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Abstract

Background: Magnetic resonance electrical impedance tomography (MREIT) has
been introduced as a non-invasive method for visualizing the internal conductivity
and/or current density of an electrically conductive object by externally injected
currents. The injected current through a pair of surface electrodes induces a magnetic
flux density distribution inside the imaging object, which results in additional magnetic
flux density. To measure the magnetic flux density signal in MREIT, the phase difference
approach in an interleaved encoding scheme cancels out the systematic artifacts
accumulated in phase signals and also reduces the random noise effect by doubling
the measured magnetic flux density signal. For practical applications of in vivoMREIT, it
is essential to reduce the scan duration maintaining spatial-resolution and sufficient
contrast. In this paper, we optimize the magnetic flux density by using a fast gradient
multi-echo MR pulse sequence. To recover the one component of magnetic flux
density Bz , we use a coupled partial Fourier acquisitions in the interleaved sense.

Methods: To prove the proposed algorithm, we performed numerical simulations
using a two-dimensional finite-element model. For a real experiment, we designed a
phantom filled with a calibrated saline solution and located a rubber balloon inside the
phantom. The rubber balloon was inflated by injecting the same saline solution during
the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse
sequence for MRI scan, which allows the reduction of measuring time without a
substantial loss in image quality.

Results: Under the assumption of a priori phase artifact map from a reference scan, we
rigorously investigated the convergence ratio of the proposed method, which was
closely related with the number of measured phase encode set and the frequency
range of the background field inhomogeneity. In the phantom experiment with a
partial Fourier acquisition, the total scan time was less than 6 seconds to measure the
magnetic flux density Bz data with 128 × 128 spacial matrix size, where it required
10.24 seconds to fill the complete k-space region.

Conclusion: Numerical simulation and experimental results demonstrated that the
proposed method reduces the scanning time and provides the recovered Bz data
comparable to what we obtained by measuring complete k-space data.

Keywords: MREIT, MRI, Interleaved partial fourier acquisition, Magnetic flux density,
Current density
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Background
Magnetic resonance electrical impedance tomography (MREIT) utilizes a magnetic res-
onance imaging (MRI) scanner to measure magnetic flux density Bz data inside an
imaging object induced by the externally injected current. The internal current density
distribution has been studied in magnetic resonance current density imaging (MRCDI)
by measuring the whole magnetic flux density data B = (Bx,By,Bz) [1,2]. Combin-
ing MRCDI and electrical impedance tomography (EIT) technique, MREIT provides the
cross-sectional conductivity images of the object with high spatial resolution [3-10]. Since
an MRI scanner measures only one component Bz of B without rotating the imaging
object, most MREIT algorithms assumed that the internal conductivity is isotropic and
focused on visualizing its distribution by using one component of the magnetic flux
density data Bz of B [11-18].
RecentMREIT imaging techniques have been developed with respect to both the capac-

ity of measurement techniques and the numerical reconstruction algorithms. Experimen-
tal results from in vivo animal and human have been reported [19,20] in MREIT. As an
innovation of current MREIT, a fast MREIT imaging technique referring to the continu-
ous monitoring of objects includes various wide application areas [21]. Recently, one of
challenging problem inMREIT is to implement a new imaging technique with a very short
acquisition time for the imaging of neural activities of brain related to the conductivity
change.
Since current MREIT experiments suffer from poor SNR of the measured Bz data

under the typical data acquisition durations and a small amount of injected current, it
is important to reduce the scan time, while maintaining the spatial-resolution and suf-
ficient contrast, for practical implementations of in vivo MREIT. Recently, to reduce the
scan time in MREIT, Hamamura et al [22] reconstructed the interior conductivity using
a single-shot spin-echo echo planar imaging (SS-SEPI) pulse sequence and Muftuler et al
[23] used a SENSE-accelerated imaging technique to acquire phase signal by the injected
current. One of basic approaches for maintaining the spatial resolution is to reduce the
number of phase encoding steps because each phase encoding step requires a certain
amount of time for execution. Since the MREIT techniques use an interleaved phase
encoding acquisition scheme to double the Bz signal, Park et al [24] reconstructed the
phase signal Bz by filling the skipped k-space region using the interleaved measurement
property.
To obtain the static conductivity image in MREIT [19,20], a spin-echo based MREIT

pulse sequence has been predominantly used to reduce the background artifact and to
increase the imaging quality. In real situations, it is difficult to employ the fast con-
ventional MR pulse sequences because the noise standard deviation of Bz is inversely
proportional to the width of injection current and the intensity of MR magnitude, simul-
taneously. AnMREIT pulse sequence should be devised to enhance changes in MR phase
images for given current amplitudes.
In this paper, we used the multi-echo fast low angle shot (FLASH) MR pulse sequence

which allows the reduction of imaging time without any substantial loss in image quality.
In addition, the multi-echo FLASH sequence maximizes the width of injection current
extending the duration of injection current until the end of a readout gradient in MREIT.
To reconstruct the internal conductivity distribution, most algorithms require at least
two independent injection currents in an interleaved sense, which require relatively a
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long scanning duration [7,11]. To reduce the scanning time, we adopt a partial phase
encoding acquisition scheme using the multi-echo FLASH MREIT pulse sequence and
rigorously investigate the relationship between the convergence ratio of the algorithm and
the background field inhomogeneity [24]. We consider the discrete �2-norm to evaluate
the convergence ratio.
To show the feasibility of the proposed algorithm, we performed numerical simulations

