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Abstract

Background: The convectional strain-based algorithm has been widely utilized in
clinical practice. It can only provide the information of relative information of tissue
stiffness. However, the exact information of tissue stiffness should be valuable for
clinical diagnosis and treatment.

Methods: In this study we propose a reconstruction strategy to recover the
mechanical properties of the tissue. After the discrepancies between the
biomechanical model and data are modeled as the process noise, and the
biomechanical model constraint is transformed into a state space representation the
reconstruction of elasticity can be accomplished through one filtering identification
process, which is to recursively estimate the material properties and kinematic
functions from ultrasound data according to the minimum mean square error (MMSE)
criteria. In the implementation of this model-based algorithm, the linear isotropic
elasticity is adopted as the biomechanical constraint. The estimation of kinematic
functions (i.e., the full displacement and velocity field), and the distribution of Young’s
modulus are computed simultaneously through an extended Kalman filter (EKF).

Results: In the following experiments the accuracy and robustness of this filtering
framework is first evaluated on synthetic data in controlled conditions, and the
performance of this framework is then evaluated in the real data collected from
elastography phantom and patients using the ultrasound system. Quantitative analysis
verifies that strain fields estimated by our filtering strategy are more closer to the
ground truth. The distribution of Young’s modulus is also well estimated. Further, the
effects of measurement noise and process noise have been investigated as well.

Conclusions: The advantage of this model-based algorithm over the conventional
strain-based algorithm is its potential of providing the distribution of elasticity under a
proper biomechanical model constraint. We address the model-data discrepancy and
measurement noise by introducing process noise and measurement noise in our
framework, and then the absolute values of Young’s modulus are estimated through
the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will
affect the performance, i.e., the convergence rate, and computational cost, etc.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Introduction
In the daily clinical exercises, palpation is frequently used as one part of physical examina-
tion to determine suspicious lesion’s size, shape, firmness, or location [1], but this process
is largely decided by the doctor’s experiences. Therefore, ultrasound elastography [2],
which aims to replace subjective palpation process, is developed to provide quantitative
measures of material properties of tissue. As an evolving imaging modality, ultrasound
elastography has already been broadly evaluated in the clinical practices and shown great
potentials in providing valuable diagnostic information, such as improving the diagnostic
accuracy of breast and prostate cancer [3-9], assessing plaque vulnerability [10-13] and
guiding minimally invasive therapy [14-16]. Similar elastography techniques have been
also developed using magnetic resonance imaging [17-19] and mammographic imaging
[20]. Ultrasound elastography can be broadly grouped into quasi-static ultrasound elas-
tography and dynamic ultrasound elastography according to the mechanical excitation
applied on the biological tissue [21]. During the quasi-static ultrasound elastography,
which is the focus of this paper, the mechanical excitation is usually applied through
the ultrasound transducer and this external mechanical stimuli can be considered as a
steady-state quasi-static loading [2]. After the deformation caused by the external loading
is captured by the ultrasound machine, the elastographic image can be generated using
different reconstruction techniques [22]. During the dynamic ultrasound elastography
[3,23], harmonic excitations on the order of 10–1000Hz, or transient dynamic excitations
are applied to the biological tissue in order to generate the shear wave. After the shear
wave of the biological tissue is captured by the ultrasound machine, the following images
of shear modulus can be generated using similar reconstruction techniques [24].
In spite of varieties of ultrasound elastography, we focus on the estimation of mechan-

ical elasticity in quasi-static ultrasound elastography, which is one popular elastographic
technique because of its efficiency and conveniency. The imaging process of quasi-static
ultrasound elastography can be described by following four steps: a radio-frequency (RF)
echo frame is first acquired from the tissue; second, a small deformation is induced into
the tissue through the probe; third, a second RF frame is acquired from the deformed
tissue; fourth, the displacement field, strain field and the distribution of tissue elasticity
are reconstructed. Numerous techniques have been proposed to solve the reconstruc-
tion problem in step four of quasi-static ultrasound elastography in the last decades [25].
According to the way to obtain the tissue elasticity, the existing reconstruction algorithms
for step four in quasi-static ultrasound elastography can be classified into two groups:
the direct approach and iterative approach [26,27]. However, the estimation of stable and
meaningful mechanical elasticity in ultrasound elastography still remains as a challenging
researching topic at present because of its ill-posed nature [28]. In the recent review [22],
themodel-based approach is considered as one promising researching direction in solving
the reconstruction problem in step four, and how to define the meaningful model con-
straint during the quasi-static ultrasound elastography is the key issue in themodel-based
approach.
According to the constitute law of elasticity, accurate quantification of material prop-

