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Abstract

Background: Muscle fiber orientation (MFO) is an important parameter related to
musculoskeletal functions. The traditional manual method for MFO estimation in
sonograms was labor-intensive. The automatic methods proposed in recent years
also involved voting procedures which were computationally expensive.

Methods: In this paper, we proposed a new framework to efficiently estimate MFO
in sonograms. We firstly employed Multi-scale Vessel Enhancement Filtering (MVEF)
to enhance fascicles in the sonograms and then the enhanced images were
binarized. Finally, line-shaped patterns in the binary map were detected one by one,
according to their shape properties. Specifically speaking, for the long-and-thinner
regions, the orientation of the targeted muscle fibre was directly computed, without
voting procedures, as the orientation of the ellipse that had the same normalized
second central moments as the region. For other cases, the Hough voting procedure
might be employed for orientation estimation. The performance of the algorithm
was evaluated using four various group of sonograms, which are a dataset used in
previous reports, 33 sonograms of gastrocnemius from 11 young healthy subjects,
one sonogram sequence including 200 frames from a subject and 256 frames from
an aged subject with cerebral infarction respectively.

Results: It was demonstrated in the experiments that measurements of the
proposed method agreed well with those of the manual method and achieved
much more efficiency than the previous Re-voting Hough Transform (RVHT)
algorithm.

Conclusions: Results of the experiments suggested that, without compromising the
accuracy, in the proposed framework the previous orientation estimation algorithm
was accelerated by reduction of its dependence on voting procedures.

Keywords: Ultrasound, Muscle, Hough transform, Orientation, Line detection, Image
segmentation
Background
Ultrasonography is being widely used as a clinical and research tool for dynamic studies

of the muscle during contraction and relaxation, since it’s real-time, widely available,

radiation-free and low-cost. Muscle architectural characteristics, such as pennation angle

or fiber orientation [1-8], fascicle length [1,2,9-12], fascicle curvature [13-16] and muscle

thickness [9,17-21], can be extracted from ultrasonography to evaluate the muscle
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function and activity. And changes of these architectural parameters over the time can

form quantitative observations of muscle behavior under contraction.

Since orientation of muscle fiber or aponeuroses is often computed first and then

acted as basis of the estimation of muscle fiber length during morphological studies of

skeletal muscles [22-24], an efficient realization of automatic measurement of muscle

fiber orientation (MFO) would also contribute to the estimation of muscle fiber length

which is a significant measure of muscle properties.

Traditionally, the fibers and their orientations in musculoskeletal sonograms were

detected manually by drawing lines using NIH image software (National Institutes of

Health, Bethesda, MD, USA) (for example, [9,25,26]). Being labor-intensive, the manual

method affected the real-time and quantitative observations on muscle behaviors.

Therefore, recently the method for automatic estimation of fiber orientation in muscu-

loskeletal sonograms had drawn some attentions [3-8]. Although some methods have

been developed to extract curve features of muscle fiber [12,27], the detection of line-

shaped patterns in musculoskeletal sonograms, as key step of pennation angle estima-

tion, is still of great interests to the field [9,28-30].

However, automatic methods previously reported were all build on the voting proce-

dures using either Hough [3,5] or Radon [6,7] transform which are computationally ex-

pensive. For example, in a previous study, we proposed the Re-voting Hough

Transform (RVHT) algorithm to realize the automatic estimation of MFO in muscular

sonograms [3]. Because of its sensitivity to noises, we later complemented RVHT by

employing Gabor Filtering as a pre-processing procedure to enhance the longitudinal

sonograms of fiber [5]. Recently, after the evaluation of Gabor Filtering and another en-

hancement method, namely multiscale vessel enhancement filtering (MVEF), we found

MVEF a better choice with comparable enhancement performance but less computa-

tion than Gabor Filtering [20]. Certainly, the involvement of the image enhancement

procedures would cost more computation.

