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Abstract

Background: Brain computer interface (BCI) is an emerging technology for paralyzed
patients to communicate with external environments. Among current BCIs, the
steady-state visual evoked potential (SSVEP)-based BCI has drawn great attention due
to its characteristics of easy preparation, high information transfer rate (ITR), high
accuracy, and low cost. However, electroencephalogram (EEG) signals are
electrophysiological responses reflecting the underlying neural activities which are
dependent upon subject’s physiological states (e.g., emotion, attention, etc.) and
usually variant among different individuals. The development of classification
approaches to account for each individual’s difference in SSVEP is needed but was
seldom reported.

Methods: This paper presents a multiclass support vector machine (SVM)-based
classification approach for gaze-target detections in a phase-tagged SSVEP-based BCI.
In the training steps, the amplitude and phase features of SSVEP from off-line
recordings were used to train a multiclass SVM for each subject. In the on-line
application study, effective epochs which contained sufficient SSVEP information of
gaze targets were first determined using Kolmogorov-Smirnov (K-S) test, and the
amplitude and phase features of effective epochs were subsequently inputted to the
multiclass SVM to recognize user’s gaze targets.

Results: The on-line performance using the proposed approach has achieved high
accuracy (89.88 ± 4.76%), fast responding time (effective epoch length = 1.13 ± 0.02 s),
and the information transfer rate (ITR) was 50.91 ± 8.70 bits/min.

Conclusions: The multiclass SVM-based classification approach has been successfully
implemented to improve the classification accuracy in a phase-tagged SSVEP-based
BCI. The present study has shown the multiclass SVM can be effectively adapted to
each subject’s SSVEPs to discriminate SSVEP phase information from gazing at
different gazed targets.
Background
Brain computer interface (BCI) measures specific brain signals induced from elabor-

ately designed tasks and translates the brain signals into control signals [1,2], which

provides a promising channel for disabled patients to communicate with external envi-

ronments. Among current noninvasive BCIs, the steady-state visual evoked potential
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(SSVEP)-based BCI has been widely mentioned due to its high information transfer rate

(ITR) (~70 bits/min), little training, and high accuracy [3,4]. SSVEP is sinusoidal-type

electroencephalogram (EEG) signal generated by the human visual cortex that is

synchronized and phase-locked to user’s attended repetitive visual stimulation [5-7].

SSVEP-based BCIs place EEG electrodes in the vicinity of the occipital area and

recognize user’s gazed target by analyzing the frequency or phase characteristics of the

measured SSVEPs.

SSVEP-based BCIs can be at least divided into two categories in terms of coding

techniques, one is the frequency-coded SSVEP-based BCI and the other is the phase-

tagged SSVEP-based BCI [2,8-11]. Among current SSVEP-based BCIs, most SSVEP-

based BCIs are frequency-coded systems. These frequency-coded systems utilize multi-

frequency flickers to induce subject’s SSVEPs. Each visual target has a corresponding

frequency which can be recognized on the estimated spectra, and the target number

depends on how many frequencies are used for visual stimulation [8-10]. Nevertheless,

due to the amplitude-frequency characteristic of SSVEP, some frequency ranges with

poor SSVEP signal-to-noise ratio (SNR) should be excluded which usually results in a

limited visual target number. In contrast, the phase-tagged system permits visual

flickers to flash at the same frequency but being tagged with different phases. Accord-

ingly, phase-tagged SSVEP systems have been developed to extend the available target

number for SSVEP-based BCIs [2,4-12].

Several phase-tagged SSVEP-based BCIs have been developed. Lee et al. [2]

implemented an eight-target system with flickering frequency set at 31.25 Hz, and aver-

aged over an amount of wave cycles (sixty cycles) to achieve 95% accuracy. Jia et al. [12]

developed a frequency and phase mixed coding technique, and found a phase mismatch

between the phase difference of visual stimuli and the phase difference of measured

SSVEP. Shyu et al. [13] designed a SSVEP-controlled hospital bed nursing system on

FPGA platforms. Chang et al. [14] proposed stepping delay flickering sequence (SDFS) to

achieve a phase-tagged SSVEP-based BCI independent of SSVEP phase calibration. Zhu

et al. [4] accurately analyzed the phase synchrony between SSVEP and the flashing timing

of visual stimulator measured from a photodiode. They concluded the variation of the

phase difference between the flashing timing of visual stimulator and SSVEP, which might

be caused by the phase deviations of visual stimulator. The variability is also called jit-

ter, defined as the standard deviation of measured latencies [15]. Lopez-Gordo et al.

[16] utilized phase-tagged amplitude modulation to drive four checkboard stimuli, and

manifested the requisite of a calibration procedure for classifying the four targets.

Though the SSVEP phase has been reported as an effective feature to implement

SSVEP-based BCIs, nevertheless, the variation of the phase difference between visual

stimuli and measured SSVEP, caused by the phase deviation of the visual stimulus

[4,16,17], individual’s emotional condition [18], selective attention [19], nicotine [20],

anticipatory anxiety [21], etc., could cause deterioration in the detected accuracy.

Therefore, an effective phase classification approach to account for each individual’s

phase difference of SSVEP is needed so that a reliable phase-tagged SSVEP-based BCI

can be achieved.