and compared the performance to the simulated true Bz data. We designed a cylindrical
acrylic phantom filled with a calibrated saline solution and located a rubber balloon inside
the phantom. The rubber balloon was inflated by injecting the same saline solution during
the scan. The phantom was designed to provide a homogeneous magnitude image, but
distinguishable signals of measured Bz between the inside and outside the balloon. The
phantom experiment demonstrated that the proposed method reduces the scanning time
and recovers the reasonable resolution of Bz, which is comparable to the recovered Bz
using the complete k-space data.

Method
k-space signal and Bz data

In a conventional spin echo MREIT pulse sequence, both positive and negative currents
of the same amplitude and duration are injected with reverse polarity. These injection
currents with the pulse width of Tc accumulate extra phases. Corresponding k-space MR
signals can be described as

S±(kx, ky) =
∫

�

ρ(x, y)eiδ(x,y)e±iγBz(x,y)Tcei2π(kxx+kyy)dxdy (1)

where ρ is the T2 weighted spin density, δ is any systematic phase artifact, and� is a field-
of-view (FOV). Here, the superscript of S±(kx, ky) denotes a brief notation for S+(kx, ky)
and S−(kx, ky). For the standard coverage of k-space, we set

⎧⎨
⎩
kx = γ

2π Gx(n�t − TE) for n = −Nx/2, · · · ,Nx/2 − 1

ky = γ
2π m�GyTpe for m = −Ny/2, · · · ,Ny/2 − 1

(2)

where γ = 26.75 × 107rad/T · s is the gyromagnetic ratio of hydrogen, �t is the time
between samplings, Gx is the frequency encoding gradient strength, TE is the echo time,
�Gy is the phase encoding step, and Tpe is the phase encoding time. The induced mag-
netic flux density ±Bz is generated by the positive and negative injection currents I±.
Applying the inverse Fourier transform to the measured k-space data sets in (1), we can
compute the magnetic flux density Bz as

Bz(r) = 1
2γTc

tan−1
(

α(r)
β(r)

)
(3)

where α and β are the imaginary and real part of
(
ρeiδeiγBzTc

)
/
(
ρeiδe−iγBzTc

)
, respec-

tively [2].
The current MREIT method is based on the electromagnetic information embedded in

the measured Bz data in order to visualize the conductivity(or current density) based on
Biot-Savart law:

Bz(r) = μ0
4π

∫
�

(y − y′)Jx(r′) − (x − x′)Jy(r′)
|r − r′|3 dr′, r = (x, y, z), r′ = (x′, y′, z′) (4)
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where μ0 = 4π10−7Tm/A is the magnetic permeability of the free space. The current
density J in � is given for the isotropic conductivity σ in �

J(r) = −σ∇u(r) (5)

and satisfies the following elliptic equation

∇ · (σ∇u) = 0 in �

−σ∇u · ν = g on ∂� and
∫
∂�

u ds = 0
(6)

where ν is the outward unit normal vector on ∂� and g is an applied current density on
the surface.

Recovery of complexT∗
2 weighted spin density using interleaved partial Fourier acquisition

To simplify, we develop a theory using a conventional cartesian k-space that has three
zones within the ky(phase-encode) domain; the central region (P0), the positive region
(P+) and the negative region (P−):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P0 = {(kx, ky)
∣∣ ky = γ

2π m�GyTpe, − Nc ≤ m ≤ Nc }
P+ = {(kx, ky)

∣∣ ky = γ
2π m�GyTpe, m > Nc }

P− = {(kx, ky)
∣∣ ky = γ

2π m�GyTpe, m < −Nc }
(7)

Here, Nc denotes the number of partial Fourier over-sampling phase-encodes. The
interleaved k-space data S+

p (kx, ky) and S−
p (kx, ky) as partially acquired for the phase

ky = γ
2π m�GyTpe can be expressed

S±
p (kx, ky) =

⎧⎨
⎩

S±(kx, ky), (kx, ky) ∈ P+ ∪ P0

0, (kx, ky) ∈ P−
(8)

where S±
p represents S+

p and S−
p simultaneously. We propose an algorithm to determine

the T∗
2 weighted spin density ρ :

ρ±(r) := ρ(r)eiδ(r)e±iγBz(r)Tc = FT−1(S±(kx, ky))(r) (9)

using the partially scanned k-space data S±
p .

