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Abstract

Background: Articular cartilage injury remains a major challenge in orthopedic
surgery. This study aimed to identify differences in gene expression and molecular
responses between neonatal and adult articular cartilage during the healing of
an injury.

Methods: An established in vitro model was used to compare the transcriptional
response to cartilage injury in neonatal and adult sheep by microarray analysis of
gene expression. Total RNA was isolated from tissue samples, linearly amplified, and
15,208 ovine probes were applied to cDNA microarray. Validation for selected genes
was obtained by real-time quantitative polymerase chain reaction (RT-qPCR).

Results: We found 1,075 (11.6%) differentially expressed probe sets in adult injured
cartilage relative to normal cartilage. A total of 1,016 (11.0%) probe sets were
differentially expressed in neonatal injured cartilage relative to normal cartilage.
A total of 1,492 (16.1%) probe sets were differentially expressed in adult normal
cartilage relative to neonatal normal cartilage. A total of 1,411 (15.3%) probe sets
were differentially expressed in adult injured cartilage relative to neonatal injured
cartilage. Significant functional clusters included genes associated with wound
healing, articular protection, inflammation, and energy metabolism. Selected genes
(PPARG, LDH, TOM, HIF1A, SMAD7, and NF-κB) were also found and validated by
RT-qPCR.

Conclusions: There are significant differences in gene expression between neonatal
and adult ovine articular cartilage following acute injury. They are partly due to
intrinsic differences in the process of development, and partly to different biological
responses to mechanical trauma between neonatal and adult articular cartilage.
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expression
Background
Articular cartilage injury remains a major challenge in orthopedic surgery. This may be

mainly due to the specific morphological structure of articular cartilage [1]. Articular

cartilage is a highly ordered, specialized connective tissue, which provides a smooth

surface and low friction weight-bearing support used for protection of joints by

absorbing mechanical stresses and loads [2]. Traumatic cartilage injury leads to an irre-

versible cartilage loss because differentiated chondrocytes do not divide, and therefore,

do not compensate for these defects. Previous studies have reported that post-

traumatic articular cartilage in adults is often fibrous cartilage or hyaline-like cartilage
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of which the biological properties and mechanical strength are inferior to normal cartil-

age [3]. However, the results from a clinical study indicated that acute full-thickness

joint surface defects show the potential for intrinsic repair in young individuals [4].

Similarly, spontaneous repair of relatively small, experimental, full-thickness joint

surface defects in animal models has been reported [5]. Spontaneous repair can be

complete in a fetal lamb articular cartilage superficial defects model [6].

The different mechanisms of cartilage repair in young and adult articular cartilage

are unclear. Changes at the molecular level, consisting of key genes or signaling path-

ways, may occur during the developmental process, and this might lessen the repair

ability of articular cartilage.

This study compared the transcriptional response to cartilage injury in neonatal and

adult sheep. This study aimed to identify the portion of gene regulation associated

(and perhaps responsible for) successful healing. Our findings could be important for

designing instruments to induce cartilage repair.
Methods
Ex vivo cartilage injury model and tissue culture

Articular cartilage explants were harvested from adult (n = 3, 2 years old) and neonatal

sheep (n = 3, 1 week old) bilateral femoral medial condyle. These animals were housed

in the animal center of the Tongji Medical College, Huazhong University of Science

and Technology. The study was approved by the Ethical Committee for Animal Experi-

ments of Tongji Medical College, Huazhong University of Science and Technology.

The experimental design of cartilage injury was as follows: adult experiment (injury)

versus adult control (normal); neonatal experiment (injury) versus neonatal control

(normal); adult experiment (injury) versus neonatal experiment (injury); and adult

control (normal) versus neonatal control (normal). Cartilage explants were washed in

phosphate-buffered saline and maintained in a culture medium as previously described

[7], containing Dulbecco’s modified Eagle’s medium /F12 (Invitrogen) in the presence

of 10% fetal bovine serum (Invitrogen), and 100 units/ml penicillin and streptomycin

(Invitrogen) in a six-well culture plate at 37°C in a humidified 5% CO2 atmosphere.