erties, such as Young’s modulus, is feasible only when the distribution of all components
of the internal stress is known. In quasi-static ultrasound elastography, however, the
distribution of internal stress is hardly available. Hence, in the direct approach, the elas-
tographic image is reconstructed always by converting the strain value as relative Young’s
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modulus using a very simple model constraint (e.g., Hook’s law) [2]. Mostly, the distribu-
tion of relative Young’s modulus (e.g., inverse strain values), is directly interpreted as the
elastographic image based on the assumption of stress uniformity. But the assumption
of uniformed internal stress distribution is not always valid in clinical cases. Further-
more, poor contrast-transfer efficiency will incur because of the assumption of uniformed
stress distribution. In [2], an artifact, called “target hardening”, caused by this simplified
assumption has been discussed. In the following work [29], an analytic solution of the
elasticity equations derived for an infinite medium subjected to a uniaxial compression
induced by a finite size compressor was used to verify the fact that a gradual decay of stress
with increasing distance along the axis and off axis would cause “target hardening”. A
different approach later tried to compress the target hardening by reconstructing the elas-
togram with measured strain and predicted stress field [30]. However, this approach still
contained artifacts in an inhomogeneous medium: bi-directional shadows appear at the
boundaries of the inclusion and the quality of elastographic image is even worse in com-
plex situations. Several other groups including Doyley et al. [31], have sought for better
quality of elastographic images by exploring the feasibility of solving the inverse problem
based on a theoretical representation of forward elasticity model without requiring the
internal stress distribution, but it turned out to be difficult in recovering the elastic mod-
ulus by inverting the forward elasticity model. In [32] and [33], a similar technique for
quantifying the tissue elasticity was proposed to invert a finite difference representation
of forward elasticity model with the pressure terms disappearing in the equations elimi-
nation, but artifacts were still observed in the reconstructed images. In another approach
[34], the pressure term was included, but it was found that the method failed to employ
in practice since hydrostatic pressure is nearly impossible to be measured from within
tissues. In a word, the direct approach is trying to simplify the inverse problem (i.e., recon-
struction of elastographic images), by inverting the forward model directly using strict
controlled conditions or simplified assumptions, but these conditions or assumptions are
usually invalid in clinical situation. For example, the assumption of internal stress unifor-
mity within tissue is seldom valid in clinical cases. Overall, the direct approach’s capability
is limited to provide the relative elastic modulus, but the ultimate aim of elastography
to reconstruct the mechanical elasticity of tissues. What’s more, the differentiating pro-
cess to compute the strain map from noisy displacement also negatively degrades the
accuracy of direct approach because of its one-time-transformation process though the
direct method still attracts great attentions from many groups at present because of its
efficiency.
To overcome the drawbacks of direct methods, an alternative approach to replace the

direct inversion technique is the iterative approach, which can be considered as a repeated
direct inversion process, but with much more reasonable constraints, until an optimal
estimation of the distribution of meaningful elastic modulus is obtained. Two key features
of the iterative approach are: an iterative procedure and an external constraint. In [35],
a Newton Raphson iterative scheme and a Tikhanov regularization method was applied
to stabilize the reconstruction in the presence of noise. A similar algorithm was adopted
in [36] and [26] for solving the inverse problem to recover the elastic modulus using
Gauss-Newton algorithm, but this algorithm would cost heavy computation because of
forming a Jacobian matrix. In order to reduce the computational cost from the iterative
procedure, the gradient through adjoint elasticity equations was calculated and then the
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direction of gradient descent was used to find the optimal estimation [37]. In order to bet-
ter recover smooth kinematic functions, one iterative two-dimensional phase-matching
method was developed to reconstruct a two-dimensional displacement vector field dur-
ing acquisition of two successive RF-echo data frames [38]. Another work employed a
split-and-merge strategy, which used the strain images to provide a priori knowledge of
relative stiffness distribution to reduce the computation time and avoid singularity in solv-
ing the inverse problem, to estimate the elastic modulus over the image sequence [39].
In the direct approach, simplified constitutive models can be directly inverted, but easily
destroyed by the noises from measurement and complex tissue deformation. Therefore,
the mechanical models with the ability of self-correcting to minimize the cost func-
tion that measures the goodness of fit between computed and measured data are always
adopted in the iterative approach. For example, a finite element (FE) model with appropri-
ate mathematical description of the object was adopted as the constraint to reconstruct
the modulus of elasticity in [23]; in prostate elastography or intravascular elastography
where the compression direction is radial, one FE-based approach was developed to study
the reconstruction of tissue elasticity for ultrasound elastography in the polar coordinates
[40]; since the material properties of lesion is important to the FE model, one iterative
approach that used a FE model was developed to reconstruct the Young’s modulus from
the measured force-displacement slope [41].
The iterative approach with a biomechanical model constraint was even named as

a model-based method in [28]. In [28], a comparative evaluation of the model-based
method and direct approach was conducted, and a conclusion that better contrast trans-
fer efficiency could be achieved particularly for the high-contrast inclusions. However,
the model-based method is fraught with three major defects: model-data discrepancy,
measurement noise and no unique result. The model mismatch and the measurement
noise will undoubtedly compromise the quality and accuracy of the ensuing elastograms.
The reason for non-unique solution is that there is no guarantee of producing unique
modulus elastograms as the ill-posed nature of inverse elasticity problems. Nevertheless,
with the assistance of iterative procedure and meaningful biomechanical model, the iter-
ative approach should be able to perform better than direct methods for the recovery of
absolute values of elastic modulus if three major defects can be properly handled.
To overcome the defects of the mode-based approach mentioned above, we have intro-

