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Abstract

Background: Brain computer interfaces (BCI) is one of the most popular branches in
biomedical engineering. It aims at constructing a communication between the
disabled persons and the auxiliary equipments in order to improve the patients’ life.
In motor imagery (MI) based BCI, one of the popular feature extraction strategies is
Common Spatial Patterns (CSP). In practical BCI situation, scalp EEG inevitably has the
outlier and artifacts introduced by ocular, head motion or the loose contact of
electrodes in scalp EEG recordings. Because outlier and artifacts are usually observed
with large amplitude, when CSP is solved in view of L2 norm, the effect of outlier and
artifacts will be exaggerated due to the imposing of square to outliers, which will finally
influence the MI based BCI performance. While, L1 norm will lower the outlier effects as
proved in other application fields like EEG inverse problem, face recognition, etc.

Methods: In this paper, we present a new CSP implementation using the L1 norm
technique, instead of the L2 norm, to solve the eigen problem for spatial filter
estimation with aim to improve the robustness of CSP to outliers. To evaluate the
performance of our method, we applied our method as well as the standard CSP and
the regularized CSP with Tikhonov regularization (TR-CSP), on both the peer BCI dataset
with simulated outliers and the dataset from the MI BCI system developed in our
group. The McNemar test is used to investigate whether the difference among the
three CSPs is of statistical significance.

Results: The results of both the simulation and real BCI datasets consistently reveal that
the proposed method has much higher classification accuracies than the conventional
CSP and the TR-CSP.

Conclusions: By combining L1 norm based Eigen decomposition into Common Spatial
Patterns, the proposed approach can effectively improve the robustness of BCI system
to EEG outliers and thus be potential for the actual MI BCI application, where outliers
are inevitably introduced into EEG recordings.

Keywords: Brain computer interface, Common spatial pattern, L1 norm, Motor imagery,
Singular value decomposition
Background
Brain Computer Interface (BCI) is to establish the communication between human

and some output devices such as a computer application or a neuroprosthesis, by

means of noninvasive [1-3] or invasive approaches [1,4] Motor imagery based BCI uses

the information correlated with amplitude modulations of sensory motor rhythms

(SMR), which can reflect the motor intention of the subjects [1,5]. Because recent
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study reveals that even the patients diagnosed with amyotrophic lateral sclerosis

(ALS) can accomplish SMR modulations [6], this kind of BCI has potential appli-

cation for those patients with full or partial motor function impaired and has

attracted wide attention in the fields such as rehabilitation [7], assistance of para-

lyzed patients’ movement [6], therapy of attention deficit hyperactivity disorder

(ADHD) [8] and epilepsy [9]. Therefore, the main work in current work will

focus on how to improve the performance of MI based BCI by considering the

outlier effect.

The modulation of SMR will generate the event-related desynchronization (ERD)

usually followed by event-related synchronization (ERS) [10]. The common spatial

pattern (CSP) has been proved to be powerful to extract those motor imagery

related features [11-13]. CSP algorithm aims to find directions (i.e., spatial filters)

that maximize variance for one class and minimize variance for the other class at

the same time [13]. Berlin BCI team has developed a robust online system (BBCI)

using CSP to extract the motor imagery related features [14]. Despite of its popularity and

efficiency, CSP is also known to be highly sensitive to outliers, which widely exists in the

practical BCI application due to the ocular moment, head motion or the loose contact of

electrodes [1]. Even a single outlier can dramatically change the subspace spanned by the

generalized eigenvectors and thus severely distort the global solution of CSP,

resulting in a meaningless feature. The standard CSP utilizes the L2-norm SVD to

find the spatial filter, obtained by solving the generalized eigenvalue problem,

which indicates that the influence of the outliers will be exaggerated due to the square

property of L2 norm [15].