The medium was changed every other day, and after 6 days, the medium was removed.

Our model of cartilage injury is summarized in Figure 1A. Cartilage explants at left side

were dissected onto a 2 × 2 mm2 grid (horizontal and vertical at 2-mm intervals) using

a scalpel. Care was taken to avoid contamination by blood, bone, or synovium. The ex-

plant at right side was used for control samples. After 24 h, articular cartilage explants

were shaved from the joint surfaces and preserved in liquid nitrogen for later RNA

extraction.
Histology

Samples were also collected and prepared for histological analyses as described by

Frisbie et al. [8]. Briefly, normal articular cartilage tissue and injury were fixed in 10%

neutral buffered formalin for a minimum of 2 days. Samples then had 0.1% EDTA/3%

HCl decalcification solution added, which was replenished every 3 days until specimens

were decalcified. Specimens were embedded in paraffin and sectioned at 5 μm. Sections

were stained with hematoxylin and eosin.



Figure 1 The morphological assessment of injury/normal tissue and hierarchical clustering analysis
of genes expression. A. The model of articular cartilage injury. Articular cartilage explants were dissected
onto a 2 × 2 mm2 grid (horizontal and vertical at 2-mm intervals). B. Histomorphometric comparison of
isotropic articular cartilage structure in the ovine neonate and anisotropic structure in adults. C.
Histomorphometric comparison of injured neonatal and adult articular cartilage. D. The resulting gene trees
were grouped (samples/conditions) together based on the similarity of their expression profiles. The
dendrogram shows the relationships among the expression levels of conditions.
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Total RNA extraction

Total RNA was isolated as described by Dell’Accio et al. [7]. Briefly, each frozen explant

was pulverized using a mortar and pestle pre-chilled in liquid nitrogen, suspended in

4 ml of TRIzol reagent (Invitrogen), and homogenized using a Mini-Bead-Beater-16

(Biospec). This was followed by differential alcohol and salt precipitations, and then

final purification was performed using the Qiagen RNeasy Mini Kit by following the

manufacturer’s protocol. RNA quantification and quality assurance were tested by

NanoDrop-1000. Purity and integrity were assessed using the Agilent 2100 Bioanalyzer.

The RNA quality was selected for microarray analysis of gene expression and quantita-

tive real-time polymerase chain reaction (RT-qPCR).
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Microarray analysis

Total RNA from each tissue sample was amplified and labeled using the Agilent Quick

Amp labeling kit, and hybridized with the Agilent whole genome oligo microarray in

Agilents SureHyb hybridization chambers [9]. After hybridization and washing, the

processed slides were scanned with a DNA microarray scanner (Agilent, part number

G2505B) using settings recommended by Agilent Technologies. Feature Extraction soft-

ware (version 10.5.1.1) was used to assess fluorescent hybridization signals and to

normalize signals using linear regression and a Lowess curve-fit technique. Reproduci-

bility and reliability of each single microarray were assessed using quality control report

data (Feature Extraction software, version 10.5.1.1).
Quantitative real-time RT-qPCR

Quantitative real-time RT-PCR was performed as described previously [7]. Gene ex-

pression was calculated using a standard curve and was normalized to the expression

of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Puri-

fied RNA was reversely transcribed into cDNA using Superscript II RT (Invitrogen).