duced a stochastic model-based algorithm in our previous paper [42]. Different from
earlier approaches, this algorithm treats the displacement and Young’s modulus as ran-
dom variables that need to be estimated together from ultrasonic RF signals: an EKF
runs iteratively until it converges to the steady state of deformed tissue, and the optimal
estimation of the full displacement field and Young’s modulus are computed in a MMSE
sense. Furthermore, the model-data discrepancy and measurement noise are treated as
white noises after the biomechanical model is transformed into the stochastic state space.
However, in [42], we only present qualitative comparison in the preliminary results. In
this paper, three groups of data, synthetic data, phantom data and patient data, are used
to show the ability of our framework in recovering the absolute values of elastic modulus.
The results and quantitative comparisons prove that this algorithm is a practicable way to
suppress artifact noise. In the end, one fact should be pointed out that it is straightforward
to apply our strategy to other forms of quasi-static elastography, but only two dimensional
quasi-static ultrasound elastography are studied in this paper because of limited space.
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The rest of this paper is organized as follows: section ‘Methodology’ describes the
details of our elasticity reconstruction method: the linear elasticity and its finite element
implementation are introduced, followed by the discussion about the integration of the
stochastic state space strategy and the dynamic equation for the quasi-static ultrasound
elastography. In section ‘Experiments and results’, the results obtained from the experi-
ments using simulated data, real phantom data and in-vivo clinical data are presented and
discussed respectively. In each set of data, our results are compared to the strain-based
maps. As the ground truths are available in simulation and phantom studies, the accu-
racy and robustness of our framework are evaluated by comparing the results generated
by our strategy to the ground truths. In the clinical experiment, the elastographic images
are compared to CT images with lesions indicated by the doctor. Finally, the discussion
of our framework, concluding remarks and future research endeavors are outlined in
section ‘Discussion’.

Methodology
Linear elasticity

In order to construct a meaningful, yet computationally feasible computing scheme,
material properties of the tissue should be properly modeled. In general, the biological
tissue is a non-rigid object that deforms over time and has very complicated material
properties in terms of the underlying constitutive laws [43]. However, in this paper, we
only study the quasi-static ultrasound elastography, which is to utilize a steady state
quasi-static excitation on the tissues using the ultrasound transducer. Since the tissue is
compressed slightly during quasi-static elastography, constitute law of linear elasticity is
still valid [2]. Hence, for computational simplicity, in our current two dimensional imple-
mentation, the linear isotropic continuum material is adopted to describe the mechanical
behavior of the tissue during the quasi-static elastography, and the relationship of the
stress σ and the strain ε obeys the Hooke’s law [44]:

σ = Sε (1)

where S is the strain-stress matrix.
For the two dimensional case discussed in this paper, let u(x, y) and v(x, y) be the dis-

placement along the x- and y-axis of a point, the infinitesimal strain tensor ε of the point
is:

ε =
⎡⎢⎣

∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

⎤⎥⎦ (2)

In two-dimensional situation, under the plane strain condition [44], strain-stressmatrix
S can be derived as:

S = E
(1 + ν)(1 − 2ν)

⎡⎢⎣1 − ν ν 0
ν 1 − ν 0
0 0 1−2ν

2

⎤⎥⎦ (3)

S is a material-dependent matrix, E stands for the Young’s modulus, and ν stands for the
Poisson’s ratio. Here, the Young’s modulus E and the Poisson’s ratio ν are two material-
specific parameters. This fact that the internal stress caused by the deformation is a
function of the displacement vector and the material parameters is quite clear from these
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equations. Ideally, the problem could be tackled in three dimension to avoid the through-
plane motion effect, but in this paper we only study the two-dimensional problem because
the images of quasi-static ultrasound elastography are two dimensional data collected by
the linear array of ultrasonic probe. Further, a linear material model is used to illustrate
the basic ideas and rationales of a joint estimation strategy to recover the distribution of
real elasticity for quasi-static ultrasound elastography, but more realistic models can be
easily adopted into current framework in the future works.

Stochastic finite elementmethod

In the past decades, the deterministic finite element method has been able to provide an
effective and convenient platform for biomechanical studies in the past decades [45,46].
However, it does not have the capability to process the uncertainties of material prop-
erties, and kinematic observations, i.e., measurements of the displacement. Especially
the ultrasound imaging-derived data are usually corrupted by noises of various nature.
It is thus necessary to develop a strategy, the stochastic finite element method (SFEM),
which has been used widely for structural dynamic analysis in probability analysis frame-
works [47,48], to process the data from the ultrasound elastography. The main difference
between SFEM and finite element method (FEM) is that material properties are deter-
ministic variables in FEM, but are described by random fields, possibly with known prior
statistics in SFEM.
In order to build our implementation of SFEM for the quasi-static ultrasound elastog-

raphy, a Delaunay triangulated finite element mesh is constructed at the first image frame
before compression. An isoparametric formulation defined in a natural coordinate system
is used, where, for tri-nodal linear element, the basis functions are linear functions of the
nodal coordinates [44]. With mesh constructed, assuming that the material parameters E
(Young’s modulus) and ν (Poisson’s ratio) are temporally constant but varying spatially,
we can have the following dynamic governing equation [44]:

