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Abstract

Background: Atherosclerosis causes millions of deaths, annually yielding billions in
expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a
medical imaging modality, which displays high resolution images of coronary
cross-section. Nonetheless, quantitative information can only be obtained with
segmentation; consequently, more adequate diagnostics, therapies and interventions
can be provided. Since it is a relatively new modality, many different segmentation
methods, available in the literature for other modalities, could be successfully applied
to IVOCT images, improving accuracies and uses.

Method: An automatic lumen segmentation approach, based on Wavelet Transform
and Mathematical Morphology, is presented. The methodology is divided into three
main parts. First, the preprocessing stage attenuates and enhances undesirable and
important information, respectively. Second, in the feature extraction block, wavelet
is associated with an adapted version of Otsu threshold; hence, tissue information is
discriminated and binarized. Finally, binary morphological reconstruction improves
the binary information and constructs the binary lumen object.

Results: The evaluation was carried out by segmenting 290 challenging images
from human and pig coronaries, and rabbit iliac arteries; the outcomes were
compared with the gold standards made by experts. The resultant accuracy was
obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False
Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False
Negative Distance (mm) = 0.06 ± 0.1.

Conclusions: In conclusion, by segmenting a number of IVOCT images with
various features, the proposed technique showed to be robust and more accurate
than published studies; in addition, the method is completely automatic, providing
a new tool for IVOCT segmentation.

Keywords: Intravascular optical coherence tomography (IVOCT), (IOCT), Coronary
disease, Segmentation, Wavelet, Otsu, Mathematical morphology
Background
Cardiovascular disease (CVD) is the number one cause of death in the United States

(USA). According to the American Heart Association [1], in 2007 a rate over 2200

people lost their lives by CVD every day. It corresponded to 33.6%, more than 1/3 of

all deaths. Consequently, CVD had also the greatest cost among all diseases, U$286

billion. Among CVDs, the coronary diseases are the most common, and they led to

approximately 407,000 deaths in 2007, half of the CVD mortalities [1]. On account of
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this striking problem, equipment, tools and methods, which could lead to better diag-

nostic, therapies, and interventional procedure, have been attracting an enormous

research interest. Consequently, the use of Intravascular medical imaging modalities,

such as Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (IVOCT)

have become essential tools in cardiologic centers [2-5].

IVUS and IVOCT are invasive medical imaging modalities based on ultrasound and

near-infrared technologies, respectively. In both modalities, image acquisition is carried

out by inserting the specific catheter inside the artery and performing a pullback

movement. Accordingly, cross-section images with anatomical, morphological and

pathological information of arteries are provided [2,3,5,6]. As a result, more reliable

diagnostic are obtained, and correct therapeutic procedure may be executed [4,7-9].

Nonetheless, only images do not supply the cardiologist with objective information,

such as plaque, lumen, and elastic-lamina perimeter, radius, diameter, size, etc. [10-12].

Therefore, accurately separating related objects in an image bring special information

for a range of coronary investigation; consequently, segmentation has been the scope

of many studies recently [2-4,6,7,9,13].

Segmentation is a procedure in which related structures are recognized and deli-

neated in an image, hence separating wanted object from the rest of the image [11,14].

Recognized as one of the hardest and most significant imaging processing operations,

segmentation is directly or indirectly part of the great majority of imaging processing

algorithm [11,15,16]. It can be executed manually by a skilled operator; semi-automa-

tically, initialized by seed or contour and completed by an algorithm; and completely

automatic, where the images are selected, and a method is applied for the entire process

[17]. The implication is that, objective information of perimeter, radius, diameter, size

of plaque, lumen, and elastic-lamina are supplied [11,12]. Specifically, it is important

for a range of coronary investigations, for instance, quantification of stenosis, and its

regression during treatment, following in-stent neointimal re-stenosis [18], and for a 3D

reconstruction. As a result, diagnostic, therapy planning, treatment, evaluations, and

interventional procedure are much more reliably and efficiently executed [4,11,12,19-23].