Equivalent amounts as calculated by the initial RNA quantity were added to the reac-

tion mix including 12.5 ml SYBR Green (Invitrogen), forward and reverse primers (10

pmol/ml), with 0.5 ml for each primer, and nuclease-free water to final volumes of

25 ml per well. Primer sequences are listed in Table 1. Real-time RT-PCR was run in

an ABI Prism 7700 Sequence Detection System (SDS) using the ABI Prism 7700 SDS

software version 1.2.3.
Statistical analysis

The 12 microarray data sets were normalized in GeneSpring GX (version 11.0) using

the Agilent FE (version 10.5.1.1) one-color scenario (quantile normalization). The

entities were filtered based on their flag values of P (present), M (marginal), and A
Table 1 Primer nucleotide sequences used in quantitative real-time RT-qPCR assays for
genes described in the study

Gene name Gene
symbol

Primer sequences Ampliconsize
(bp)

glyceraldehyde-3-phosphate dehydrogenase GAPDH F:5'GTTCCACGGCACAGTCAAGG3' 117

R:5'TACTCAGCACCAGCATCACCC3'

mothers against DPP (Drosophila)human
homologue 7

SMAD7 F:5'ACAACCGCAGCAGTTACCC3' 129

R:5'TGTACGCCTTCTCGTAGTCAA3'

peroxisome proliferator-activated receptor
gamma

PPARG F:5'GCGACATCGACCAACTGAAC3' 274

R:5'ACGGAGCGAAACTGACACC3'

thappin ovine molecule TOM F:5'CCAGGTGGTGGTGCTTCTC3' 127

R:5'ACCGTTGATTGGACCCTTT3'

nuclear factor-kappa B NFκB F:5'ACGAGGATGATGAGAATGGATG3' 135

R:5'GCAGGAACACGGTTACAGGAC3'

lactate dehydrogenase LDHA F:5'GGGACAGAATGGAATCTCAGAC3' 296

R:5'TTGCCATCCAGCAGGGT3'

Hypoxia-inducible factor-1α HIF1α F;5'-CGAAGAACTCTCAGCCACAG-3' 174

R:5'-AGCTCGTGTCCT CAGATTCC-3'
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(absent). Only entities having the present and marginal flags in at least one sample are

displayed in the profile plot.

Only genes with values exceeding background intensity in at least three samples of

either condition for each comparison were used for two-way analysis of variance

(ANOVA) with the least significant difference (LSD) t-test, which were followed by

Benjamini and Hochberg correction based on a false discovery rate of 2.2% for probe

sets with a p-value <0.01 [10]. Volcano plots were used to filter for genes differentially

expressed by ≥2-fold and with p < 0.05. Unsupervised hierarchical clustering analysis

was performed on this subset of genes.

For quantitative real-time RT-PCR, the gene expression ratio between every two

groups was determined and analyzed using SPSS version 17.0 (SPSS Inc., Chicago, IL,

USA).. The relative expression levels in every two compares for the selected genes were

normalized to the endogenous reference gene GAPDH by using the formula 2-Ct target/

2-Ct GAPDH, where Ct is the threshold cycle. All data are expressed as mean ± standard

deviation. Differences were considered significant at p < 0.05.
Results
Articular cartilage histology

Tissue samples were harvested 24 h after injury induction of full-thickness cartilage

lesions. Gross histomorphometric examination showed the transition from isotropic to

anisotropic architecture in neonatal and adult ovine articular cartilage (Figure 1B).

Histologically, lesion tissue generally had a homogeneous matrix architecture with

elongated, flattened cells that interfaced with surrounding articular cartilage. Each

lesion was dimpled in appearance and not completely level with the articular surface

(Figure 1C).
Overall level of differential gene expression and annotated genes

Of the 15,208 gene probes, 9,252 probe sets were present in the PMA. Further analyses

were carried out on these probe sets. Based on a p-value of 0.05, 1,075 (11.6%) probe

sets were differentially expressed in adult injured cartilage relative to normal cartilage,

1,016 (11.0%) probe sets were differentially expressed in neonatal injured cartilage rela-

tive to normal cartilage, 1,492 (16.1%) probe sets were differentially expressed in adult

normal cartilage relative to neonatal normal cartilage, and 1,411 (15.3%) probe sets

were differentially expressed in adult injured cartilage relative to neonatal injured cartil-

age in each pair of samples (Figure 2).