The systematic phase artifact eiδ(x,y), unavoidable artifacts due to the main field inho-
mogeneity and the mismatch between the center of data acquisition interval and echo
formation, arises from a low frequency field, which mainly belongs to the central region
P0. Including a small perturbed phase artifact eiδ(x,y), we start with the initial guess S±

p
and design an alternating procedure by updating the skipped k-space regions.
The recovered ρ±

p = FT−1(S±
p ) can be formally expressed by the equation

ρ±
p (r) = FT−1(S±(kx, ky))(r) + FT−1

P−(S±
p (kx, ky))(r) − FT−1

P−(S±(kx, ky))(r)

= ρ±(r) + E±
p (r)

(10)

where FT−1
P−(S±

p (kx, ky)) denotes the inverse Fourier transform by zero-filling the k-space
except in the region P− and the remainder term E±

p is

E±
p (r) := FT−1

P−
(
S±
p (kx, ky) − S±(kx, ky)

)
(r). (11)
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Let us define a support region Dδ for a low spatially varying magnetic field due to
background field inhomogeneities:

Dδ := {(kx, ky) | FT(e−iδ)(kx, ky) = 0, ky = γ

2π
m�GyTpe, − Nδ ≤ m ≤ Nδ} (12)

Observation 1. If Dδ ⊂ P0, FT(ρ∓
p e−2iδ)(kx, ky) = FT(ρ∓e−2iδ)(kx, ky) for (kx, ky) ∈

P+.

The proof of observation 1 is provided in the Appendix A. By using the observation 1,
we fill the skipped k-space regions in S±

p

S±
u (kx, ky) =

⎧⎨
⎩

S±(kx, ky), (kx, ky) ∈ P+ ∪ P0

FT(ρ∓
p e−2iδ)(−kx,−ky), (kx, ky) ∈ P−

(13)

Observation 2. If Dδ ⊂ P0, the k-space S±
u in recovers the T2 (or T∗

2 ) weighted spin
density ρ± without loss of information.

FT−1(S±
u ) = ρ± = ρeiδe±iγBz(x,y)Tc

The proof of observation 2 is provided in the Appendix B. The observation 2 shows that
the skipped region in the measured k-space S+ can be recovered by using the interleaved
acquired S− and the estimated background sensitivity map.

Convergence characteristics

When the common measured P0 does not cover the support regionDδ , Nδ > Nc, for the
phase-encode (kx, ky) ∈ P+, the Fourier transform of ρ−

p e−2iδ can be written by following
the observation 1:

FT(ρ−
p e

−2iδ)(kx, ky) =
∑

(kx,km)∈P+∪P0

FT(ρ−)(kx, km)FT(e−2iδ)(kx, ky − km) (14)

From the relation (14), for the phase-encode (kx, ky) ∈ P+, we have

FT(ρ−e−2iδ)(kx, ky) − FT(ρ−
p e−2iδ)(kx, ky)

= ∑
(kx,km)∈P− FT(ρ−)(kx, km)FT(e−2iδ)(kx, ky − km)

(15)

We set

[ψ]R := FT−1 (FT(ψ)|R) (16)

where R is a subregion of the k-space and FT(ψ)|R denotes the restriction of FT(ψ)

to the region R. The discrete �2-norm of [ψ]R is equivalent to that of FT(ψ)|R, i.e.,
‖[ψ]R‖�2 = C‖FT(ψ)|R‖�2 , where the constant C is independent to the function ψ and
the regionR.
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When the skipped k-space region, P−, are filled the previously updated as in (13),
we have

‖(ρ− − ρ−
n )�2 = C‖FT(ρ− − ρ−

n )‖�2

= C‖FT(ρ− − ρ−
n )|P−‖�2

= C
∥∥∥(

FT(ρ+e−2iδ) − FT(ρ+
n−1e−2iδ)

)
|P−(−kx,−ky)

∥∥∥
�2

= C
∥∥(
FT(ρ+e−2iδ) − FT(ρ+

n−1e−2iδ)
) |P+(kx, ky)

∥∥
�2

= C
∥∥(
FT((ρ+ − ρ+

n−1)e−2iδ)
) |P+(kx, ky)

∥∥
�2

(17)

For the k-space region (kx, ky) ∈ P+, we have the following identity

FT(
(
ρ+ − ρ+

n−1)e−2iδ)
) |P+(kx, ky)

= ∑
(kx,km)∈P− FT(ρ+ − ρ+

n−1)(kx, km)FT(e−2iδ)(kx, ky − km)

+�(ρ+ − ρ+
n−1,P0 ∪ P+)

(18)

where

�(ρ+−ρ+
n−1,P0∪P+) :=

∑
(kx,km)∈P0∪P+

FT(ρ+−ρ+
n−1)(kx, km)FT(e−2iδ)(kx, ky−km).

Since the updated complex density FT(ρ±
n )|P+∪P0 = FT(ρ±)|P+∪P0 , the remainder term

�(ρ+ − ρ+
n−1,P0 ∪ P+) = 0. Thus, the discrete �2-norm of the difference between the

true and the iteratively updated T∗
2 weighted spin density can be estimated

‖(FT((ρ+ − ρ+
n−1)e−2iδ)

) |P+‖2�2
≤ ‖FT((ρ+ − ρ+

n−1)|P−‖2�2
∑

ky∈P+
[∑

(kx,km)∈P− |FT(e−2iδ)(kx, ky − km)|2
] (19)

Detailed estimates of �2-norm calculation are presented in the Appendix C.
Define an estimator for the convergence of the proposed algorithm

Z2δ,P± :=
∑

ky∈P+

⎡
⎣ ∑

(kx,km)∈P−

∣∣∣FT(e−2iδ)(kx, ky − km)