To improve the robustness of CSP, some schemes like the regularization, spars-

ity and ensemble voting were presented in [16-18]. For those existing improved

CSPs, the main derivation is to build the new object function with aim to lower

effect of introduced noise, which may distort the original deriving point of CSP

that is essentially to maximize the power difference between two tasks. Actually,

the noise in recordings will be delivered into the variance covariance matrix of

CSP, which may disturb the estimation for spatial filter. CSP is usually trans-

formed into the generalized eigen decomposition problem, and the conventional

CSP will be solved using singular value decomposition (SVD) to find the spatial

filters. It is known that conventional SVD is based on the L2 norm, and accord-

ingly, it is easy to be influenced by the noise introduced into the covariance

matrix. Because the outliers usually have large amplitude, it may be further exag-

gerated due to the square used in the L2 norm structure. Derived from the fact

that L1 norm is robust to the outlier noise [15,19], in this paper we present a

novel robust version of CSP by introducing L1-norm instead of L2-norm to solve

the eigen problem in CSP.
Material and methods
Methods

L2 Norm based CSP

The basic idea of CSP is to find a group of spatial filters that maximize the variance of

band-pass filtered EEG signals from one class [20,21], while the variance from the other
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class are minimized. Let ϕ1 and ϕ2 be the recordings for the two tasks, the spatial filters

are the projections, which is equivalent to maximize the following function,

J wð Þ ¼ wTϕT
1 ϕ1w

wTϕT
2 ϕ2w

¼ wTC1w
wTC2w

ð1Þ

where C1 and C2 are the covariance matrix for the two tasks. Note that the scaling of

the projection w will have no effect on the object value. Equation (1) can be transformed

into a constrained optimization problem of the form:

argmax
w

wTC1w

subject to wTC2w ¼ 1

(
ð2Þ

By introducing the Lagrange multiplier, the objective function can be rewritten as:

L w; λð Þ ¼ wTC1w−λ wTC2w−1
� � ð3Þ

By taking the derivative of (3) respect to w under the condition ∂L
∂w ¼ 0, the objective

projection w can be estimated using the generalized eigenvalue equation,

C1w ¼ λC2w ð4Þ

where λ denotes the eigenvalue of the generalized eigenvalue equation, and w is the

corresponding eigen vector [3]. As for the multiple m spatial filters, the above equation

(4) can be solved as:

C−1
2 C1W ¼ ΣW ð5Þ

whereW is the matrix consisting of the eigen vectors of C−1
2 C1, and ∑ = diag(λ1, λ2,......, λm).

The detailed implementation for CSP is shown in Figure 1.

L1 Norm based CSP

Obviously, the singular value decomposition can be used to find W in (5). Let Y ¼ C−1
2 C1,

the objective function of L2-SVD to find the eigen vector W is [15]:

arg
W

minjjY−WV j 2
2; with V ¼ WTY
�� ð6Þ

Equation (6) can be obtained by the fact that the objective Y can be decomposed
as Y =WSVT,with the right singular matrix V = YTWS–1,and WSVT =WSS− 1WTY =WWTY.

The dual problem of the objective function can be written as [16]:

arg
W

maxjjWTY jj22
subject to WTW ¼ I

8<
: ð7Þ

where I is the identity matrix. As for (7), when the conventional singular value decompos-

ition is used to find the spatial filter, it is in essence based on the L2 norm strategy, which

will be largely influenced by the outliers delivered into the variance matrix [16].

Obviously, L1 norm will be more immune to those outliers than L2 norm, and we

will maximize the L1 dispersion in the feature space to estimate the projection vector

W as presented below.



Figure 1 The flow chart for the two CSPs. The sub-procedure in the green box is for the conventional
CSP, and the sub-procedure in the blue box is for the L1-SVD-CSP.
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The L1 norm SVD will have the below objective function [15]:

arg
W

minjjY−WV j 1; with V ¼ WTY
�� ð8Þ

Similarly, equation (8) can be transformed to below optimization problem,

arg
W

maxjjWTY jj1
subject to WTW ¼ I

8<
: ð9Þ

Expression (9) implies to find the projection W, in which the projection of the original
dataset will have the max dispersion in view of L1 norm. The utilized L1 norm based

dispersion will be robust to the outlier introduced into the covariance matrix accounting

for the estimation of spatial filters. Then, to solve the L1 norm based SVD in equation

(9), we adopt the fast L1 norm iteration algorithm proposed in [15]. Obviously, the

main difference between the two CSP filters is whether L1 norm or L2 norm based

SVD decomposition is adopted for CSP filter estimation as shown in Figure 1, and

the L1 scheme may provide more robust immune ability for outliers.
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Material