After Benjamini and Hochberg correction to compare gene expression in the four

groups, 1,070, 1,005, 1,082, and 1,401 probes were identified as being significantly

(p < 0.05) altered in each group. The estimated false discovery rate was 0.47, 1.1,

0.8, and 0.7%, respectively (Figure 2). A volcano plot shows that 86 and 83 genes

were significantly regulated at least 2-fold post-injury for neonatal sheep (Figure 3B)

and adult sheep, respectively (Figure 3A). A total of 132 probe sets were up-

regulated (Figure 3D) in neonatal injured articular cartilage relative to adult articu-

lar cartilage. A total of 185 probe sets were up-regulated in adult injured articular

cartilage relative to neonatal articular cartilage (Figure 3D). Comparative transcrip-

tion profiling and gene annotation in each pair are listed in Table 2.



Figure 2 Flowchart of cDNA microarray data analysis. The groups are as follows: adult injury (AI), adult
control (AC), neonatal injury (NI), and neonatal control (NC). Expression data were initially analyzed by PMA
and two-way ANOVA with the LSD t-test, with Benjamini and Hochberg correction. A total of 11.6, 10.9,
16.0, and 15.2% of the probe sets on the microarray showed significant differential gene expression in each
pair (p < 0.05).
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Among the 825 differentially expressed genes in total, 62 corresponded to known

genes with a unique identifier, and sourced from RefSeq and UniGene. The expression

of annotated genes in each pair is shown in Table 3.
Hierarchical clustering analysis

To investigate how gene expression varied across the samples, we performed hierarch-

ical clustering analysis. In this analysis, samples were grouped according to their

expression profile based on all genes, whether or not the genes were differentially

expressed in the experimental (injured) versus the control (normal) group. A dendrogram

shows the relationships among the expression levels of conditions. Our experiment

consisted of 12 different conditions. The results of hierarchical clustering based on condi-

tions showed a distinguishable gene expression profiling among samples (Figure 1D).

Significant functional clusters included genes associated with wound healing, articular

protection, repair integration, and energy metabolism. Such transcripts, including peroxi-

some proliferator activated receptor γ (PPARγ), trappin ovine molecule (TOM), mothers

against DPP (Drosophila) human homolog 7 (SMAD7), nuclear factor-kappa B (NF-κB),

hypoxia inducible factor-1α (HIF1-α), and lactate dehydrogenase (LDH) were regulated in

their respective direction (up- or down-regulated) according to their change with tissue

maturity/age and injury (Figure 3).
Results by quantitative real-time RT-PCR

Quantitative real-time RT-PCR was performed on the six up-regulated genes to validate

the microarray results, including PPARγ, LDH, TOM, HIF1A, SMAD7, and NF-κB,
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Figure 3 Volcano plots of adult experiment versus control (A), neonatal experiment versus control
(B), adult versus neonatal control (C), and adult versus neonatal experiment (D). The vertical lines
correspond to 2.0-fold up regulation and down regulation and the horizontal line represents a p-value of
0.05. Therefore, the red point in the plot represents the differentially expressed genes with statistical
significance. The degree of statistical significance is displayed along the vertical axis and fold change
expression is displayed along the horizontal axis.
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which were associated with wound healing, articular protect, inflammation and energy

metabolism according to literature [11-13]. We found a significant increase in mRNA

abundance for PPARγ and TOM in neonatal injured articular cartilage (Figure 4). Fold

change differences were similar or slightly greater than those measured by microarray

profiles. In general, the quantitative real-time RT-PCR and microarray data agreed well

for most samples, emphasizing the robustness of the microarray data.
Discussion
Traumatic cartilage lesions represent a common symptomatic and disabling problem,

which often requires surgical intervention to relieve pain and to prevent possible evolu-

tion towards secondary osteoarthritis [14]. In the present study, an ovine age-

dependent ex-vivo articular cartilage model following acute injury was developed and