In the current study, we propose a new framework for MFO estimation in sonograms

by skipping the voting step as much as possible. Instead, the shape properties of the in-

terested regions will be used to output the orientation in most cases, detailed in the

method section. Compared with the single RVHT method, this framework is expected

to achieve higher efficiency at line angle estimation without compromising the

accuracy.
Methods
The efficient framework for estimation of MFO includes three steps: 1) image enhance-

ment, 2) extraction of object regions, and 3) estimation of MFO.
Image enhancement using MVEF algorithm

Sonograms are usually affected by speckle noises, which hinder the analysis of muscu-

loskeletal geometry. Taking into account the fact that the fiber in sonograms are tubu-

lar and include coherent orientation tendencies, we apply MVEF to enhance the

sonograms before the line angle detection. The MVEF method is based on the second

order local structure, with excellent noise and background suppression performance

[31]. The method includes three steps: the Hessian matrix estimation (including the
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choice of Gaussian kernels), computation of eigenvector for each scale and processing

for the maximum vesselness response. More details can be found in [31].

Extraction of object regions

In this study, objects to be extracted from sonograms are regions which may represent

long and thin muscle fibers. Since fibers, both aponeuroses and other fascia structures,

have higher intensity than the background in a sonogram, a straightforward approach

to find the potential regions of fibers is to apply a threshold on the enhanced image, so

that the pixels whose value is greater than the threshold are regarded as the pixels lo-

cated in the potential object regions. In this paper, the Otsu’s method is employed to

get the optimal threshold [32]. This will result in a binary map, Imap, where the white

components represent the candidate regions for muscle fibers.

Estimation of MFO

According to our observations, shapes of the interested object regions could vary

and be divided into three different patterns. RA: regions which are long and thin,

where each of them represents one major muscle fiber. RB: regions which are long

but have branches because of adherence of two or several muscle fibers. RC: regions

which are short and possibly from a ‘broken’ line caused by partial imaging one sin-

gle muscle fiber.

Orientations of RA and RC would be calculated as the angle between the y-axis and

major axis of ellipse that has the same normalized second central moments as the re-

gion. Angles of RB would be calculated using Hough transform (HT).

Specifically speaking, 3 shape measures for the region, aspect ratio Ar, width ω and

length L, will be used for classification of RA, RB and RC. In this study, L and ω are

calculated respectively as the length of the major and minor axis of the ellipse that has

the same normalized second central moments as the region, and the aspect ratio is de-

fined as L/ω.

The procedures of the proposed framework for MFO estimation on the binary map

are shown in Figure 1.

The proposed framework detects lines one by one in Imap, starting with the longest

region and detailed steps are:

Step 1. Setting parameters T1, T2, T3 and N; n = 1; Inmap ¼ Imap. (T1, T2 are thresholds

for shape measurements Ar and ω respectively. T3 is the ratio of the length of the

last and first detected lines. N is the upper limit of line number for each image).

Step 2. Extracting the longest region and calculating its aspect ratio Arn, width ωn and

length Ln.

Step 3. If Arn > T1 and ωn < T2, the orientation of the region is estimated as the angle

between the y-axis and major axis of ellipse that has the same normalized second

central moments as the region; Otherwise, applying HT on the region, and the line

that with global maximum in the accumulator array is detected.

Step 4. Removing pixels close to the line detected in step #3 and getting the updated

map Inþ1
map. (This step can remove noises near the line and avoid the duplication in

the angle measurement of RC).

Step 5. Check whether n =N or Ln < L1× T3. If not, n = n + 1 and repeat from step #2.
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Figure 1 The diagram of the efficient framework for estimating MFO.
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Experiments

Experiment setup for normal subjects

The proposed framework is first evaluated using the dataset from previous reports

[3,5], which were acquired on biceps and forearm muscles during various typical exer-

cise tasks, from three healthy adult male volunteers, and the detailed experiment setup

can be found in [3,5].

Then to further evaluate the proposed framework on same muscle but from different

subjects, we designed an experiment example on the sonograms of gastrocnemius.

Eleven healthy male subjects (mean ± SD, age = 29.4 ± 1.8 years; body weight 65.9 ±

9.3 kg; height = 170.3 ± 5.1 cm) volunteered to participate in this experiment. No par-

ticipant had a history of neuromuscular disorders, and all were aware of experimental

purposes and procedures. The human subject ethical approval was obtained from the

relevant committee in the Hong Kong Polytechnic University, Hung Hum, Hong Kong

and informed consents were obtained from subjects prior to the experiment.