∣∣∣2
⎤
⎦ (20)

Using the same procedures of (17) and (19), we have

‖FT((ρ+ − ρ+
n−1)|P−‖2�2 = ‖(FT((ρ− − ρ−

n−2)e−2iδ)
) |P+(kx, ky)‖�2

≤ Z2δ,P±‖FT((ρ− − ρ−
n−2)|P−‖2�2

(21)

The relations (17), (19) and (21) show that the convergence of the proposed method
depends on the estimator Z2δ,P± :

‖(ρ− − ρ−
n )‖�2 ≤ Z2δ,P±‖(ρ− − ρ−

n−2)‖�2 (22)

Optimization of Bz using gradient multi-echo data

Since the noise standard deviation sBz of the measured Bz is inversely proportional to
injection current duration Tc and the SNR of MR magnitude image ϒM [25,26] as

sBz(r) = 1√
2TcϒM(r)

(23)

To reduce the noise level of Bz and the imaging time, we applied the proposed method
to the gradient multi-echo pulse sequence as a fast MR imaging technique. Subsequently,
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by using the gradient multi-echo, it is possible to inject the current for a long duration to
maximize the off-resonance phase.
When TE1 denotes the first echo time and �TE is the echo spacing, the m-th echo

time is TEm = TE1 + (m − 1)�TE , m = 1, · · · ,NE , where NE is the echo number. The
phase artifact δTEm depends on the echo time TEm . Using a priori estimation of the phase
artifact map δTEm from a reference scan, for a time varying functional MREIT technique,
the measured k-space region including P0 and P+ can be determined by taking account
of the imaging multi-echo times TEm , the echo number NE and the repetition time TR.
The recovered multiple T∗

2 -weighted complex densities ρ±
TEm

, m = 1, · · · ,NE , using the
proposed algorithm in each echo time TEm can be optimized to generate a representative
measured Bm

z data

Bm
z (r) = 1

2γTc
tan−1

(
αm(r)
βm(r)

)
(24)

where αm and βm are the imaginary and real parts of ρ+
TEm

/ρ−
TEm

, respectively. The
recovered multiple Bm

z data include pixel-by-pixel different noise level depending on the
different imaging time TEm and the width of injection current. The multiple measured Bm

z
data are optimally combined to reduce the noise level of Bz [27]:

Bz(r) =
NE∑
m=1

ωm(r)Bm
z (r) (25)

where the point-wise weighting factor ωm(r) is given as

ωm(r) = 1/(sBmz (r))2∑NE
k=1 1/(sBkz (r))

2
(26)

Now, we setup an algorithm to reconstruct the magnetic flux density Bz data using the
partially measured k-space data S±

p and involving the following steps:

1. Take an initial guess ρ±
0 = FT−1(S±|P0∪P+).

2. Transform the n-th updated ρ±
n e−2iδ to k-space by taking the Fourier transform.

3. Update the measured k-space data S±
n+1 by filling the skipped region in S±

p with the
transformed FT(ρ±

n e−2iδ) data.
4. Update ρ±

n+1 by taking the two-dimensional inverse Fourier transform.

5. Stop if ‖ρ±
n+1−ρ±

n ‖�

‖ρ±
n ‖�

≤ ε where ε > 0 is a given tolerance and ‖·‖� is a standard
L2-norm in �. Otherwise, repeat the process.

6. Reconstruct Bm
z using (24) form = 1, 2, · · · ,NE .

7. Determine a weighting factor map ωm, m = 1, 2, · · · ,NE using (26) and
reconstruct an optimally weighted Bz in (25).

Experimental setup

Numerical simulation setup

To validate the proposed algorithm, we performed numerical simulations with the two-
dimensional finite-element model of a object 20 × 20 cm2 with 256 × 256 rectangular
elements and with the origin at its bottom-left, shown in Figure 1. We added the different
complex field inhomogeneity artifacts to the simulated spin density image in Figure 1(a).
The target magnetic flux density Bz in Figure 1(b) was generated by solving the elliptic
equation (6) and by using the Biot-Savart law given by (4). Since the magnetic flux density
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(a)
-1E-7

1E-7

(b) (c)

[Tesla]

0 100

200

(d)
00

1

2

3

Figure 1 Simulation setup. a) T2-weighted spin density, b) simulated magnetic flux density Bz image, c)
intensity of |∇Bz image, d)magnitude image of the k-space data on the measured region.

Bz in Figure 1(b) is continuous and has no abrupt changes, we used |∇Bz| image displayed
in Figure 1(c) to enhance image for the magnetic flux density. Figure 1(d) shows a partially
measured k-space data corresponding to ρ+.
The target conductivity distribution σ had different anomalies with different conductiv-

ity values and the amount of injection current was 10 mA. Set an applied current density
g on the surface as

g(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10, if |y − 5| ≤ 2, and x = 0

−10, if |y − 5| ≤ 2, and x = 10

0, otherwise.