Table 2 Comparative transcription profiling between the every two groups

Group AI/AC NI/NC AC/NC AI/NI

up-regulation 32 190 185 44

Annotated genes CENP-C,LDHA,TNC, ESR1, NF-κB, OVAR, FZD3, NFkB1A, NOD2 SMAD7, TF, PPARG,

DCN,TNFα,IL-1β PRKAR1A,PBR, EF-1, MMP7, CAT-1, RAC-1 ERBA BETA, GRO,

MIF, HIF1A, SPRY-4, CP, C-MET, CENP-C IL-1β, TNF, IGFBP2,

ALDOA,CD40,PSMB8, CAST, F11R, FAS FCER1G

ERBA BETA,COL1A1,

BBC-1,FGF10, FBLN,

FAS, CPE, NOS2, CAST

down-regulation 50 150 132 42

Annotated genes SIN1,COL2A1,FN COL2A1, TXN, TNCC2, VDUP1, BACT2, TOM COL1A1,PPP1R12A,

HECTD1 OXT,TNC, TOM, HBB, LDHA, PSMB7, G6PD, SMCT1, IGF2, CD1D

PTGS1, IRF2, PSMB7, SMAD7, CD1D, SIN1, SFN

G6PD, CAT-1,CHID HOXA7, HIF-1A

Notes:Adult Injury(AI), Adult Control(AC), Neonate Injury(NI), Neonate Control(NC). Fold Change ≥ 2.0; P < 0.05.
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characterized. Three pairs of adult and neonatal sheep articular cartilage were detected

by cDNA microarray and validated by real time RT-PCR.

The repair of joint surface lesions largely depends on their size and depth [15,16],

and the reproducibility of the injury is an important concern. With regard to the choice

of the time course of post-injury, Lee et al. showed that the expression of specific cata-

bolic and anabolic genes that regulate matrix remodeling and turnover after mechanical

injury within 24 h is the most significant [17].

Differential gene expression in equine articular cartilage maturation was studied

by Mienaltowski et al. [18]. However, the use of microarrays has not been reported

in different developmental stages of ovine articular cartilage. In the present study,

the up-regulation of collagen type II (COL2A1) and tenascin-C (TNC) was observed

in neonatal articular cartilage, while transcripts encoding matrix proteins and

growth factors were more abundant in adults, including collagen type I (COL1A1),

decorin, and fibroblast growth factor 10. The current data are consistent with previ-

ous findings in horses and humans [18,19].

In adult injured articular cartilage versus normal articular cartilage, five annotated

genes were significantly up-regulated. In contrast, the expression of four genes was

slightly down-regulated. In particular, centromere protein-C, insulin growth factor

binding protein 2, and LDH have not been previously linked to an imbalance of

damage and repair in osteoarthritis, whereas, TNC and COL2A1 have already been

reported [18].

Neonatal ovine lesional cartilage and normal articular cartilage were compared in this

study. As expected, with the pattern of activation of inflammation and apoptosis-

related genes broadly comparable to those reported in the adult [1], neonatal injured

articular explants also had high levels of gene expression, such as interleukin 1β (IL-1β),

tumor necrosis factor-α, growth-regulated oncogene α (GROα), and NF-κB.

In our study, transcripts encoding cartilage macromolecules and nuclear receptors,

which play a role in cell-cell and cell-matrix interactions, tissue remodeling, and repair,

were significantly more abundant in neonatal lesional articular cartilage compared with