Simulation study

Simulation dataset To quantatively evaluate the performance of L1-SVD-CSP, we

applied L1-SVD-CSP, the conventional CSP and the regularized CSP with Tikhonov

regularization (TR-CSP) proposed in [16] to one public motor imagery EEG dataset, i.e.,

Dataset IVa of BCI Competition III, by adding the simulated outliers. This dataset consists

of EEG signals recorded from five subjects using 118 electrodes [3,22]. In each trial, a

visual cue with respect to motor imagery was shown for 3.5 s, presenting three kinds of

imageries, i.e., left hand, right hand and right foot. This dataset has no outlier contained,

where the trials contaminated with obvious artifacts such as ocular, head movement have

been discarded by the dataset provider [23]. The tasks for the imagery of right hand and

left hand are adopted to evaluate the performance in current work. As for the concerned

two tasks, the total number of EEG trials for each subject was 280, and the data were

band-pass filtered between 0.05 and 200 Hz and down-sampled to 100 Hz [21]. Following

the reported results in [24], the time interval between 0.5 s to 2.5 s after the trial onset

was selected for task recognition.

Simulated outliers

As for above dataset, the trials are free of such outliers due to the ocular or the

imperfect contact of electrodes, and we will add some simulated outliers to construct the

datasets with outlier noise corruption with aim to quantatively evaluate the methodology

performance.

Considering the intrinsic characteristics of outlier that usually has extremely large

amplitude, we generated the outliers from the Gaussian distribution N(μ + 10σ, Σ) for

each subject, where μ and σ denoted the mean and variance of EEG across all channels

for the training and testing datasets, and Σ was the corresponding covariance matrix.

We added the outliers to the dataset by varying the number of outliers from 0.01(m + n)

to 0.05(m + n) with step of 0.01(m + n), where the trials and time position for outliers

corruption are randomly determined, with m and n being the number of trials in the

training and testing sets, respectively. The above strategy used for outlier generation is

mainly to simulate the actual condition that recordings may be corrupted with outliers of

different probabilities during experiment.

Evaluation index for simulation study

For this dataset, when the occurrence of outliers is defined, the outliers are randomly

added for 50 times, and L1-SVD-CSP as will as the original CSP and TR-CSP are used

to extract the related features. The most discriminative 3 pairs of optimal CSP spatial

filters (i.e. 6 filters) in the projection matrix are selected to transform the band pass

filtered EEG signal, and the logarithm of the variance of the transformed surrogate

channel EEG signal serves as the final features for task recognition. Regularized

parameter of TR-CSP is determined by the 10-fold cross-validation based on training

set proposed in [16].

After features are extracted for each of the 50 runs, linear discrimination analysis

(LDA) free of the setup parameter optimization is used for classification based on a

5-fold cross-validation, and the averaged accuracies of the 50 repetitions are used

as the index to evaluate the performance. Based on the 50 repetitions, the McNemar test
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[25] is used to investigate whether the difference between each pair of the three CSPs is of

statistical significance.

Evaluations on real BCI dataset

Real BCI dataset The dataset comes from the MI BCI system developed in our group,

consisting of EEG data from 13 subjects. During online experiment, subjects were

required to sit in a comfortable armchair in front of a computer screen, and they were

asked to perform motor imagery with left hand or right hand according to the instructions

appeared on the screen. Motor imagery lasts for 5 seconds, and follows a 5 seconds rest.

15 Ag/AgCl electrodes covers sensorimotor area were used to record the EEG, and the

signals were sampled with 1000 Hz and band pass filtered between 0.5 Hz and 45 Hz. 4 runs

on the same day were recorded for each subject, with each run consisting of 50 trials, 25

trials for each class, and there is a 3 minutes break between the two consecutive runs. All

experiments were performed in accordance with the Ethical Committee of University of

Electronic Science and Technology of China (UESTC). Informed consent was obtained from

all participants, according to the Declaration of Helsinki.