(27)

Phantom imaging experimental setup

For the practical application of the proposed method as a fast MREIT imaging, we
designed a cylindrical phantom filled with the saline solution of conductivity 1 S/m
(shown in Figure 2(a)), including a rubber balloon for the visualization of isotropic con-
ductivity excluding other artifacts by any concentration gradient in the phantom. The
inside of balloon was filled with the same saline solution and the volume of balloon was
controlled by injecting saline solution during the imaging experiment. After positioning
the phantom inside the bore of 3T MR scanner (Achieva TX, Philips Medical Systems,
Best, The Netherlands) with 8 channel RF coil, we collected k-space data using the gra-
dient multi-echo injection current nonlinear encoding (ICNE) pulse sequence which was

(a) (b)

Electrode

Figure 2 Experimental setup. a) saline phantom with balloon, b) diagram of the ICNE-multi-echo MR pulse
sequence based on a gradient echo.
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originated from FALSH (Figure 2(b)). To obtain the MR magnitude and magnetic flux
density (Bz) images, it extends throughout the duration of injection current until the
end of a readout gradient [28]. Since the multi-echo ICNE pulse sequence was synchro-
nized to the injection currents with alternating polarity, it enabled to maximize the width
of the injection currents and minimize the noise standard deviation of the measured
Bz data. The maximum amplitude of injection current was 5 mA and the total imaging
time was 10.24 second to fill the k-space in the interleaved sense. Since the total imag-
ing time was corresponding to the whole k-space scan, the actual imaging time would be
reduced to 5.52 and 5.92 seconds for the number of partial region N (P0 ∪ P+) = 69
and 74, respectively. The imaging parameters were followings: slice thickness 5mm, num-
ber of imaging slices one, repetition time TR = 40 ms, echo spacing �TE = 6 ms,
flip angle 40 degree, and multi-echo time TEm = 6 + (m − 1) × 6 ms for NE = 4.
The FOV was 160 ×160 mm2 with a matrix size of 128 × 128. The duration of current
injection Tcm was almost same to the multi-echo time TEm = 6 + (m − 1) × 6, m =
1, 2, 3, 4, because the current was continuously injected until the end of the readout
gradient.
Figure 3(a) shows the multiply acquired magnitude images |ρ+

TEm
|, m = 1, · · · , 4,

where ρ+
TEm

was the m-th measured T∗
2 weighted complex spin density, Figure 3(c)

and (e) show the measured magnetic flux densities Bm
z and the absolute of ∇Bm

z
images at each echo m = 1, · · · , 4, respectively. The slope of Bm

z reflecting the width
of injected current linearly increased as the multi-echo time TEm was increasing.
Figure 3(b), (d), and (f ) are the averaged images corresponding to Figure 3(a), (c), and (e),
respectively.

(a)

(c)

1-st echo 2-nd echo 3-rd echo 4-th echo

1-st echo 2-nd echo 3-rd echo 4-th echo

20

0

1.8E-8

-1.8E-8

[Tesla](b)

(d)

(e) (f)

1-st echo 2-nd echo 3-rd echo 4-th echo

Figure 3 Phantom imaging. a) T∗
2 -weighted magnitude images |ρ+

TEm
|, m = 1, · · · , 4, b) averaged T∗

2

weighted magnitude image |ρ̄+| := 1
4

∑4
m=1 |ρ+

TEm
|, c)measured Bmz images at each echom = 1, · · · , 4, d)

averaged Bz image, Bz := 1
4

∑4
m=1 B

m
z , e) |∇Bmz | images at each echom = 1, · · · , 4, f) averaged |∇Bz| image,

|∇Bz| := 1
4

∑4
m=1 |∇Bmz |.
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Results
Simulation results

We compared the reconstructed magnetic flux density Bz using the complete k-space
data to the Bz achieved using the partial k-space data. To evaluate the convergence
characteristics of the proposed algorithm, we define the relative �2-errors:

E(ψn) := ‖ψ − ψn‖
‖ψ‖ (28)

where ψ and ψn are the recovered images with the complete k-space data and the n-th
updated data using the partially measured k-space data, respectively, and ‖·‖ denotes the
�2-norm.
To investigate the estimator Z2δ,P± for the convergence of the proposed iterative algo-

rithm to fill the sipped k-space region P−, we fixed the number of partially measured
k-space region as N (P0 ∪ P+) = 138, i.e., N (P0) = 20 and N (P+) = 118, and
changed the frequency range of background field inhomogeneity. We generated sev-
eral background field inhomogeneities changing the phase frequency range in k-space
region by taking Nδ = 5, 10, 20, 30 where the background field inhomogeneity δ satisfies
FT(eiδ)(kx, ky) = 0 for |ky| > Nδ .
Figure 4(a)-(d) show the background field inhomogeneities used in the reconstruc-

tion procedure and Table 1 shows the estimated Z2δ,P± in each background field
inhomogeneity forNδ = 5, 10, 20, and 30, respectively.
Figure 5(a) shows the reconstructed |∇Bz| images using the fixed background field

inhomogeneity withNδ = 5. From the top-left to the bottom-right, each image was corre-
sponding to the j-th iterative updated |∇Bz|, j = 0, 1, · · · , 10. The recovered Bz using the
partially measured k-space data included a large amount of artifacts (the top-left image
in Figure 5(a)). However, since the value of Z2δ,P± was small, the first updated magnetic
flux density almost recovered the true Bz.
Figure 5(b) shows reconstructed |∇Bz| images using the fixed background field inho-

mogeneity with Nδ = 30 corresponding to Figure 5(a). Since the value of Z2δ,P± was
0.7738, the convergence ratio of ρ± was relatively slow comparing to the field inhomo-
geneity with Nδ = 5. Table 2 shows the relative discrete �2-errors of updated complex
spin density for each iteration number and the convergence ratio of ρ± was depending on
the number ofNδ .
Table 3 shows the relative �2-errors of reconstructed ∇Bz for each iteration number

depending on the number of Nδ . The decay rates of the relative �2-error were very fast
as the number ofNδ was small, but we needed relatively many iterations to approach the