MÜ + CU̇ + KU = R (4)

whereM, C and K are the mass, damping and system stiffness matrices, R is the load vec-
tor, and U is the displacement vector. In this work, U consists of u(x, y) and v(x, y). The
calculation ofM, K andC matrices are the standard FEM procedure, which can be read in
[44]. Because the tissue density can be generally considered to be uniform over the region
of interest,M is a known function of the material density and is temporally and spatially
constant. K is a function of the constitutive law of material, which is linear elasticity here,
and is related to the material-specific Young’s modulus and Poisson’s ratio, which are con-
sidered as constants temporarily in this study. In our framework, these two local material
parameters are treated as random variables with known a priori statistics, and will be esti-
mated along with the motion parameters. The damping matrix C is frequency dependent,
and we assume small proportional Rayleigh damping with C = αM + βK in our imple-
mentation. In Rayleigh damping α is the mass proportional Rayleigh damping coefficient
and β is the stiffness proportional Rayleigh damping coefficient [44]. In practice, it is dif-
ficult to determine the damping parameters because they are frequency dependent. We
assume Raleigh damping for the very low damping biological tissue during quasi-static
elastography, and fix the two weighting constants to be 1%.
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State space representation

In order to employ our filtering strategy to integrate biomechanical model, the dynamics
equation (Equation (4)) needs to be transformed into a state-space representation of the
continuous-time linear stochastic system. First the kinematic vector x(k) and the material
parameter vector θ are defined as:

x(t) =
[
U(t)
U̇(t)

]
(5)

θ =
[
E
ν

]
(6)

Where the kinematic vector x(t) is consisted of displacement U(t) and velocity U̇(t)
information, and the material parameter vector θ is consisted of Young’s modulus E and
Poisson’s ratio ν. In general, tumor inclusion or tissue blocked from its blood nutrients
is stiffer than normal tissue, which mostly reflects in the variation of E. Since benign
and cancerous tumors usually have distinguishing elastic properties (i.e., different Young’s
modulus value), the value of Poisson’s ratio can be fixed in the following implementation.
For example, as one of incompressible materials, the Poisson’s ratio of tissue can be set
close to 0.5.
The state space representation of Equation (4) becomes

ẋ(t) = Acx(t) + BcW (t) + n(t) (7)

where n(t) is the process noise which is an additive, zero-mean, white noise (E[ n(t)] = 0;
E[ n(t)n(s)′] = Qn(t)δts, where Qn is the process noise covariance). Process noise cannot
be ignored if model-data discrepancy exists. The system matrices Ac, Bc and input forces
W (t) are:

Ac =
[

0 I
−M−1K −M−1C

]

Bc =
[
0 0
0 −M−1

]

W (t) =
[

0
R(t)

]
An associated measurement equation, which describes the observations y(t) extracted

from the ultrasonic RF data, can be expressed in the form:

y(t) = Hx(t) + e(t) (8)

where e(t) is the measurement noise which is additive, zero mean, and white (E[ e(t)]=
0;E[ e(t)e(s)′]= Re(t)δts, where Re is the measurement noise covariance), independent of
n(t). Although the noise in the displacement measurement extracted from ultrasonic RF
data might not be white Gaussian noise, the property of the noise from ultrasonic RF data
is rarely available due to the complicated collecting process of ultrasonic RF data. Hence
our best guess is to assume it is white Gaussian noise, which is one common treatment in
engineering field [49-51]. Furthermore, we found that the performance of this assumption
is satisfied in the following experiments. H is the measurement matrix which should be
specified by the relation between state vector x(t) and measurement vector y(t).
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In order to run the dynamic equation (Equation (4)) in computer, it should be trans-
formed into a discrete state-space equation, typically seen in control and estimation
literature [50,52].We discretize Equation (7) and (8) over a constant time intervalT. Since
the intervalT is always a known constant, we can replace kT with k in following equations

x(k + 1) = Ax(k) + Bw(k) + n(k), (9)

where

A = eAcT , (10)

B = A−1
c (eAcT − I)Bc (11)

The associated discrete measurement equation is:

y(k) = Dx(k) + e(k) (12)

where y(k) is the measurement vector contained the displacement extracted from ultra-
sound RF data. In most quasi-static elastography, only the axial components of displace-
ment vector are extracted. Therefore, the corresponding place of D will be set to 1 or
0 according to the available measurement data. n(k) and e(k) are process noise and the
measurement noise respectively.
In order to perform the estimation of the material parameter distribution, the state

vector x is augmented by the material parameter vector θ to form the new state vector z:

z =[ x, θ ]T (13)

Accordingly, the new augmented state equation is:

z(k + 1) = f (z(k),w(k)) + vs(k) (14)

with

f (z(k),w(k)) =
[
A(θ)x(k) + B(θ)w(k))

θ

]
(15)

vs(k) =
[
v(k)
0

]
(16)

Where v(k) is the process noise, introduced by the model mismatch. The new augmented
measurement equation is derived:

y(k) = h(z(k)) + eo(k), (17)

with

h(z(k)) =[D, 0]

[
x(k)
θ(k)

]
(18)

eo(k) = e(k) (19)

Using previous assumptions of noises, the augmented noises are also Gaussian with
distribution:

vs(k) ∼ N(0,Qs), where Qs =
[
Qv 0
0 0

]
(20)

eo(k) ∼ N(0,Ro), where Ro = Re (21)
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Extended kalman filter (EKF) for joint state estimation