The testing position of the subject was in accordance with the Users Guide of a

Norm dynamometer (Humac/Norm Testing and Rehabilitation System, Computer
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Sports Medicine, Inc., Massachusetts, USA). Each subject was required to put forth his

maximal effort of isometric plantar flexion for a period of 3 seconds with verbal en-

couragement provided. The maximal voluntary contraction (MVC) was defined as the

highest value of torque recorded during the entire isometric contraction. A rest of

5 min was allowed before the subject performing another MVC test. The MVC torque

was then calculated by averaging the two recorded highest torque values from the two

tests. The subject was instructed to generate a torque waveform in rough sinusoid

shape, up to 90% of his MVC, using ankle plantar flexion movements in prone pos-

ition. The torque was measured by the aforementioned dynamometer and the reason

for choosing 90% MVC as the highest value was to avoid muscle fatigue.

A real-time B-mode ultrasonic scanner (EUB-8500, Hitachi Medical Corporation,

Tokyo, Japan) with a 10 MHz electronic linear array probe (L53L, Hitachi Medical

Corporation, Tokyo, Japan) was used to obtain ultrasound images of muscles. The long

axis of the ultrasound probe was arranged parallel to the long axis of the gastrocne-

mius and on its muscle belly. The ultrasound probe was fixed by a custom-designed

foam container with fixing straps, and a very generous amount of ultrasound gel was

applied to secure acoustic coupling between the probe and skin during muscle con-

tractions, as shown in Figure 2. The probe was adjusted to optimize the contrast of

muscle fascicles in ultrasound images. Then the B-mode ultrasound images were digi-

tized by a video card (NI PCI-1411, National Instruments, Austin, USA) at a rate of 25

frame/s for later analysis.

Surface electromyography (EMG) signals were collected from the gastrocnemius

muscle using bipolar Ag-AgCl electrodes (Axon System, Inc., NY, USA), amplified

by a multiple channel amplifier (RM6280 Multi-Channel Biosignal Collection and

Processing System, Chengdu Instrument Company, Chengdu, China), with a gain of

2000, filtered separately by 10–400 Hz, 5–100 Hz band-pass analog filters within the

amplifier, and then digitized by a 12-bit data acquisition card (NI-DAQ 6024E, Na-

tional Instruments Corporation, Austin, TX, USA) with a sampling rate of 1 kHz.
Figure 2 Experimental setup for collecting the torque, EMG and sonograms from the subject’s
gastrocnemius during isometric knee extension.
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Ultrasound image sequences, surface EMG and torque signals were simultaneously

collected and stored by a custom-made program for ultrasonic measurement of mo-

tion and elasticity (UMME, http://www.tups.org).

Totally eleven sequences of gastrocnemius ultrasound images were acquired and each

includes 200 images. For each sequence, 3 frames corresponding to the torque at 0%,

45% and 90% MVC were used to evaluate the proposed framework.

Furthermore, one sequence including all 200 frames from one representative subject

is used to evaluate the performance of MFO tracking, following the practice of [4,7].

Experiment setup for an aged subject with cerebral infarction

We also tried to preliminarily evaluate the performance of the proposed framework on sono-

grams from other than healthy or young subjects. One male subject with unilateral limb dys-

function caused by cerebral infarction (age = 68 years; body weight = 71 kg; height = 1.72 m;

right leg dysfunctional) volunteered to participate in this study. The human subject ethical

approval was obtained from the relevant committee in Zhujiang Hospital, Guangzhou, China

before carrying out the experiment. The subject was briefed about the procedure of experi-

ment and written consents were collected prior to the experiment. The subject was seated

with both right hip and knee angles of 90. During measurement, the subject was asked to

perform plantar flextion both in left leg (normal) and in right leg (dysfunctional) with his best

efforts, and the rough contraction time is about .4 seconds in one exercise. A laptop ultra-

sound system (SS-10, Sonostar Technologies Co., Limited, Guangzhou, China), with a

7.5 MHz electronic linear array probe, was used to obtain the ultrasonic image sequences.

The long axis of the probe was arranged parallel to the long axis of the gastrocnemius muscle

(as shown in Figure 3) and during the muscle contraction the probe was managed to keep

on well coupled to the muscle belly with a luxury usage of gel by an experienced operator.

128 consecutive frames from each leg were captured. The caregiver of the patient had the
The long axis of the probe
The long axis of the gastrocnemius
The long axis of the probe
The long axis of the gastrocnemius

Figure 3 Experimental setup for collecting gastrocnemius sonograms from an aged subject with
cerebral infarction.

http://www.tups.org
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SonoStar scanner available only, and they allowed no third-party scanner used inside their

medical facilities.