Relevant segmentation works, using a variety of methods, have been published in the

last decades. The theory of Fuzzy Connectedness can be found in [11,16,24] Fuzzy

applied in IVOCT was investigated in [25]. The concept of energy minimization process,

dynamic programming, deformable and active contours, as well as snakes, are used in

the works by [17,23,26] in which this theory is also applied in IVUS segmentation by

[4,27], as well as in IVOCT by [3,28-31]. Wavelet Transformations have also a good

acceptance, and have demonstrated to be a strong feature extractor in recent studies,

for instance, [4,32] in IVUS, and [2] for IVOCT images. In addition, statistical and

probabilistic approaches, contextual knowledge, or global image information and

heuristic graph searching, gray level distribution and intensity profile analysis, can be

found in [7,33,34] with IVOCT application in [35-37]. Finally, Otsu followed by ma-

thematical morphology has been successfully applied to make binary images and

post-processing them; this combination can be found in [32,38], in which they are

employed in IVUS, and [29,39,40] applied similar concept in IVOCT segmentation.

Specifically, [32] have successfully applied DWPF, with Otsu binarization, and Binary

Morphological Reconstruction to segment the media-adventitia border and coronary

wall in IVUS images.
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The approaches described in the literature have used advanced and modern metho-

dologies, and presented good results. Nonetheless, two main drawbacks can be found

in most solutions. First, they are computationally demanding, due to computationally

heavy operations, such as training stage. Second, they are semi-automatic, since IVUS

and IVOCT are modalities that provide hundreds and even thousands of images per

exam; manual, and even semi-automatic segmentation methods become a stressful

and time-consuming task. In addition, they may have high variability among operators

due to different initializations. Therefore, automatic segmentation methods are a more

adequate and practical tool for both modalities [32,33,41]. In addition, since IVUS is

older than IVOCT, engineers can find from the literature a much wider variety of

methods for enhancing, or implementing solutions to create extra tools or to embed

in new IVUS equipment. In order to provide this variety of methods for IVOCT as

well, alternative approaches should be created, and/or successful IVUS segmentation

methods, adapted and migrated to IVOCT. Therefore, a successfully applied IVUS

segmentation Method, presented in [32,38], has been adequately adapted, and a new,

computationally light, and fully-automatic lumen segmentation method for IVOCT

images was created. A previous and concise version of this IVOCT approach was first

introduced and presented in [39].
Materials and methods
The segmentation methodology is based on combining operations in three steps, Prepro-

cessing, Feature Extraction and Binary Morphological Image Reconstruction (Figure 1).

The evaluation was performed comparing the segmented images with their gold standards

made by experts and calculating the parameters of accuracy [15,32]. The material is

composed by a set of 290 IVOCT images from 2 patients, 2 pigs, and 1 rabbit, from

the database of the Heart Institute of the University of São Paulo Clinic Hospital,

Brazil (InCor). The 290 images in the dataset were chosen to represent a variety of

coronary feature in IVOCT images, such as different degree of wall contrast, lumen

irregularities due to thrombus, plaques and branches, and with 30 and 180 days after

stent implantation, the study protocol was approved by the ethic committee of InCor

with informed consent signed by patients. The images were acquired with pullback

of 0.5 mm/s, and 20 f/s, by a TD-OCT, St. Jude/LightLab ImageWire catheter,

connected to the St. Jude/LightLab OCT Imaging System and Probe Interface Unit

(St. Jude/LightLab Optical Coherence Tomography – St. Jude Medical, Inc., Westford,

Massachusetts, USA).
Preprocessing

Because, cardiac centers have images acquired and stored in the usual format for visual

evaluation, Cartesian domain with catheter reflection and alignment marks, the prepro-

cessing block should prepares and normalizes the image, providing a standard image to

the rest of the method. If OCT raw data was available, the preprocessing block could

be neglected; however, since we could not ensure that all previous acquired was

exported and saved in this format, the preprocessing is necessary. Therefore, beyond

image normalization, this stage also aims at the attenuation and enhancement of undesi-

rable and desirable features, respectively [4,42]. Specifically, the catheter reflection,
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Figure 1 Block diagram of the major parts of the segmentation process.

Moraes et al. BioMedical Engineering OnLine 2013, 12:78 Page 4 of 17
http://www.biomedical-engineering-online.com/content/12/1/78



Moraes et al. BioMedical Engineering OnLine 2013, 12:78 Page 5 of 17
http://www.biomedical-engineering-online.com/content/12/1/78
and the alignment mark are undesirable features for this purpose, and may damage

and limit the segmentation procedure. On the contrary, work with circular structures,

such as coronary, in the polar domain has many advantages due to its 1D appearance [4].