The reconstruction of quasi-static elastographic image now can be defined as calculat-
ing the optimal estimates of the nonlinear state-space estimation problem represented by
the Equation (14) and (17) above. This leads to solve this nonlinear estimation problem
using the EKF framework, which is to linearize the augmented state (Equation (14)) at
each time step and perform a recursive procedure with natural block structure to estimate
the material parameter. EKF operates like Kalman filter, adopting the same form of feed-
back control in estimation: the filter makes an estimation of the state at one moment and
then obtains feedback in form of measurements. The operations of EKF can be divided
into two steps: time update equations and measurement update equations. Time update
equations are responsible for projecting forward the current state and error covariance
estimates to obtain the priori estimates for the next time step, while the measurement
update equations are responsible for the feedback with the posterior data.
Initializing the filter with ẑ −(0) = ẑ0 and P(0) = ∑

0, the EKF runs sequentially as
follows:

(1) compute the prior estimation of the state, from t − 1 to t :

ẑ −(t) = f (̂z(t − 1),w(t)), (22)

(2) project the error covariance from t − 1 to t :

P −(t) = FtP(t − 1)FT
t , (23)

(3) compute the Kalman gain at t :

G(t) = P−(t)HT (HP−(t)HT + R0)
−, (24)

(4) compute posterior estimation of the state with the measurement at t :

ẑ(t) = ẑ −(t) + G(z(t) − h(̂z −(t))), (25)

(5) update the error covariance at t :

P(t) = (I − G(t))(z(t) − h(̂z −(t))), (26)

(6) repeat (1)-(5) to convergence. The needed quantities for Equations (22)–(26) are
defined by:

Ft = ∂

∂
f (z(t),w(t))|z=̂z =

[
A(θ̂ ) Mt

0 I

]
(27)

H( ẑ(t)) = ∂

∂
h(z(t))|z=̂z =

[
D 0

]
(28)

Mt = ∂

∂θ
(A(θ )̂x(t) + B(θ)w(t))|θ=θ̂ (29)

In our implementation, the initial error covariance matrix P(0) consists of four parts:

P(0) =
[
P1(0) P2(0)
PT2 (0) P3(0)

]
(30)

P1(0), P3(0) are the sub-matrices inside the initial error covariance matrix related to
the trustworthiness of the kinematic functions and material parameters respectively, and
P2(0) is the kinematics-material correlation sub-matrix, which is a zero matrix in this
paper.
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Summary of the algorithmic flow

As described above, the system vector z, which consists of kinematic vector x and mate-
rial vector θ , is updated through the EKF filtering framework, but in this implementation
we only have one set of data from quasi-static elastography, i.e., one frame of displace-
ment measurement acquired in deformed configuration. In Figure 1, the flow chart of our
filtering framework is illustrated. If the difference between the estimate of current time
step and the estimate of previous time step is small enough, the operation of EKF will
be terminated and the final estimate will be considered as close enough to the optimal
estimation. Therefore, through our filtering framework, a quantification of the internal
material properties distribution jointly with kinematic state could be recovered from the
ultrasonic RF data collected from quasi-static elastography.

Experiments and results
In order to demonstrate the performance of our filtering framework, we design three
groups of experiments using synthetic data, phantom data and clinical data respec-
tively. All the codes in the following experiments are implemented in Matlab R2013a
(MathWorks Corporation, USA) and run in a desktop computer with a core 2 intel CPU
and 12G memory.

Synthetic data

The tissue examined in the quasi-static ultrasound elastography is a three dimensional
object, but the elastographic image collected by the ultrasound probe is two dimensional
data. Hence, in the first experiment, the scanned area of elastography is treated as one
rectangular area, which consists of two distinguished parts (inclusion and background)
with different materials parameters (Ey=15KPa and νy=0.47 for the inclusion part, and
Eb=7KPa and νb=0.47 for the background part). In order to generate authentic ground
truth, the mechanical deformation of the cylinder is simulated in ABAQUS (DS Simulia
Corporation, USA) as the ground truth: a constant pressure P=1KPa is then applied on
the top of the cylinder, and then the deformation ratio is calculated using the maximized
displacement of the top boundary divided by the height of cylinder, which is 3% in this
simulation. Then deformation of the rectangular cross-section of cylinder is extracted out
from the simulation: the rectangular cross-section of cylinder is first divided into a trian-
gular mesh consisted of 231 nodes and 400 triangular elements; then, the displacements
and velocities of 231 nodes are exported from ABAQUS as the ground truth. Because