Data processing

All images were cropped to remove the imaging tags and retained only the image con-

tent, and then processed using the procedures described above. All codes were written

in Matlab R2010a.

Five parameters could be controlled by the users. In our experiment, T1, T2 were set

to 5, 30 pixels respectively. The removal width, which indicated the number of neigh-

boring pixels to be removed along the line after a line was detected, was set to 17

pixels.

Last-to-first ratio T3 was set to 10%. This ratio together with N (the number of lines

to be detected for each image) was used as iteration termination conditions. For evalu-

ation purpose in this article, we supposed there would be at most seven representative

and interesting linear patterns visible per sonogram from the normal subjects, i.e., pat-

terns corresponding to the skin, bone, superficial aponeurosis, deep aponeurosis and

fascicles in between them. Therefore, for normal subjects in this study, we set N, the

maximum line per sonogram, to 7.
Results
Results on the dataset from previous reports

Totally 314 lines were detected in the 45 sonograms from previous reports [3,5], among

which 313 were regarded as being valid according to visual verification and 8 lines were

detected using HT.

A typical original sonogram of biceps and the corresponding results obtained using

the proposed method, are shown in Figure 4. The lines and their angle values were

marked with the order in which they got detected. MFO here was computed as the

angle between the detected line and the vector pointing from the up-left to bottom-left

corner of the image, which was the same as the definition of the NIH Image (National

Institutes of Health, USA) software.

In order to verify the validity of the method, two operators who were experienced in

ultrasound imaging of muscles, were employed to draw lines manually on the original

images at locations where lines were detected using the proposed framework, and read

the drawn angles using NIH Image software. As a result, 313 lines were marked out

manually, all included in the 314 lines detected by the proposed framework. The angles

estimated by our method, operator #1 and operator #2 were defined as ap, aa1 and

aa2 respectively and displayed in Figure 5.

To investigate how well our results fit the manually drawn values, the mean of aa1

and aa2, named as “Op”, was compared with the corresponding value of ap. The cor-

relation analysis of Op and ap is shown in Figure 6. Further Bland-Altman plot [33] il-

lustrated in Figure 7 presents the details of the angle measurements statistics. The

angle differences between the manual and automatic measurements is 0.11 ± 1.80 at the

95% confidence level.

The general detection performances of the proposed method and RVHT are shown

in Table 1, where “RVHT with enhancement” represents RVHT using Gabor filtering

as a preprocessing procedure. Comparison of computation cost between the proposed



(a ) (b )

(c) (d )
line #1 : 90

line #2 : 82
line #3 : 88

line #4 : 92

line #5 : 85

line #6 : 81

line #7 : 92

Figure 4 A representative image of biceps from the previous reports [3,5] and corresponding MFO
results. (a) The original image. (b) The image after MVEF. (c) The image after binarization, where red, blue
and green regions denote the typical RA, RB and RC respectively. (d) MFO detection results, where the
angle of red line was detected using HT and the angle of yellow line was estimated as the orientation of
the ellipse that has the same second-moments as the region.
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framework and RVHT is displayed in Table 2. We also tested the computing cost of a

single Hough Transform and a single procedure of computing the orientation of the el-

lipse in C (Microsoft Visual Studio 2010, Microsoft Corporation, Seattle, USA), and for

a typical edge map with size 390 × 443 and 2055 white pixels in the region of interest,

the cost is 149 and 4 seconds respectively for 10000 iterations.
Results on sonograms of gastrocnemius from 11 subjects

Totally 231 lines were detected in the 33 sonograms of gastrocnemius from 11 normal

subjects, among which 217 were regarded as being valid according to visual verification

and only 1 line was detected using HT. Blamd-Altman plot of angle detection results



Figure 5 Comparison of angle estimation results obtained using the proposed and manual methods on
the dataset from previous reports [3,5] where aa1 aa2 and ap stand for the results from operator #1,
#2 and those using the proposed method.
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for these data, obtained by the proposed framework and the 2 operators, is displayed

in Figure 8. The angle differences between the manual and automatic measurements is

0.03 ± 2.72 at the 95% confidence level.