(a) (b) (c)

0

1.5

(d)
-1.5

Figure 4 Simulated background field inhomogeneity distributions. a-d) real part images of eiδ for
Nδ = 5, 10, 20, 30.
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Table 1 Calculated estimatorZ2δ,P± in (20) forNδ = 5, 10, 20, 30 and fixedmeasured
k-space dataN (P0 ∪ P+) = 138

Nδ = 5 Nδ = 10 Nδ = 20 Nδ = 30

Z2δ,P± 0.0013 0.0749 0.4927 0.7738

required accuracy as the number of Nδ was increase, even though the update procedure
was rapidly computed by use of the fast Fourier transform.

Phantom experimental results

For the phantom experiment, we changed Nc = 5, · · · , 10 for the set P0 to investi-
gate the convergence behavior with respect to a given background field inhomogeneity.
Using the collected k-space data with 8 channel RF coil and the gradient multi-echo by
alternating readout gradient, we measured the T∗

2 weighted complex densities ρ±n
m , n =

1, · · · ,NCH , m = 1, · · · ,NE , where NCH = 8 denotes the coil number and NE = 4
is the echo number. Figure 6 shows the measured background field inhomogeneities
by displaying the real part of e2iδmn corresponding to the n-th coil and the m-th echo
image. According to the increase of echo number, the accumulated background field
inhomogeneity also increased.

Figure 5 Reconstructed |∇Bz| images using the fixed background field inhomogeneity withNδ = 5
andNδ = 30. a) reconstructed |∇Bz| images using the fixed background field inhomogeneity withNδ = 5.
b) reconstructed |∇Bz| images using the fixed background field inhomogeneity withNδ = 30. From top-left
to bottom-right, each image corresponds to the j-th iterative updated |∇Bz|, j = 0, 1, · · · , 9.
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Table 2 Relative �2-errors of updated complex spin density for each iteration number(�)

�0 �1 �2 �4 �6 �8 �10

E(ρNδ=5) 0.06291 0.00098 0.00044 0.00022 0.00021 0.00021 0.00021

E(ρNδ=10) 0.08992 0.00282 0.00104 0.00039 0.00024 0.00020 0.00020

E(ρNδ=20) 0.20801 0.03346 0.00706 0.00088 0.00043 0.00029 0.00023

E(ρNδ=30) 0.22640 0.04623 0.01451 0.00309 0.00090 0.00041 0.00028

Figure 7(a) and (c) show the measured T∗
2 weighted magnitude and magnetic flux den-

sity Bz images at the time TEm , m = 1, 2, 3, 4, using partially acquired k-space region
P0 ∪ P+ with Nc = 5 by a transversally injected current. Although the amount of accu-
mulated phase signal by the injected current increased as the echo time varied from TE1
to TE4 , the magnitude image at the 4-th echo was more deteriorated comparing to the 1-
st echo case. Figure 7(b) shows an averaged MR magnitude image at each echo time and
Figure 7(d) is a weighted Bz image depending on the width of injected current using the
phase signal in Figure 7(c). Figure 7(e)-(h) shows the measured magnitude and magnetic
flux density Bz images corresponding to Figure 7(a)-(d) using partially acquired k-space
region P0 ∪ P+ with Nc = 10.
Comparing to the measured images in Figure 7(a)-(d), in contrast to the recovery of

low phase frequency information corresponding to P0, the increased background field
inhomogeneity caused relatively high frequency artifacts.
Figure 8(a)-(d) shows iteratively updated T∗

2 weighted magnitude and magnetic flux
density Bz images usingP0∪P+ withNc = 5.We fixed the update iteration number as 20
for all experiments.Whenwe fixedNc = 5, the 1-st and 2-nd recoveredT∗

2 weighted com-
plex densities in Figure 8(a) and (c) were relatively close to the recovered ones using the
complete k-space data. However, as the phase artifact increased, the 3-rd and 4-th recov-
ered T∗

2 weighted complex densities were deficient in reflecting full information of Bz
signal. Especially, the 4-th updated magnetic flux density Bz image shows some defective
region due to the insufficient recovery of T∗

2 weighted complex density.
Figure 8(e)-(f ) shows iteratively updated T∗

2 weighted magnitude and magnetic flux
density Bz images corresponding to Figure 8(a)-(d) usingP0∪P+ withNc = 10.When we
usedNc = 10, the updated T∗

2 weighted complex densities almost recovered the magnetic
flux density Bz data comparing to those using the complete k-space data.