Table 3 Different expression of annotated genes between the every two groups

Gene symbol AI/AC NI/NC AC/NC AI/NI Gen bank accession UniGene

SMAD7 — 2.36*(0.025) — 2.04#(0.040) EE805013 Oar.1034

FCER1G — 3.16*(0.037) — — AJ318335 Oar.1043

CD1D — 3.14#(0.018) — 3.04#(0.047) NM_001123001 Oar.1049

G6PD — — 2.75#(0.016) 3.70#(0.042) NM_001093780 Oar.1073

EF-1 — — 2.82*(0.036) — NM_001009449 Oar.1074

SIN1 3.25#(0.023) — — 2.24#(0.008) NM_001009768 Oar.1093

VDUP1 — — — 2.46#(0.007) EE783894 Oar.12992

OVAR — — 3.06*(0.019) — NM_001130934 Oar.13205

MMP7 — — — 2.60*(0.048) NM_001136491 Oar.13267

COL1A1 — 2.87#(0.042) 5.90#(0.036) — DY492568 Oar.13279

LDHA 2.18*(0.030) — 2.81*(0.030) 2.12#(0.026) EE751721 Oar.13281

PRKAR1A — — 2.57*(0.039) — NM_001142517 Oar.13311

CAV1 — — 4.25*(0.013) — DY493176 Oar.13316

F11R — — — 3.56*(0.026) DY502182 Oar.13343

HBB — — 5.21#(0.021) — DY522642 Oar.13537

SMCT1 — 3.18#(0.011) — — EU048233 Oar.14460

PPP1R12A — 2.42#(0.022) — — EU370548 Oar.14621

IGFBP-2 —— 12.98*(0.038) — — NM_001009436 Oar.15563

HECTD1 2.79#(0.005) — — — EU370535 Oar.16241

PSMB7 — — 2.46#(0.027) 4.04#(0.013) EU366497 Oar.16276

COL2A1 5.10#(0.019) — 3.74#(0.006) — ACJ06529.1 Oar.17681

IGF2 — 3.64#(0.042) — — NM_001009311 Oar.376

IL-1β 5.57*(0.002) 5.55*(0.009) — — DY502470 Oar.434

OXT — — 9.76#(0.050) — NM_001009801 Oar.444

PTGS1 — — 3.67#(0.030) — NM_001009476 Oar.445

TNFα 4.03*(0.018) 3.52*(0.004) — — DY503545 Oar.455

RAC1 — — — 2.09*(0.003) EE785210 Oar.4580

NOD2 — — — 6.75*(0.046) AM932877 Oar.4731

FZD3 — — — 4.05*(0.023) DQ152955 Oar.4758

NFKBIA — — 3.08*(0.011) 4.15*(0.039) EE815518 Oar.4761

MIF — — 2.16*(0.050) — NM_001078655 Oar.4767

SPRY-4 — — 2.44*(0.040) — DQ152992 Oar.4778

TOM — 14.37#(0.020) — 14.13#(0.015) NM_001035224 Oar.4810

TXN — — 2.89#(0.015) 1.94#(0.033) NM_001009421 Oar.482

FN 3.38#(0.048) — 4.65*(0.008) — FJ234417.1 Oar.4888

HOXA7 — — — 2.36#(0.009) U61979 Oar.496

CAST — — 2.61*(0.032) 2.35*(0.015) NM_001009788 Oar.498

ERBA BETA1 — 3.52*(0.004) 3.34*(0.010) — Z68307 Oar.500

ESR1 — — 68.55*(0.000) — AY033393 Oar.505

TNC 4.82*(0.008) — 4.56#(0.004) — DY475966 Oar.5104

TNCC2 — — 3.30#(0.029) — NM_001112821 Oar.5156

TF — 8.97*(0.023) — — EE771342 Oar.552

CPE — — 3.66*(0.025) — AF063109 Oar.622

NOS2 — — 2.28*(0.037) — AF223942 Oar.645
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Table 3 Different expression of annotated genes between the every two groups
(Continued)