Results on MFO tracking from 200 frames of one representative subject

We also tracked the orientation changes of a selected dominant fascicle and the deep apo-

neurosis in a sequence. Comparisons of these two orientations estimated using the proposed

and manual methods were shown in Figure 9. It was observed that there were good correla-

tions among the results obtained by the two operators and the proposed framework. Angles

of the selected fasicle and the deep aponeurosis were also shown in Figure 10(a-b) together

with the corresponding normalized torque signal and the normalized root mean square

(RMS, 256-points) values of EMG signal in Figure 10(c-d).

Results on sonograms from the aged subject with cerebral infarction

Two typical frames from left and right legs of the aged subject and their line detection re-

sults estimated using the proposed method are shown in Figure 11. Based on the triceps
y = 0.9669x + 2.9602
R² = 0.9837

60

70

80

90

100

110

120

60 70 80 90 100 110

A
ng

le
s 

D
et

ec
te

d 
by

 t
he

 P
ro

po
se

d 
 

M
et

ho
d:

 a
p 

(d
eg

re
e)

Mean of Angles Measured by the Two Operators: Op (degree)

Figure 6 The correlation between angle estimation results obtained using the proposed and manual
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surae architecture, the maximum line per sonogram N was set to 4 for the data from aged

subject. 440 and 452 lines were detected for frames for normal and dysfunctional limbs

respectively, and among which 3 was invalid according to visual verification. However, to-

tally 67 interested muscle fibers were not detected by the proposed method.

Discussion
The effects of the parameters on the line detection

Results of the method are affected by at least 4 parameters, i.e., T1, T2, T3 and N.

The total number of detected lines in a sonogram could be determined by T3 and N.

The maximum line per sonogram N could be easily tuned up, if necessary, to accom-

modate the detection of more localized linear patterns. Taking 45 sonograms of biceps

and forearm as examples, if we set N to 9 instead of 7, the number of total detected
Table 1 The comparison of the differences of the angle estimation results (degree)

ap-op** Proposed method RVHT* without enhancement RVHT with enhancement

Mean 0.11 0.18 0.13

Standard error 0.06 0.10 0.07

Median 0.13 0.07 0.08

Standard deviation 0.92 1.23 0.91

Kurtosis 4.03 5.81 13.45

Skewness −0.52 0.88 −1.57

Range 7.81 10.71 9.41

Minimum −4.89 −4.90 −5.46

Maximum 2.99 5.81 3.96

Sum 37.40 30.12 24.09

Count (total line detected) 314 168 305

False line detected 1 3 1

*RVHT = revoting Hough transform.
**ap and op stand for the results of the proposed methods and the mean of the results from two operators.



Table 2 Comparison of computation cost

Methods Time per-line (s/line) Line detected using HT Total line detected

Proposeda 0.036 8 314

RVHTb 0.142 168 168

RVHT2c 0.152 291 291
aProposed: the proposed framework.
bRVHT: revoting Hough transform.
cRVHT2: RVHT using MVEF as a preprocessing procedure.
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lines would increase from 314 to 378, while the number of false lines not actually cor-

responding to any one single muscle fiber increased from 1 to 4.

The last-to-first ratio T3 was set to exclude very short regions which may be noises,

artefacts or the shorter regions of the broken fiber (whose angles could be the duplica-

tions of the longest segment from the same broken fiber). It is clear that the larger T3

is, the less possible that a false line would be wrongly detected. While on the other

hand, if this ratio is too large, less lines could be detected especially if the longest line

in the image are very long. For 45 sonograms of biceps and forearm, when we tune T3

from 10% up to 50%, all detected lines were valid but the number of total detected

lines decreased from 314 to 118.

As for T1 and T2, which are thresholds for aspect ratio Ar and width ω respectively,

taking an incoming region as an example, the larger its Ar and the smaller its ω is,

the more possible it will falls into RA group. Simply speaking, T1 and T2 affect the

number of lines detected using HT. The larger T1 and the smaller T2 is, the more

lines will be detected using HT, and the slower the algorithm will be. However,

smaller T1 or larger T2 could cause higher risks to mis-classify a RB as a RA, which

may lead to a wrong angle estimation. Therefore, one has to compromise between the

computation efficiency and correctness and tune the parameters based on the specific

image contents.
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Evaluation of the validity and accuracy of the proposed method

As for the quantitative performance of our method, taking the result on the dataset used

in previous study [3,5] as an example, a very good linear correlation between the results

of the manual and proposed methods was obtained (shown in Figure 6, R2 = 0.987).

