthesis techniques. Furthermore, it can improve understanding of speech articulation

in Malay language which can be useful for clinical usages of diagnosis of speech disorders

and speech rehabilitation procedures.
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