The catheter reflection, and the alignment marks are recognized by a ring at the

center of the IVOCT image, and straight lines marking fixed positions, and one long

line crossing the image (Figure 2a). For our purpose, they can be seen as noise, hence

dropping down the segmentation accuracy, because they may be misinterpreted as tissue

during the Feature Extraction procedure. However, since they have known location,

dimensions and characteristics, they can be removed by two simple operations. First,

the catheter is removed by eliminating the concerning pixels inside the catheter ring

maximum radius (rMax) (Figure 2b) [32]. Secondly, a 2D median filtering procedure,

using 5 by 5 window, was carried out to attenuate the alignment marks, and also

fading out any destructive Speckle effects without damaging borders [43,44] (IFiltered)

(Figure 2c).

Working in an appropriate domain may help improve the method efficiency, and

simplify image description [4,32]. Because the coronary has circular structure in the

Cartesian image, a 1D appearance is obtained when converted to the polar domain.

Therefore, so as to facilitate next procedures [7], the images were transformed into

the polar representation (IPreProc(r, θ)) (Figure 2d), with 200 pixels of r, equal the

length of the Cartesian image radios, and 630 pixels of θ, approximately equivalent to

a radial variation of 0.57 degrees per line. These dimensions are important because

further morphological procedures uses operations based on IPreProc(200, 630).
(a) (b)

(c) (d)

IOriginal INR

IFiltered IPreProc

Preprocessing

Figure 2 Steps of the preprocessing stage. (a) Original image. (b) Original image without catheter ring
(INR). (c) The INR image after median filtering (d) Preprocessed image (IPreProc), which correspond to IFiltered in
the polar domain.
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Feature extraction

The Feature Extraction uses operations to identify and to distinguish the desired

information; hence, increasing discrimination and improving classification [42,45,46].

Following what was successfully applied in [32], a combination of two widely used

operations, Discrete Wavelet Packet Frame (DWPF) [42,47] and Otsu threshold [48],

were adopted to acquire tissue information (Figure 3).

The Discrete Wavelet Packet Frame (DWPF) is well known and has been established

as a very important tool to distinguish the desired information from others, hence

increasing the separability between them [4,32,42,47,49,50]. Therefore, one level of

decomposition using Daubechies 1 (dB1) was carried out [32,49,50], and the IPreProc
image (Figure 4a) was decomposed into four coefficients (Figure 4b). The wavelet and

decomposition coefficient were selected, based on the high correlation with the tissue

information. As can be seen in Figure 4c, the Coefficient of Approximation 1, cA1, is

the one that best extracted and separate tissue information (Figure 4c, between yellow

to red color) from the rest of the image. Once we have the tissue information, the

lumen region is directly recognized (Figure 4c). Therefore, cA1 was chosen to be the

tissue information supplier, hence serving as reference for the binary lumen object re-

construction. Binary morphological image reconstruction [32,51] is a very useful tool

to estimate and polish previous information, thus increasing the method accuracy

and robustness. However, a binarization process should be performed beforehand.

Due to the variety of resultant IVOCT image features, according to the artery and

the patient being imaged, an adaptive threshold selection is required for a good

binarization.

Otsu [48] is a dynamic threshold selection method for dynamic binarization process,

in which a histogram is divided into two classes, by seeking for the smallest variance

between two clusters, hence providing a good separation for data with bimodal histo-

gram. Because the wavelet transformation increases the separability of desired and

non-desired information, a highly bimodal histogram is created with cA1, which makes

an adequate data to be binarized by Otsu. However, since infrared is distance sensitive,

the contrast between tissue and blood may have an angular intensity variation according

to the catheter location (Figure 5a, red square). Consequently, data between the two

classes may appear in the histogram (Figure 5b), highlighted in black); hence, information

may be lost after binarization (Figure 5c, highlighted in red). Nonetheless, the histogram

of each column of the cA1 usually has two pieces of information (Figure 5d and e), tissue

and no-tissue; even when the tissue contrast is low, a bimodal histogram will be obtained

(Figure 5e, column b). Therefore, we adopted a local Otsu binarization process, by

column; consequently, by performing the mentioned procedure, cA1bin is created,

which corresponds to the binary version of cA1 (Figure 5f ). As a result, the Binary

Morphological Reconstruction can be carried out.
Binary morphological image reconstruction

Binary morphological Image reconstruction is a sequence of combined mathematical

morphology techniques [32,51,52] designed to obtain an accurate binary version of

the desired object. Particularly in this block, we used the previous information, cA1bin