BCAT2 — — — 2.10#(0.025) AF050173 Oar.655

HIF1A — — 2.31*(0.039) 2.35#(0.030) EE755982 Oar.6671

FAS — — 3.58*(0.046) 7.19*(0.046) NM_001123003 Oar.683

CP — — — 7.91*(0.049) NM_001009733 Oar.706

DCN — — 3.06*(0.044) — NM_001009218 Oar.718

ALDOA — — 2.27*(0.047) — EE814113 Oar.733

BBC1 — — 2.03*(0.008) — EE773437 Oar.76

FGF10 — — 5.15*(0.032) — NM_001009230 Oar.7650

PBR — — 5.35*(0.017) — NM_001009747 Oar.779

C-MET — — — 6.06*(0.037) NM_001111071 Oar.794

CAT-1 — — 3.31#(0.026) 2.20*(0.041) AF212146 Oar.798

SFN — 2.45#(0.041) — — NM_001009208 Oar.814

PSMB8 — — 5.58*(0.036) — NM_001131030 Oar.8196

CENP-C 3.38*(0.048) — — 2.12*(0.028) U35657 Oar.847

GRO — 3.46*(0.042) — — NM_001009358 Oar.963

IRF2 — — 2.30#(0.027) — NM_001009740 Oar.966

CD40 — — 8.45*(0.047) — EE821767 Oar.989

PPARG — 3.72*(0.002) — — NM_001100921 Oar.992

Notes:Adult Injury(AI), Adult Control(AC), Neonate Injury(NI), Neonate Control(NC).
*:up-regulation; #:down-regulation; ( ):P-value; —: no statistical significance (P > 0.05).
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normal articular cartilage. There are two possible reasons for this finding. First, neonatal

cartilage has different gene expression compared with adult cartilage, such as TOM, which

may help its self-repair. Second, mechanical injury results in different responses between

neonatal and adult cartilage. Our microarray analysis showed that transcripts, including

PPARγ, HIF1-α, and SMAD7, are highly expressed in neonatal injured articular cartilage

compared with the adult injury model.

PPARγ is expressed in chondrocytes and synoviocytes, and is present and functionally

active in human chondrocytes [11]. Consistent with this finding, our study showed

PPARγ was up-regulated 3.72-fold in injured neonatal articular cartilage compared with

normal articular cartilage, whereas there was no significant difference in expression in

the adult sheep injury model. Interestingly, there was also no difference in PPARγ

expression in normal adult cartilage compared with neonatal cartilage. These findings

suggested that neonatal cartilage showed a strong and unique response to mechanical

injury. PPARγ has a significant protective effect and promotes cartilage repair in trau-

matized chondrocytes by several probable mechanisms. (1) Down-regulation of genes

that encode catabolic factors could be involved in this process [20]. PPARγ agonists

suppress the expression of inducible nitric oxide synthase and matrix metalloproteinase

(MMP)-13 in human chondrocytes, as well as the expression of MMP-1 in human

synovial fibroblasts. The inhibition of inducible nitric oxide synthase and MMP-13 in-

duction is PPARγ dependent and occurs at the transcriptional level, probably through

repression of NF-κB and AP-1 signaling [20]. The level of phosphorylation of JNK and

p38 has also been shown to be diminished in response to specific stimuli in PPARγ-

deficient mice [21]. (2) Anti-inflammatory effects are considered to mainly exert action

through transrepressing proinflammatory genes in a DNA-binding-dependent manner



Figure 4 Quantitative real-time PCR measurement of differential gene expression. Adult injury (AI),
adult control (AC), neonatal injury (NI), and neonatal control (NC). Quantification of transcript abundance
indicates significant up-regulation of PPARγ (A), HIF1-A (B), LDH (C), TOM (D), SMAD7 (E), and NFκB (F) gene
expression in neonatal injured articular cartilage compared with adult articular cartilage. The RT-qPCR data
for all six target genes confirmed the results of microarray hybridization experiments. Mathematical means
of expression are indicated below each age group, and mean fold differences for each target gene are also
given numerically as ‘Mean FC’ under the abscissa. Two-sided t tests and an ANOVA were used for statistical
analyses. *P values < 0.05 were considered statistically significant.
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[22,23]. Trauma can induce inflammatory responses, and also activate the expression of

anti-inflammatory factors synchronously. PPARγ may be a potential therapeutic agent

for treating articular cartilage injury and defects. Therefore, further study is required

on how to enhance PPARγ expression to promote cartilage repair in adult injured ar-

ticular cartilage.