Discussion
We used the gradient multi-echo MREIT pulse sequence to reduce the imaging time and
to maximize injection current duration. Since the MREIT techniques utilize accumulated
phase signal by the injected current, it requires enough repetition time TR to accumulate
the phase signal. In this sense, the gradient multi-echo MREIT pulse sequence seems
practical approach for the improvement of Bz quality as well as reducing the imaging time.

Table 3 Relative discrete �2-errors of∇Bz for each iteration number(�)

�0 �1 �2 �4 �6 �8 �10

E(∇BNδ=5
z ) 0.8755 0.0753 0.0462 0.0265 0.0214 0.0202 0.0199

E(∇BNδ=10
z ) 1.0945 0.2189 0.0949 0.0552 0.0373 0.0288 0.0252

E(∇BNδ=20
z ) 1.3132 0.6737 0.3039 0.1126 0.0730 0.0548 0.0435

E(∇BNδ=30
z ) 1.3276 0.8300 0.4764 0.2242 0.1245 0.0823 0.0626
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1-ch 2-ch

3-ch 4-ch

5-ch 6-ch

7-ch 8-ch

Figure 6 Measured background field inhomogeneity distributions. Real part of e2iδmn , n = 1, · · · ,
NCH , m = 1, · · · ,NE , where NCH = 8 and NE = 4 denote the coil and echo numbers, respectively.

(a)

(c)

20

0

1-st echo 2-nd echo 3-rd echo 4-th echo

(b)

(d)

1-st echo 2-nd echo 3-rd echo 4-th echo

(e)

(g)

20

0

1-st echo 2-nd echo 3-rd echo 4-th echo

1-st echo 2-nd echo 3-rd echo 4-th echo

(f)

(h)

Figure 7 Measured T∗
2 weightedmagnitude andmagnetic flux density Bz images usingP0 ∪ P+

withNc = 5 andNc = 10. a) and e) T∗
2 weighted magnitude image at each echo time TEm , m = 1, 2, 3, 4,

with Nc = 5 and Nc = 10, respectively. b) and f) combined T∗
2 weighted magnitude image with Nc = 5 and

Nc = 10, respectively. c) and g) recovered Bz image at each echo time TEm , m = 1, 2, 3, 4 with Nc = 5 and
Nc = 10, respectively. d) and h) weighted Bz image using multiple Bz image at each echo time with Nc = 5
and Nc = 10, respectively.
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(a)

(c)

20

0

1-st echo 2-nd echo 3-rd echo 4-th echo

1-st echo 2-nd echo 3-rd echo 4-th echo

(b)

(d)

(e)

(g)

20

0

1-st echo 2-nd echo 3-rd echo 4-th echo

1-st echo 2-nd echo 3-rd echo 4-th echo

(f)

(h)

Figure 8 Iteratively updated T∗
2 weightedmagnitude andmagnetic flux density Bz images using

P0 ∪ P+ withNc = 5 andNc = 10. a) and e) recovered T∗
2 weighted magnitude image at each echo time

TEm , m = 1, 2, 3, 4, with Nc = 5 and Nc = 10, respectively. b) and f) combined T∗
2 weighted magnitude

image using the recovered magnitude image at each echo time with Nc = 5 and Nc = 10, respectively. c)
and g) recovered Bz image at each echo time TEm , m = 1, 2, 3, 4,with Nc = 5 and Nc = 10, respectively. d)
and h) weighted Bz image using multiple Bz image at each echo time with Nc = 5 and Nc = 10, respectively.

In this paper, we used a partially acquired k-space data in the phantom experiment by
filling the k-space as much as 74 line by line, results in 5.92 second to image the resolution
of 128 × 128. Experimental results show that the proposed interleaved partial Fourier
strategy for MREIT has a potential to reduce scan times and maintain the information of
Bz data comparable to what is obtained with complete k-space data.
The convergence ratio of the iteratively updated phase signal heavily depends on the

frequency of the background filed inhomogeneity and the number of half-Fourier over-
sampling phase-encodes P0. Instead of the gradient multi-echo, if we use the spin multi-
echo pulse sequence, the proposed iterative algorithmwould rapidly recover T2-weighted
complex spin density due to a small amount of background field inhomogeneity. However,
in spite of some advantages of the spin multi-echo MREIT pulse sequence, for a real-
time MREIT imaging, MR pulse sequence should be carefully investigate by taking into
account of the width of injection current, the scan duration and the low SNR of measured
Bz signal.
In this paper, we assumed a priori background field inhomogeneity which is typically

used in the sensitivity encoding (SENSE) as a fast MRI measurement technique. Since the
MREIT techniques typically used interleaved acquisition by injecting alternative currents,
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it may be possible to extract background field inhomogeneity information under a low
frequency range assumption and by cancelation of Bz information:

ρ+(x, y)ρ−(x, y) = ρ2(x, y)e2iδ(x,y)

ρ+(x, y)
ρ−(x, y)

= e2iγBz(x,y)Tc

Several studies reported for the feasibility of MREIT to detect neural activities in the
brain, directly [29,30]. Functional MREIT technique is suggested to image brain activity
via conductivity change related to neural activity through the fast MREIT pulse sequence.
Our future study will focus on applying the proposed method to produce functional con-
ductivity images of animal and/or human brain to pursue rapidly changing conductivity
associated with neural activities.