(Figure 6a), to obtain the corresponding binary lumen object, lbin (Figure 6b). In order
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Figure 3 Steps of feature extraction. (a) Preprocessed Image. (b) cA1bin, binary tissue information.
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Figure 4 Steps of the DWPF stage. (a) Preprocessed Image. (b) DWPF coefficients of 1st decomposition.
(c) Close look of Coefficient of Approximation 1 cA1.
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to accomplish this task, the operations for the reconstruction are divided into three

parts, Polar Image Reconstruction, Opening Detection and Correction, and Cartesian

Image Reconstruction (Figure 6). The first, polar image reconstruction, aims to obtain

the complete complementary part of the polar lumen object, lpolar*, (Figure 7). If the

image has branch opening, the opening detection and correction block is performed

to correct it (Figure 8). The final binary lumen object, in the Cartesian domain, is

reconstructed during the Cartesian image reconstruction (Figure 9). Each block is

detailed below:
Polar image reconstruction

Polar Image Reconstruction is a combination of binary morphological procedure applied

in the polar domain information, cA1bin, so that it can be refined, and possible missing
(f)

cA1 cA1bin

cA1

(a) (c)

(f)
Otsu per
column

Low tissue
contrast

Consequence of low tissue
contrast

Resultant Missing
Information

(b)

(e)

C
ol

um
nA

C
ol

um
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Histogram of columnA

Histogram of columnB

Histogram of Image

Tissue

TissueNon-Tissue

Non-Tissue

TissueNon-Tissue

Otsu

(d)

Figure 5 Steps of the Otsu binarization process. (a) Coefficient of Approximation 1 cA1 with low tissue
contrast highlighted. (b) Illustration of the consequent histogram of all cA1, with tissue and non-tissue
information mixed, because of local low tissues contrast. (c) Resultant binary cA1 using Otsu threshold in all
cA1; highlighted in red is the resultant missing information due to the local low contrast. (d) Coefficient of
Approximation 1 cA1 with the illustration of the binarization by Otsu per column. (e) Illustration of the
consequent histogram of columnA and B of cA1, since each column has tissue and non-tissue information,
no matter the intensity, the histogram of each column will be bimodal, and well separated. (f) cA1bin, after
column Otsu binarization.
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Figure 6 Binary morphological reconstruction blocks. (a) cA1bin, the binary tissue information. (b) lbin,
the binary lumen object reconstructed.
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Figure 7 Polar image reconstruction. (a) cA1bin, the binary tissue information. (b) cA1binFiltered, the cA1bin
filtered by an opening procedure. (c) cA1binFilled, is the cA1binFiltered, after a filling procedure. (d) lpolar the
complementary part of the polar lumen object reconstructed.
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information estimated (Figure 7). Due to the range of artery and blood features of

patients, spurious noises may appear in a variety of sizes and quantity in the lumen

region in the cA1bin (Figure 7a). Since they could also be connected to the tissue in-

formation, these noises must be removed. To remove them, we first disconnect them

from the main tissue information block by filtering the image with a morphological

opening procedure [51,52] resulting in cA1binFiltered (Figure 7b); second, an upward
(a)

(e)

(b) (c) (d)

(f) (g) (h)

IOriginal IPreProc cA1

lpolar* Corrected

polar* Opened

polar* Opened)

Opening
Opening

Opening Consequence
of opening

h(l

l

polar*Corrected)

Correction

Opening Detection and Correction

h(l

Figure 8 Opening detection and correction. (a) IOriginal, Example of an Image with branch opening.
(b) IPreProc consequent preprocessed image with branch opening. (c) Resultant cA1. (d) lpolar*Opened the polar
lumen object with branch opening. (e) Height of the final polar image represented by signal h(lpolar*Opened),
high derivatives highlighted in yellow, indicates the presence of opening. (f) h(lpolar*Opened) with correction
being performed, values corresponding to the opening are removed for interpolation. (g) h(lpolar*Corrected),
Signal representing the column corrected. (h) The corrected polar lumen object lpolar*Corrected.
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Figure 9 Cartesian image reconstruction. (a) lpolar* the complementary part of the polar lumen object
reconstructed. (b) lpolar, the polar lumen object reconstructed. (c) lumenbin, final binary lumen object
reconstructed in the Cartesian Domain.
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filling procedure [32,51-53], resulting in cA1binFilled (Figure 7c), followed by an area

selection generating the selected(cA1binFilled) is carried out; finally, a last closing pro-

cedure [51,52] is performed, obtaining the complementary polar lumen object, lpolar*