Meanwhile, Bland-Altman plots in Figure 7 and Figure 8 also echoed the good agreement

between the results of the manual and proposed methods both in the previous dataset

and sonograms of gastrocnemius from normal subjects.

As shown in Table 1, the angle differences between the manual and automatic mea-

surements, 0.11 ± 1.80 at the 95% confidence level, are comparable to the previous re-

sults of 0.13 ± 1.79 obtained using RVHT with Gabor filtering [5].

Results of the proposed method for interested MFO tracking agreed well with those

of the manual method, as shown in Figure 9. It can be observed in Figure 10 that the
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Figure 10 Orientations of the fascicle and the deep aponeurosis along with the torque and EMG
signals. (a) The signal about the fascicle orientation estimated using the proposed framework, (b) the
signal about the orientation of the deep aponeurosis estimated using the proposed framework, (c) the
normalized torque signal, and (c) the normalized EMG RMS signal.
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interested MFOs detected were not as smooth as the torque signal, but followed the

general cyclic changes along with the torque output.

The results from the aged subject with cerebral infarction have given us some prelim-

inary confidence on the proposed framework. However, the proposed method failed to

detect all valid major muscle fibers (about 7.5% missed). This could be related to the

fact that the images from this subject are quite different from young or healthy subjects

in terms of both echo intensity and image texture [34].
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Figure 11 Results on a patient with unilateral limb dysfunction caused by cerebral infarction. (a)-(c)
are a typical frame, its MVEF result and line detection result for left leg respectively. (d)-(f) are a typical
frame, the enhanced image using MVEF and line detection result for right leg (dysfunctional).
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Evaluation of the efficiency of the proposed method

Because MVEF has less computation than Gabor Filtering [20], we compared speed of

our framework with that of RVHT both with and without MVEF procedure.

It can be seen from Table 2, that in general, the speed of the proposed framework is much

faster than that of RVHT, which makes significant difference in terms of massive data.

Two major reasons contributed to the higher efficiency of the proposed method:

Firstly, the new framework skipped the voting step as much as possible. Instead, the

shape properties of muscle fibers were used to output the MFO in most cases. The

time complexity for computing the orientation of the ellipse that has the same normal-

ized second central moments of the region is O(n2), which is smaller than Hough/
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Radon transform for line detection in an image with the time complexity O(n3). Subse-

quently, the time complexity of the whole framework is related to the shape of fibers.

Taking the result on the dataset used in previous study [3,5] as an example, only a very

few regions are branch-structured and therefore detected using HT in sonograms. Ex-

periments showed that the number of lines detected using HT was only 2.5% of the

total number of detected lines for the 45 sonograms. As for the 230 (30 from 10 sub-

jects and a sequence of 200 frames from the representative subject) sonograms of

gastrocnemius from normal subjects, only one line was detected using HT. In other

words, in most cases our framework detects lines without the voting procedures, and

HT remains only a complementary operation for branch-structured fiber.

Secondly, in our framework, candidates in each voting step were pixels of a sub-

region, which is different from the previous RVHT where all pixels in the image would

be involved in a voting step.

Improving computation efficiency contributes a lot to the real-time application of

ultrasonic diagnosis. The benefit of improved computation speed will grow much larger

when we are shifting today from dealing with individual scans to several stream of

video captured during the scan procedures. The high efficiency of the method is crucial

for applications in the evaluation of the muscle dynamic behavior using sonograms

where massive data are involved (such as [4,6-12]).
Conclusions
In this paper we proposed a new framework for the efficient estimation of MFO using

ultrasonography. The framework aimed to output angles using the shape properties of

muscle fibers in sonograms with as less as possible Hough/Radon voting procedures.

Results of the experiments suggest that, without compromising the accuracy, the pro-

posed framework achieved higher efficiency than previous RVHT algorithm at line

angle estimation, which is much more outstanding when massive data would be in-

volved. Therefore, our new method would facilitate image-guided ultrasound muscu-

loskeletal analysis better, from automatic estimation of MFO to subsequent muscle

fiber length and thickness.
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