Preprocessing

All the EEG segments during motor imagery are selected for analysis, and those trials

with outliers caused by ocular movement, head movement are involved in further analysis,

without specific inspection to remove them. The specific frequency band for each subject

is obtained by [26], and then used to design band pass filter for the EEG data. The LDA

classifier still used the 6-dimensional features corresponding to the most discriminative

three pairs of optimal CSP spatial filters as input for task recognition.
Results
Table 1 lists the classification accuracy of 5 subjects (aa-ay) with increasing occurrence

possibility of outliers when different CSPs are used for feature extraction, where values

in bold denotes the best result and *, † as well as ‡ reflect that a significant difference

exists between each pair of the three methods revealed by McNemar test (p < 0.05).

To reveal the working mechanism accounting for the difference in Table 1, we will

use figures to visually show the properties of the three kinds of filters. The feature in

simulation study is of 6-dimension, corresponding to the 3 largest eigenvalues and

the 3 smallest eigenvalues. Figures 2 gives the scatter plots of features for the two

discriminative filters determined by the largest (x-ordinate) and smallest (y-ordinate)

eigenvalues for both the training and testing datasets of subject al in one of 50 runs with

the occurrence rate of outliers being 0.05. The corresponding scalp topologies for the two

most discriminative CSP filters in the 0.05 occurrence condition are given in Figure 3.

Figures 2 and 3 consistently show the obvious difference existing among the three kinds of

CSP filters from both the feature aspect and filter spatial distribution, which may account

for the performance difference among the three kinds of filters revealed in Table 1.

For the real BCI dataset, the first 2 runs are utilized as training set to estimate the

spatial filters by L1-SVD-CSP, CSP and TR-CSP, respectively, and the last 2 runs are

used as test set. The classification accuracies obtained by the three feature extraction

strategies for 13 subjects are listed in Table 2, and McNemar test is also used to investigate

the difference between each pair of the three methods (p < 0.05).



Table 1 Classification accuracy when outlier is introduced with different occurrence rate