(Figure 7d). The opening and closing procedures uses circular structuring elements,

with 3-pixel and D pixels diameters, respectively. The circular elements is to maintain

the smooth contour of object, and D = rMax pixels, is an adaptive diameter where rMax

correspond to the catheter ring maximum radius [32]. This size assures that possible

lumen border irregularities will be attenuated without changing original contour or

connecting the object to top of the polar image.
Opening detection and correction

Branch openings are shadows in IVOCT images caused by vessel bifurcations during

image acquisition (Figure 8a) [32]. Consequently, they are propagated to the preprocessed

image and cA1 (Figures 8b, and c). Because the gap does not produce contrast in its

columns, a bi-modal histogram is not generated; thus, the columns corresponding to

the gap are binarized as level “1” (lpolar*Opened) (Figure 8d). This causes high derivative

at the lumen border shape of the lpolar*Opened (Figure 8d). Therefore, its detection and

correction is carried out as follows. First, a signal representation of the polar image is

created h(lpolar*Opened) (Figure 8e). Second, the signal derivative is calculated, and by

finding values higher than a threshold, the opening is detected. Consequently, the

correction initiates by removing all the values corresponding to the gap (Figure 8f ),

and performing Piecewise cubic Hermite interpolation (Figure 8g). Finally, the

corrected polar image (lpolar*Corrected) (Figure 8h) is then reconstructed using the

interpolated signal. The beginning and end of the gap are identified as the first and

last derivative absolute values, respectively higher than the threshold, which is defined

as 5 standard deviation of all derivative signals.
Cartesian image reconstruction

The Cartesian image reconstruction combines an image domain transformation with one

last morphological operation, for object polishing. Therefore, lpolar* (Figure 9a) is obtained,

no matter if it went through the opening correction. First the logic negation of lpolar* is

carried out; hence, obtaining the lumen object in the polar domain, Ipolar (Figure 9b).
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Finally, the lumen reconstruction, lumenbin (Figure 9c), is concluded by transforming to

the Cartesian domain, ICartesian followed by one last opening operation [51,52], with a

circular structuring element with adaptive diameter Rmin pixels (Scirc(Rmin)), where Rmin

is the minimum radius between the center and border of the lumen. This last opening is

because possible irregularities in the polar domain will be carried to Cartesian. Using a

circular element, these remaining irregularities are removed, and a smooth contour of the

object is obtained. Finally, the segmentation is concluded by extracting and placing

contour of lumenbin on the Original image [52] (Figure 10).
Results and discussion
The proposed approach was evaluated by segmenting and computing the parameters

of accuracy in 290 IVOCTchallenges images, which experts established gold standards for

the lumen. The database was composed of images with different vessel size and features,

such as irregularities and eccentricity of lumen due to thrombus; plaques; branches; se-

veral tissue contrasts, and stent implanted 30 and 180 days before acquisition (Figure 10).

The image segmentation was performed in a Desktop computer with an Intel Core 2

Duo 2.53 GHz, 4 GB of RAM, Windows Vista 32 bits and MATLAB (2009a) without

code optimization. The average time of the lumen segmentation, using the software

and computer described above, was (5.9 ± 3)s; apart of being faster than manual seg-

mentation, which is above one minute per image, it is more practical and much less

exhaustive, since hundreds of images are provided. Code optimization or the use of

other computer language, such as C++ or Java certainly may improve even more the

processing time.
Assessment of accuracy

The accuracy was obtained by computing from the 290 images the average and standard

deviation of the following parameters: True Positive Area Fraction (TP), the False Positive

Area Fraction (FP), the False Negative Area Fraction (FN), as well as the Maximum False

Positive Deviation (MaxFP), the Maximum False Negative Deviation (MaxFN). Figure 10

shows a sample of the segmented images and their accuracy. The good accuracy can be

verified in Table 1, in which the TP yielded more than 99% of agreement, and FP slightly

higher than 3%; the method precision and robustness can be seen by the small standard

deviation of the indexes a lower than 3% (Table 1), and the small MaxFP, and MaxFN, with

average smaller than 0.1 mm in both indexes, for an image size of 6 mm × 6 mm.