To date, TOM is found in several tissues, including epithelia, lungs, and macrophages

[12]. To the best of our knowledge, no report describing a protease inhibitor as a

cartilage-sparing agent has been published. However, we detected TOM gene expres-

sion in ovine articular cartilage. TOM expression was significantly increased in neo-

natal ovine articular cartilage after acute mechanical injury, with a 14.1-fold increase

compared with control adult tissue. However, there was no significant difference in

TOM expression in the adult sheep injury model. Interestingly, TOM gene expression

was increased 15.73-fold in normal neonatal articular cartilage compared with adult

articular cartilage. TOM gene expression has inherently high levels in neonatal

ovine articular cartilage, which is beneficial to cartilage repair. In vitro studies have

shown that the immobilization of trappin-2/elafin extracellular matrix proteins in

articular cartilage plays a protective role by preserving structural integrity of the

tissue against damage caused by neutrophilic infiltration during inflammation [24].

Trappin-2 and elafin may promote cartilage repair through their anti-inflammatory

activities, which appear to be independent of their anti-elastase activity [25]. All of
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these processes may be involved in the reason for a stronger repair capacity in neo-

natal articular cartilage than adult cartilage.

Articular cartilage following acute injury results in the activation of a series of signal-

ing responses. In the present study, SMAD7 mRNA in chondrocytes was up-regulated

by 2.36-fold in neonatal injured articular cartilage compared with normal articular

cartilage. In contrast, SMAD7 was down-regulated 2.04-fold in adult injured articular

cartilage compared with the neonate. There was no difference in SMAD7 expression

between normal adult and neonatal cartilage. SMAD7 is involved in cell signaling,

which is a transforming growth factor β (TGFβ) type I receptor antagonist. Over-

expression of SMAD7 totally prevents TGFβ-induced proteoglycan synthesis in

chondrocytes at the mRNA and protein level and completely antagonizes the effects of

TGFβ on proliferation [26]. Therefore, SMAD7 may cause cartilage degeneration and

accelerate the response of the injury by inhibiting TGFβ signaling. SMAD7 acts in a

negative feedback loop to inhibit TGFβ activity because of its interaction with ligand-

activated TGFβRI, and it interferes with the phosphorylation of receptor-associated

Smads, preventing nuclear translocation of the activated Smad complexes [27]. The

effects of IL-1β on SMAD7 expression in human articular chondrocytes are mediated

through the NF-κB pathway [13]. Interestingly, SMAD7 has been reported to regulate

the NF-κB pathway. SMAD7 is able to block the TGFβ-induced phosphorylation of

IκB, resulting in a decrease in NF-κB DNA binding [28]. Other studies have indicated

that SMAD7 can also act as an NF-κB activator in some conditions [29]. In addition, a

recent study showed that SMAD7 overexpression in transgenic mouse epidermis at

levels comparable to those seen in pathological states is insufficient to block TGFβ or

bone morphogenetic protein signaling, but instead produces striking phenotypes due to

degradation of β-catenin through a novel mechanism involving Smad7 and Smurf2 [30].

SMAD7, NF-κB, and TGFβ pathways play a vital role in articular cartilage devel-

opment and homeostasis. Therefore, a potential new mechanism for pathway cross-

talk has important implications for the understanding of maturation and repair of

articular cartilage.

Conclusions
There are significant differences in gene expression between neonatal and adult ovine

articular cartilage following acute injury. These differences are partly due to intrinsic

differences in the process of development and partly to different biological responses to

mechanical trauma between neonatal and adult articular cartilage. Of these, PPARγ and

TOM could be novel target molecules and potential chondroprotective agents involved

in cartilage injury and complete repair.
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