Subject Method Frequency

0.01 0.02 0.03 0.04 0.05

aa CSP 0.55 ± 0.07 0.54 ± 0.08 0.54 ± 0.08 0.53 ± 0.07 0.54 ± 0.08

TR-CSP 0.68 ± 0.07† 0.68 ± 0.07† 0.67 ± 0.07† 0.67 ± 0.07† 0.67 ± 0.07†

L1-SVD-CSP 0.74 ± 0.08‡ * 0.73 ± 0.07‡ * 0.72 ± 0.07‡ * 0.71 ± 0.07‡ * 0.71 ± 0.08‡ *

al CSP 0.90 ± 0.12 0.84 ± 0.14 0.83 ± 0.14 0.83 ±0.13 0.83 ± 0.14

TR-CSP 0.94 ± 0.08† 0.91 ± 0.07† 0.89 ± 0.07† 0.87 ±0.07† 0.87 ± 0.06†

L1-SVD-CSP 0.95 ± 0.03‡ * 0.93 ± 0.03‡ * 0.92 ± 0.07‡ * 0.92 ± 0.06‡ * 0.91 ± 0.07‡ *

av CSP 0.59 ± 0.09 0.59 ± 0.10 0.60 ±0.09 0.60 ± 0.09 0.61 ± 0.08

TR-CSP 0.63 ± 0.10† 0.63 ± 0.08† 0.66 ± 0.07† 0.65 ± 0.09† 0.64 ± 0.09†

L1-SVD-CSP 0.72 ± 0.06‡ * 0.70 ± 0.06‡ * 0.71 ± 0.08‡ * 0.71 ± 0.07‡ * 0.69 ± 0.08‡ *

aw CSP 0.65 ± 0.11 0.63 ± 0.10 0.64 ± 0.10 0.60 ± 0.11 0.61 ± 0.10

TR-CSP 0.74 ± 0.12† 0.72 ± 0.08† 0.72 ± 0.03† 0.72 ± 0.03† 0.72 ± 0.03†

L1-SVD-CSP 0.81 ± 0.08‡ * 0.80 ± 0.07‡ * 0.80 ± 0.07‡ * 0.77 ± 0.08‡ * 0.77 ± 0.06‡ *

ay CSP 0.57 ± 0.09 0.64 ± 0.13 0.68 ± 0.13 0.72 ± 0.14 0.76 ± 0.14

TR-CSP 0.84 ± 0.06† 0.83 ± 0.06† 0.82 ± 0.06† 0.82 ± 0.06† 0.82 ± 0.06†

L1-SVD-CSP 0.93 ± 0.06‡ * 0.92 ± 0.02‡ * 0.91 ± 0.03‡ * 0.91 ± 0.04‡ * 0.90 ± 0.04‡ *

The McNemar test is performed to investigate the recognition difference between the three spatial filters, values in bold
denote the better result. ‘‡’ indicates the significance between CSP and L1-SVD-CSP (p < 0.05); ‘†’ indicates the
significance between CSP and TR-CSP (p < 0.05); ‘*’ indicates the significance between TR-CSP and L1-SVD-CSP (p < 0.05).
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Discussion
Typical BCI performances are largely influenced by the recording outliers due to ocular

movement, head movement or the loose contact of electrodes. The motivation of this

paper is to use the L1-SVD to construct a robust CSP for motor imagery related feature

extraction.

The conducted simulation studies are to simulate the recordings in different time

periods that may have different outliers involved. Table 1 reveals that both L1-SVD-CSP

and TR-CSP have the better performance with statistical sense (p < 0.05) than the conven-

tional CSP for all the occurrence probabilities of outliers across the five subjects, which

demonstrates the effectiveness of L1-SVD-CSP and TR-CSP to suppress the outlier influ-

ence. Between L1-SVD-CSP and TR-CSP, L1-SVD-CSP shows the statistical improvement

(p < 0.05) compared to TR-CSP.

Figures (2) ~ (3) visually reveal the different influences of outlier on CSP filters. For

the training features extracted by the standard CSP in Figure 2(A), it is obvious that

many features from class I are close to the features from class II, where many red

samples are overlapped by the green samples. The overlaps between the two classes

indicate that the spatial filters estimated by standard CSP are largely influenced by out-

liers in training set and accordingly the biased CSP filters will not project test samples

into the discriminative space separately for the two classes as shown in Figure 2(D).

When regularization is used, the outlier influence can be suppressed and the more

samples can be visually classified as shown in Figure 2(B) and Figure 2(E) with rela-

tively better recognition boundaries between the two classes compared to the conven-

tional CSP. In theory, TR-CSP is to impose the L2 norm constraints on the spatial

filter, which may not be competitive to deal with outlier effect though it actually can

suppress the corresponding effect to some degree. However, in Figure 2(C), we can see



Figure 2 The scatter plots of features for the two discriminative filters. (A) The training features
extracted with the conventional CSP; (B) The training features extracted with TR-CSP; (C) The training
features extracted with L1-SVD-CSP; (D) The testing features extracted with the conventional CSP; (E) The
testing features extracted with TR-CSP; (F) The testing features extracted with L1-SVD-CSP. Red“+”
represents the feature of left hand imagination, and green“o”denotes the feature of right hand imagination.
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that more discriminative features are extracted by L1-SVD-CSP with less number of

samples between the two classes overlapped, indicating that the spatial filters

estimated by L1-SVD-CSP are more robust to the outliers. The test features in

Figure 2(F) also prove that L1-SVD-CSP filters can provide good classification in-

formation for test samples with very obvious recognition boundaries between the two

classes. Moreover, the scalp topologies in Figure 3 clearly show the spatial difference

among the three kinds of CSP filters. Actually, the first CSP filter in Figure 3 is to extract

for the right hand MI, and the second one is for the left hand MI. The related MI area

that can differentiate the left and right MI tasks has been proved to be close to the elec-

trode C3 and C4, and the good CSP filters will provide more emphasis for the electrodes

around electrode C3 and C4 with relatively larger coefficients. The first row in Figure 3

clearly shows that those electrodes close to C3 are actually emphasized by conventional

CSP filters, while some electrodes obviously out of motor area are also provided with large

coefficients. Essentially, those non-motor areas are undesirably introduced by outliers,

and it will finally influence the feature extraction for the test samples. When L2 norm

regularization is used to the spatial filters, the L2 norm will smooth the filters and the

enlarged and blurring spatial distribution [27] will be estimated as shown in the middle

row of Figure 3. Accordingly, the smoothed spatial distribution will involve other

unexpected electrodes out of motor area for feature extraction. Interestingly, when L1-