Figure 1 Algorithmic flow chart.
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the deformation in this experiment is small, we set right-angled equilateral triangle ele-
ments in theABAQUS to do the FEM analysis. During the experiment of ourmodel-based
algorithm using the synthetic data, Young’s modulus is treated as a constant inside each
triangular element, but the value of Young’s modulus can vary from element to element.
Hence, the values of Young’s modulus of those 400 elements are estimated jointly with
kinematic functions through our filtering framework.
To evaluate the performance of the framework under different noises, two sets of

simulated displacement data with different signal-to-noise ratio (SNR) ((1) 55.1dB; (2)
29.9dB) are generated from the ground truth in this way: 1) simulated displacement data
are exported from ABAQUS; 2) two levels of white Gaussian noise are added into the
simulated displacement data. It is convenient to generate simulated displacement with
different SNR in Matlab platform, such as using wgn function or awgn function. The
axial strain maps calculated from noisy displacement data are first inverted as the relative
Young’s modulus as the output of a conventional strain-based algorithmwith the assump-
tion of stress uniformity [2] as the comparison to the results of the following filtering
experiments ((j) and (k) of Figure 2). The estimated results of Young’s modulus over tri-
angular mesh using 55.1dB and 29.9dB data are shown in (b) and (c) of Figure 2 without
smoothness. Interpolated results of Young’s modulus for 55.1dB and 29.9dB data are illus-
trated in (f ) and (g) of Figure 2 respectively over the triangular mesh. In order to evaluate
the effect of different noises on our framework, the estimated strain maps of our filtering
framework are illustrated in (h) and (i) of Figure 2, in comparison to the noisy strain maps
generated from the ground truth in (d) and (e) of Figure 2. In (j) of Figure 2, the middle
line of (f ) and (g) of Figure 2 and the deviation of neighboring zone (i.e., the distribution of
modulus along the center zone), are illustrated. In (k) of Figure 2, the middle line and the
deviation of neighboring zones of our filtering framework and the relative Young’s modu-
lus from the conventional strain-based method are compared together. For two groups of
simulated data using in our filtering method, the mean values of P1 and P3, parts of error
covariance matrix P, are calculated in every iteration and displayed in Figure 3.

Phantom data

After testing our filtering framework in the simulated data, two sets of real ultrasonic
RF data collected from different phantoms are used to evaluate the performance of our
filtering framework in this section. The first set of data is collected in one Elasticity
QA Phantom (Model 049, CIRS Inc. USA) using a PC-based Ultrasonix RP ultrasound
machine (Ultrasonix Medical Corporation, Burnaby, BC, Canada). The true distribution
of Young’s modulus of this set of data is: 80kPa for the inclusion and 25kPa for the back-
ground part. The axial components of displacement is extracted out from this set of data
using a phase-shift method [53]. The second set of data is provided online in public,
which is also collected from another Elasticity QA Phantom [54]. The true distribution
of Young’s modulus of this set of data is: 55kPa for the inclusion part and 33kPa for the
background part. The two-dimensional displacement filed of the second set of data is
also provided online in public by [54]. In the following experiment, the relative Young’s
modulus is still calculated by inverting axial strain maps based on the assumption of
stress uniformity [2]. In Figure 4, the estimated results of our model-based algorithm,
the strain image, the image of strain-based method, and the strain profiles along the cen-
ter line of strain-based method and our method are displayed together for comparison A
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Figure 2 Experiment on simulated data. Experimental results in the simulated data: (a) ground truth; (b)
estimated Young’s modulus (55DB); (c) estimated Young’s modulus(29.9DB); (d) noisy strain map(55DB); (e)
noisy strain map(29.9DB) ; (f) interpolated result(55DB); (g) interpolated result (29.9DB); (h) estimated strain
map(55DB); (i) estimated strain map(29.9DB); (j) comparison of our method’s performance under different
noise conditions; (k) performance comparison between our method and strain-based method under
different noise conditions.

quantitative comparison of image contrast is also shown in Table 1. The numbers inside
the brackets of Table 1 aremean values of Young’s modulus of the inclusion part and back-
ground part. In this table, the ideal contrast is compared to the actual contrast in different
deformation ratios for two sets of phantom data.

Clinical data

Three sets of patients’ ultrasonic RF data are provided online in public [54]. These data
were collected from patients undergoing open surgical RF thermal ablation for liver can-
cer who were enrolled between February 6, 2008 and July 28, 2009. The clinical statuses of
these patients are described in detail [54]. The ultrasound experiments were performed
with the approval of the Health Science Research Ethics Committee of Johns Hopkins
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Figure 3 Converge curve of mean value of P1 and P3. The converge curve of mean value of P1 and P3 in
different noise conditions: (a) the converge curve of mean value of P1 under two different noise conditions;
(b) the converge curve of mean value of P3 under two different noise conditions.

University (JHU), and the participants provided written informed consent before begin-
ning the experiment [54]. According to the previous reports on the mechanical property
of liver tissue, the tissue with Young’s modulus above 6KPa can be considered as lesion
inside liver [55]. All the patients’ data are processed in the same way as previous experi-
ments in phantom data. Since the axial and lateral displacement measurements have been
provided in [54], the extraction of displacement is not necessary in this experiment. The
initial conditions for all three sets of data are not exactly the same throughout the exper-
iment though the data acquisition is performed on the same kind of organ tissue using
the same equipment. For example, noise matrices Qv and Re need to be set empirically.
According to our experience in the phantom data, the convergence of our filtering frame-
work is not sensitive to the initial values of elements of system error covariance matrix
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Figure 4 Experiment on phantom data. Phantom data: (a) strain image of first set of data; (b) relative
Young’s modulus of first set of data; (c) estimated Young’s modulus of first set of data; (d) the comparison of
Young’s modulus profile along the central line between conventional strain-based method and our filtering
framework for first set of data; (e) strain image of second set of data; (f) relative Young’s modulus of second
set of data; (g) estimated Young’s modulus of second set of data; (h) the comparison of Young’s modulus
profile along the central line between conventional strain-based method and our filtering framework for
second set of data.
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Table 1 Quantitive comparison of phantom data