Conclusion
InMREIT, the inherent challenges are to reduce the scan time andmaintain current injec-
tion duration to make it feasible for the clinical applications. We developed an iterative
method to optimize the measured magnetic flux density Bz using the multi-echo inter-
leaved partial Fourier acquisitions for fast imaging in MREIT. The proposed method used
a fast gradient multi-echo MR pulse sequence to reduce the scan time and to maximize
the phase signal by injection current. Under the assumption of a priori background field
inhomogeneity map, we rigorously investigated the convergence ratio of the proposed
method using the discrete �2-norm, which was closely related with the number of mea-
sured phase encode set and the frequency range of the background field inhomogeneity.
To evaluate the proposed method, a specially designed conductivity phantom was used
to provide a homogeneous magnitude, but it yielded distinguishable Bz signal inside and
outside the anomaly. For the phantom experiment, total imaging time was 10.24 seconds
to fill the complete k-space region in the interleaved sense and it was less than 6 seconds
to fill the partial k-space region to implement the proposed method. The proposed inter-
leaved partial Fourier strategy for the fast MREIT has a potential to reduce scan times and
maintain the information of Bz data comparable to what is obtained with the complete
k-space data.

Appendix
A Proof of Observation 1
For the phase-encode (kx, ky) ∈ P+, the Fourier transform of ρ−

p e−2iδ can be separated as

FT(ρ−
p e−2iδ)(kx, ky) = (FT(ρ−

p ) ∗ FT(e−2iδ))(kx, ky)

= ∑
(kx,km)∈P+∪P0∪P− FT(ρ−

p )(kx, km)FT(e−2iδ)(kx, ky − km)

= ∑
(kx,km)∈P+∪P0 FT(ρ−

p )(kx, km)FT(e−2iδ)(kx, ky − km)

+ ∑
(kx,km)∈P− FT(ρ−

p )(kx, km)FT(e−2iδ)(kx, ky − km)

(29)
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where ∗ denotes the convolution with respect to ky. Since the updated S−
p data conserve

the measured data in P+ ∪ P0, FT(ρ−
p )(kx, ky) = FT(ρ−)(kx, ky) for (kx, ky) ∈ P+ ∪ P0.

Thus, we have

FT(ρ−
p e−2iδ)(kx, ky) = ∑

(kx,km)∈P+∪P0 FT(ρ−)(kx, km)FT(e−2iδ)(kx, ky − km)

+ ∑
(kx,km)∈P− FT(ρ−

p )(kx, km)FT(e−2iδ)(kx, ky − km)

= ∑
(kx,km)∈P+∪P0 FT(ρ−)(kx, km)FT(e−2iδ)(kx, ky − km)

(30)

Since the central phase-encode set P0 includes all phase frequencies of the system-
atic phase artifact e−iδ , the range of the phase frequency ky − km for (kx, ky) ∈ P+ and
(kx, km) ∈ P− is over 2Nδ . This means that FT(e−2iδ)(kx, ky − km) = 0. Thus, we have
FT(ρ−

p e−2iδ)(kx, ky) = FT(ρ−e−2iδ)(kx, ky) for (kx, ky) ∈ P+. The case for ρ+
p e−2iδ is

similar.

B Proof of Observation 2
Since FT(ρ∓

p e−2iδ)(kx, ky) = FT(ρ∓e−2iδ)(kx, ky) for (kx, ky) ∈ P+ due to the observa-
tion 1, we have

FT(ρ+e−2iδ)(kx, ky) = FT(ρe−iδeiγBzTc)(kx, ky) for (kx, ky) ∈ P+ (31)

From the relation (31), by taking the complex conjugate, we recover the skipped k-space
region P−

FT(ρ−)(kx, ky) = FT(ρeiδe−iγBzTc)(kx, ky)

= FT(ρe−iδeiγBzTc)(−kx,−ky)

= FT(ρ+
p e−2iδ)(−kx,−ky)

(32)

C Estimation of �2-norm
The discrete �2-norm of the difference between the true and the iteratively updated T∗

2
weighted spin density can be estimated as following:

‖(FT((ρ+ − ρ+
n−1)e−2iδ)

) |P+‖2�2
= ∑

ky∈P+ |FT (
(ρ+ − ρ+

n−1)e−2iδ) (kx, ky)|2

= ∑
ky∈P+

∣∣∣∑(kx,km)∈P− FT(ρ+ − ρ+
n−1)(kx, km)FT(e−2iδ)(kx, ky − km)

∣∣∣2

≤ ∑
ky∈P+

[∑
(kx,km)∈P− |FT(ρ+ − ρ+

n−1)(kx, km)FT(e−2iδ)(kx, ky − km)|
]2

≤ ∑
ky∈P+

[
‖FT((ρ+ − ρ+

n−1)|P−‖2�2
∑

(kx,km)∈P− |FT(e−2iδ)(kx, ky − km)|2
]

≤ ‖FT((ρ+ − ρ+
n−1)|P−‖2�2

∑
ky∈P+

[∑
(kx,km)∈P− |FT(e−2iδ)(kx, ky − km)|2

]

(33)
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