SVD-CSP is adopted, those artifacts effects out of motor area are effectively compressed,

resulting a clear filter with emphasis mainly on the expected motor areas close to C3. It is



Figure 3 The scalp topology of two most discriminative CSP filters learned from the train set with
0.05 outlier occurrence rate. The first row is the two conventional CSP filters, and the second and third
rows are respectively the TR-CSP filters and L1-SVD-CSP filters.
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the spatial difference of CSP filters that determines the performance difference among

these CSP filters.

As for the actual BCI dataset, the outliers are not visually removed as the BCI com-

petition dataset. Similar to the results for the simulated dataset by adding additional

outliers, L1-SVD-CSP also shows better performance than both the conventional CSP

and TR-CSP with approximately 3% improvement, and the McNemar test also revealed

that the accuracy improvement evaluated on those 13 subjects is of statistical sense

(p < 0.05).



Table 2 Classification accuracy for the real BCI dataset

Subjects Classification accuracy

CSP L1-SVD-CSP TR-CSP

CXY 0.90 0.90 0.84

WZQ 0.66 0.69 0.66

FNX 0.66 0.67 0.67

GK 0.93 0.94 0.94

LPY 0.76 0.78 0.79

JSL 0.57 0.63 0.65

LB 0.70 0.79 0.70

MXY 0.61 0.62 0.61

SG 0.58 0.62 0.58

WCF 0.80 0.86 0.80

WH 0.59 0.62 0.59

XXC 0.93 0.96 0.95

XJP 0.98 0.99 0.98

WXY 0.74 0.75 0.71

Mean result 0.74 ± 0.14 0.77 ± 0.13‡ * 0.75 ± 0.13

The McNemar test is performed to investigate the recognition difference among the three spatial filters, values in bold
denote the better result. ‘‡’ indicates the significance between CSP and L1-SVD-CSP (p < 0.05); ‘*’ indicates the
significance between TR-CSP and L1-SVD-CSP (p < 0.05).
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The improvement brought by L1-SVD-CSP is mainly due to the utilization of

L1-SVD for spatial filter estimation, which is less prone to the presence of outliers

with large amplitude. By contrast, in the conventional CSP method, the features for classifi-

cation were obtained through the L2-norm eigen decomposition, which exaggerated

the effect of outliers by imposing square operation to signals. The utilization of L2

norm constraint on spatial filter estimation in TR-CSP will smooth and blur the

spatial filters, which may involve other uncorrelated electrodes information into

the extraction of the motor rhythm related features. When L1-SVD-CSP utilized

the L1-norm SVD to estimate the eigenvector, the effect of outliers will be

suppressed as proved in other reported studies [15].

In current version, L1 norm is used to re-format the solving procedure of CSP.

Usually, the L1 problem is of larger complexity compared to the L2 based prob-

lem, which may be not suitable for online BCI training. In this paper, we adopted

the fast iteration algorithm proposed in [16] to solve the SVD problem, and it

can dramatically reduce the training time. However, L1 norm is the approxima-

tion to L0 norm, and it may lower the sparsity to some degree compared to L0

norm [28]. In the future, we will also use the more efficient sparse measurements

like L1/2 or L0 norms to further improve the performance for CSP feature

extraction.

In practice, the specifically designed classifier can also be used to effectively

suppress the outlier effect. In Lei et al. 2009 [17], the authors utilizes the Bayesian

framework to combine the feature extraction and classification together, which

can automatically select the reliable features and abandon those artifact influenced

features for final classification. Inspired by this scheme, in our future work, we
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will combine our sparse feature extraction approach with the Bayesian framework

to suppress outlier effect both for feature extraction and classification, which may

result in more promising technique for practical BCI system.

Conclusions
In the actual BCI application situation, the outliers are inevitable and it needs to tackle

the outlier effect. The conducted comparison on both the simulated datasets and the

real BCI dataset prove that L1-SVD-CSP can effectively lower the outlier effects to

extract more reliable MI features for BCI task recognition.
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