Deformation ratio Actual contrast Ideal contrast

First set of data 0.22% 1.9714(69/35) 3.2(80/25)

Second set of data 6.33% 1.4706(50/34) 1.6667(55/33)

P because P can be automatically tuned during the EKF procedure as we have shown in
Figure 3 in previous experiments.
In Figure 5, patients’ CT images scanned after RF ablation, strain images and our esti-

mated results are illustrated respectively. In Figure 5, patients’ CT images scanned after
RF ablation and strain images are provided online in public by [54]. In CT images, the
details of the organ structure is visible, but it is difficult to tell the abnormal tissue from
the normal tissue without clinical experiences. The position of tumors in CT images are
marked by clinical experts after RF ablation. However, in the strain images provided by
[54], it seems that the zones of abnormal tissue are much larger than the markers in CT
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Figure 5 Experiment on clinical data. Clinical data: (a) CT scan of patient 1; (b) strain map of patient 1; (c)
our result of patient 1; (d) CT scan of patient 2; (e) strain map of patient 2; (f) our result of patient 2; (g) CT
scan of patient 3; (h) strain map of patient 3; (i) our result of patient 3. The non-unity aspect ratio in the axes
of the strain images and elasticity images should be considered when comparing them to the CT scans, but
the axes of the strain images and elasticity images use the unity aspect ration.
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images. However, the zones of abnormal tissue in our results are clearly smaller than those
in the images generated by the strain-based method.

Discussion
In this paper, a filtering framework is proposed to recover the distribution of Young’s
modulus (i.e., a meaningful elastographic image), from sparse and noisy ultrasonic RF
data using a biomechanical constraint. The experiments reported in this paper reveal sev-
eral interesting aspects of our filtering framework, and potentially useful characteristics
to solve the recovery problem of elasticity distribution in quasi-static ultrasound elastog-
raphy. In general, the quality of estimated results is mainly influenced by following factors:
noise, deformation ratio, boundary conditions, input information and computational
cost.
Two kinds of noises have been studied above: measurement noise and process noise.

In most of previous iterative approaches, the measurement noise is considered, but the
process noise is always ignored. The main contribution of this paper is to treat the mea-
surement noise and process noise as Gaussian noises. The process noise is caused by the
mismatch between the data and the system model, i.e., model-data discrepancy. Since
there are not much previous works to study the properties of process noise, the pro-
cess noise is modeled as white noise distribution, which is the contribution of this paper
for iterative approaches to quasi-static elastography to our knowledge. The measurement
noise is also modeled as another independent white noise. Therefore, the tolerance of
noises of our model-based algorithm is one important factor that should be carefully
examined. In the experiment of simulated data, as you can see in (j) of Figure 2, the tol-
erance of noise of our filtering framework gets worse when the noise becomes larger.
Although our filtering method has incorporated the biomechanical constraints, the qual-
ity of estimation is still compromised by the noise as shown in (j) of Figure 2, which can
be explained by the shortcoming of EKF: when the system is nonlinear, EKF might only
be able to give sub-optimal estimates, as it relies on linearization of the nonlinear sys-
tem equation to propagate the mean and covariance of the state. But when the results
of our model-based algorithm are compared to the results of conventional strain-based
method, as you can see in (k) of Figure 2, the relative elastogram (i.e., relative Young’s
modulus calculated from the conventional strain-based method), is far away from the
ground truth and easily corrupted by the noise, while our model-based method still can
recover a meaningful elastogram by introducing a biomechanical model into EKF frame-
work. In Figure 4, the results of strain-based method and our filtering framework for the
phantom data are displayed and compared. As shown in (d) and (h) of Figure 4, our fil-
tering framework still can generate meaningful distribution of Young’s modulus, but the
conventional strain-based method failed to recover the true value of Young’s modulus
from ultrasonic data. A quantitative comparison is also shown in Table 1: the values cal-
culated by the ground truth are close to the values calculated by our estimated results.
Hence, we can conclude that our filtering method can generate more meaningful results
under the assumption of Gaussian noise, which is to say that our filtering method is more
robust than the conventional strain-based method in handling the noise from ultrasound
elastography.
One factor to compromise the quality of the results of our model-based algorithm is the