Conclusions among different methods should be carried out comparing results

using the same database, computer, and software. Therefore a direct comparison

among published methods and this approach is not in the scope of this paper. None-

theless, pointing out equivalences between published and new methods may be useful

to support comparisons. The method efficiency, high accuracy, precision, and robustness

were corroborated by computing and comparing the related parameters (Table 1) to

equivalent works. The computational cost provided in the proposed method, approxi-

mately 6s per frame, is in line with the one proposed by [36], which makes 100 frames

of stent-IVOCT segmentation in 15 min. The works presented by [30,31] obtained

costs of less than 1s per image using C++. In order to compare our accuracy to other

methods, the Overlap Ratio (OR) [2] and Overlap Dice (OD) [3] were also computed,
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Figure 10 Segmentation outcomes. The blue line is the gold standard, and the green one is the contour
made by this approach. The images from human and pig coronaries, and rabbit iliac arteries have different
level of tissue contrast, lumen irregularities due to thrombus, plaques and branches, with stent after 30 and
180 days of implantation.
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Table 1 Assessment of accuracy [15]

Parameters

T P F P F N MaxFP MaxF N OR OD

(%) (%) (%) (mm) (mm) (%) (%)

99.29 3.69 0.71 0.1 0.06 95.4 97.8

±2.96 ±2.88 ±2.96 ±0.07 ±0.1 ±4.8 ±2.16

Pixel size: 15 μm x 15 μm.
Image size: 400 x 400 pixels.
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values close to 96%, and 98%, were obtained respectively (Table 1). In [2], their lumen

segmentation approach presented an OR near 94%. In the paper presented by [3], an

appreciable value of OD close to 97% was obtained. In the semi-automatic method

presented in [25] led to results close to 96% and 98% of OR and OD, respectively. As

a result, our outcome accuracy rendered efficacy as high as results from mentioned

works [2,3,25]. The proposed method has the advantage of being completely auto-

matic and also composed by operations known to be simpler and lighter, in which the

use of heavy computational tasks, related to energy minimization procedures, were

prevented.

The Fourier-Domain OCT technology (FD-OCT) has rapidly increasing its use

among cardiologists, and it is currently considered a better choice for IVOCT images.

However, since time-domain OCT technology (TD-OCT) is the only available solution

in many locations, it is still a useful tool, fulfilling most of the requests of clinics and

hospitals, such as follow-up in stent neointimal re-stenosis [18]; hence, it may not be

completely replaced very soon. Therefore, tools and methods dedicated to automate

TD-OCT image applications are still useful. During the development of the proposed

method, the TD-OCT was the only available choice, kindly supported by our collabor-

ator (InCor). Using images from others sources, additional ethics protocols and new

collaboration policies should have been established. Due to that, the current method-

ology was fully created based on TD-OCT technology and its image features.

Indeed, because different IVOCT technologies, for instance the TD-OCT and FD-

OCT, provide a different image texture, the Feature Extraction and Morphological

Operations blocks of this methodology would have to be modified so as to work in

both technologies. However it is not in the scope of this work. Therefore, efforts will

be made to access FD-OCT technology by additional collaborators and partners; conse-

quently, this method will be adapted to work in both technologies. Beyond that, futures

works will investigate techniques to create an alternative stent segmentation method;

hence, permitting a 2D neo-intima re-stenosis quantification. Additionally, solutions to

overcome the challenges of an accurate artery 3D reconstruction will be pursued;

hence, providing complete volumetric artery information, speeding up investigation

and bring more details to follow in-stent neointimal re-stenosis.

Conclusions
The importance of IVUS and IVOCT segmentation, to directly or indirectly contribute

to numerous investigations, is a topic of great concern in many research groups

[2-4,27-32,38]. The mentioned papers have provided a variety of interesting methods

and good results. Nonetheless, a method that gathers the best of different features such
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as accuracy, practicability, and good computational demand is still on track. Conse-

quently, new and alternative approaches which could improve one or some of the fea-

tures are very welcome.

We presented an alternative methodology, combining wavelet and mathematical

morphology. This methodology was successfully employed in previous studies [32,38],

and was now adapted and applied for the lumen segmentation in IVOCT (TD - OCT)

images. The methodology was based on four stages. The first, Preprocessing block, the

image is prepared, and normalization and filtering are carried out. The second, Feature

Extraction, tissue information is obtained by Wavelet transform and Otsu [48]. Next,

Binary Morphological Image Reconstruction is performed. Finally, the segmentation is

concluded via Contour Extraction.

Good efficiency, accuracy, computational cost and practicability have motivated the

development of the proposed method for IVOCT images. The major specific contribu-

tions are: (a) A wavelet associated with an alternative version of Otsu for tissue infor-

mation extraction, and; (b) a new sequence of morphological operations, designed to

reconstruct lumen object, resulting in an accurate segmentation, even in the presence

of bifurcation structures.
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