measurement noise. Measurement noise is produced during the process of acquiring RF
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data from organ tissue. It is therefore necessary to take the measurement noise effect into
account during the recovery procedure. In the past, some of Direct approaches ignore
the measurement noise, and their results are drastically affected. The measurement noise
introduced during the acquiring process of ultrasonic RF data mainly depends on ultra-
sound machine and the skill level of operators. One way to increase the SNR is to employ
a large deformation ratio during the elastography. That is revealed in phantom study:
with larger deformation ratio, the result of the second set of data is better. As shown
in the Table 1, the quality of estimation is comprised by the noise largely under a small
deformation ratio, therefore a large deformation ratio can be helpful for a quick and quan-
titive identification of abnormal tissue as shown in Table 1. However, it is not always
practical to increase the deformation ratio arbitrarily because of de-correlation of RF sig-
nal, so the reduction of the noise effect is still an important issue that still needs to be
addressed.Moreover, as shown in (d) and (h) of Figure 4, and Table 1, though our filtering
framework is still able to recover a reasonable distribution of Young’s modulus from real
ultrasonic data, the quality of estimated results is not so good as the results in the simu-
lated data because the statistical property of system andmeasurement noises are available
in controlled simulation and not easily available during the actual process of elastogra-
phy. Therefore, the statistical property of process noise (i.e., model-data discrepancy), and
measurement noise are worthy to be carefully examined in the future work.
The way to enforce the boundary conditions is also important in our filtering frame-

work. In this work, we have employed three different strategies to enforce the boundary
conditions: known surface force distribution (simulated data), penalty method [44] and
modifying stiffness matrix K with boundary nodes’ displacement information [44]. With
known surface force distribution, it is convenient to enforce this condition through exter-
nal loading R. However, surface force distribution introduced by the probe is difficultly
acquired in clinical cases. In the penalty method, a large constant, the penalty factor, is
added to the diagonal elements of stiffness matrix K, but it will change the structure of the
state-space equation and easily diverge ourmodel-based algorithm.One possibleway is to
use the movement of boundaries of the interested area as the boundary conditions, so the
external force conditions can be implicitly enforced by enforcing themovement of bound-
aries of the interested area. In the phantom and clinical data study, the stiffness matrix
K is modified by the boundary nodes’ displacement information, which is an alternative
way to enforce the boundary conditions without changing the structure of the state-space
equation. In our experiments of phantom and clinical data, promising results have proved
the efficiency and accuracy of modifying stiffness matrix K with boundary nodes’ dis-
placement information. However, the displacement of moving boundary is extracted out
from noisy ultrasonic data. So the quality of estimated results of our filtering framework
can be affected by the noise of moving boundary from ultrasonic data.
Our filtering method is to generate the optimal estimates using the biomechanical

model constraint and the available measurements. In the experiment of phantom data, as
explained above, a full displacement field is provided in the second set of data, but only
the axial displacement is given in the first set of data. Since the measurement from the
second set of data can provide more reliable observations, our filtering framework can
generate a better result in the second set of data than that in the first set of data as shown
in Figure 4. Hence, in order to maximize the performance of our filtering framework,
more reliable observations (i.e., input information to our filtering framework), should be
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secured. We should point out that the strain and elasticity images without anatomical
information will prevent people from upstanding its benefits in clinical practice. Hence,
we believe that a further study of the registration of anatomical images (such as CT) and
functional images (strain and elasticity images) should be carried on. We admit that it
is so difficult to obtain the ground truth in the clinical experiment, and thus it will be
always a challenging and interesting topic to carry further study of the performance of
our framework using different clinical data.
The initial conditions for all three sets of data are not exactly the same throughout

the experiment though the data acquisition is performed on the same kind of organ tis-
sue using the same equipment. For example, noise matrices Qv and Re need to be set
empirically. According to our experience in the phantom data, the convergence of our
filtering framework is not sensitive to the initial values of elements of system error covari-
ance matrix P because P can be automatically tuned during the EKF procedure as we
have shown in Figure 3 in previous experiments. For system error covariance matrix P,
two important parts, P1 and P3, should decrease when our filtering method converges.
As shown in Figure 3, the mean value of P1 and P3 decreases through iterations as
expected, which indicates that the stochastic dynamic vector andmaterial parametric vec-
tor becomes close to the optimal estimates. However, the convergence rate of mean value
of P1 and P3 in small noise condition is higher than under higher noise condition, which
is to say that the final converged state is still affected by the noise.
The computational cost is always a problem to the iterative approaches. In our filter-

ing framework, the multiplication of large matrices is a time-consuming task during the
iterative process of EKF. In our study, the mesh size is 21*11. The size of state vector is
1324*1, and the size of error covariance matrix is 1324*1324. One loop (Eqs. (22)–(26))
costs about 5-8 seconds, and 200 or more loops are required to reach the convergence
of EKF as show in previous Figure 3. It totally takes 15-25 minutes to converge, which is
not suitable for real-time data acquisition. Therefore, it is not feasible to use fine mesh
in our framework in current hardware configuration. However, after incorporating the
biomechanical model as the constraint into our filtering framework, it is clear in Figure 5
that the elastogram map with low sampling rate is much more readily identifiable than
the strain map with high sampling rate: the size of lesions are much smaller than that
indicated from strain-based images. So considering the quality of our filtering framework
for the quasi-static ultrasound elastography, the reduction of computation, such as GPU
acceleration of matrix operation, will be a promising researching topic in the future.

Conclusions
In our filtering framework, the absolute values of Young’s modulus are estimated through
the EFK in a MMSE sense. We address the model-data discrepancy and measurement
noise by introducing process noise and measurement noise in our framework. Three
groups of data: synthetic data, phantom data and patient data, are used to validate the
performance of our framework. It is straightforward to apply this framework at other
occasions of transformation from noisy dynamic information to material parameter
distribution, not limited to mere quasi-static ultrasound elastography.
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