This study presented a multiclass support vector machine (SVM)-based approach to

cope with SSVEP phase variation in the use of a phase-tagged SSVEP-based BCI. SVM

was originally introduced by Vapnik and its co-workers at AT&T Bell Laboratories
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[22-25]. It has shown its transcendent performance in many applications [26], such as

object identification [27], speaker identification [28], text categorization [29], etc. Input

data in SVM is mapped into high-dimensional feature space and a hyperplane is deter-

mined to completely separate the input vectors into non-overlapping classes [30-33]. In

this paper, the amplitude and phase features of SSVEPs, collected in every 4 cycles at

20 Hz flickering frequency from gazing at different phase-tagged flickers, were

extracted to train the multiclass SVM classifier. The trained multiclass SVM was then

utilized to discriminate subject’s gazed targets. The multiclass SVM data classification

using complex non-linear decision boundaries could be helpful to improve the statistical

classification performance in phase-tagged SSVEP-based BCI design.
Methods
A. Subjects and EEG preparation

Twenty subjects (ten males and ten females), ages from 23 to 37 years old, were

recruited to participate in this study. Each subject had corrected Snellen visual acuity

of 6/6 or better, with no history of clinical visual disease. Table 1 lists the demographic

data of the participants. The research was carried out in compliance with Helsinki dec-

laration. All subjects gave informed consent, and the study was approved by the Ethics

Committee of Institutional Review Board (IRB), Taipei Veterans General Hospital,

Taiwan. All measurements were noninvasive and the subjects were free to withdraw at

any time without any penalty. One unipolar EEG channel was used by attaching an

electrode (Oz (+)) placed at Oz position with respect to a reference electrode (Oz (−))
placed at the right mastoid. The ground electrode was placed in the frontal position

(Fpz). These EEG electrode placements were based on the international EEG 10–20

system [34]. Oz EEG signals were amplified, pre-filtered within 0.1 ~ 100 Hz

(PowerLabTM, ADInstrument, Castle Hill, NSW, Australia), and digitized at 1 KHz

(NI-USB 6259E, National Instrument) for further processes. The EEG recordings in all

subjects were done by the same technician to minimize operation errors.
B. System architecture and visual stimulus

Four light-emitting diodes (LED) (part number: LYBSB93W1303R012BP, LedTech

Electronics Co., Taiwan; rise time < 50 μs; wavelength ranging from 400 to 700 nm),

covered with thin white paper diffusers, were utilized as visual stimuli located on the

four corners of a stimulus panel. A small cross was inlaid at the center of each visual

stimulus to facilitate subject’s eye fixation. All LEDs were flickering at 20 Hz achieved

by alternative ON and OFF states, in which the luminance of ON and OFF states were

168.7 candelas (cd/m2) and 8.1 cd/m2, respectively, measured by a luminance meter
Table 1 The demographic data of the participants in the multiclass SVM study

Number of subjects 20

Gender (number; %)

Male 10 (50%)

Female 10 (50%)

Age (mean ± SD; range)

Years 29.85 ± 4.92 (23-37)
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(LS-110; Konica Minolta Photo Imaging Inc., USA) resulting in Michelson contrast of

90.3%. The four LEDs were tagged with distinct phases equally distributed over a full

360° phase cycle. The designated phase for ith LED is θi = (i-1) × 90° for i = 1 ~ 4, with

corresponding latency of

ti ¼ θi
360�

� T ; ð1Þ

where θi is the phase delay, ti is the latency for achieving θi, T = 1 / f, and f = 20 Hz.

Figure 1a shows the system architecture of our phase-tagged SSVEP-based BCI. The

stimulus panel was 60 cm in front of the participant. The four visual stimuli, tagged with

0°, 90°, 180° and 270°, were labeled as ‘LED1’, ‘LED2’, ‘LED3’, and ‘LED4’, respectively. The

flickering sequences for driving the four visual stimuli are shown in Figure 1b. The phase

lags of 0°, 90°, 180° and 270° are generated by manipulated time delays of 0 ms, 12.5 ms,

25 ms and 37.5 ms, respectively, in the four flickering sequences (see Equation (1)). The
(a)

(b)

Ground

Reference
Oz(-)

A/D 
converter 

Signal 
processing

Personal Computer

Command 
output

Visual stimulus
generator

Trigger events

Control signal for 
cue

LED1(θ1 = 0°) LED2(θ2 = 90°)

LED4(θ4 = 270°)LED3(θ3 = 
180°)

fl
ic

ke
ri

ng
 s

eq
ue

nc
es

 w
it

h 
20

 H
z 

fl
as

h 
fr

eq
ue

nc
y.

Microprocessor

EEG bioamplifier

0.4 m

0.
4 

m

0.2 m

0.
2 

m

Stimulus panel

: LED ON : LED OFF

Trigger Trigger

LED1: 20Hz with 0° delay

LED2: 20Hz with 90° delay

LED3: 20Hz with 180° delay

LED4: 20Hz with 270° delay

θ1= 0°(t1 = 0ms)

θ2 = 90° (t2 = 12.5ms)

θ3 = 180° (t3 = 25ms)

Stimuli with

θ4 = 270° (t4 = 37.5ms)

Oz(+)

Figure 1 Block diagram and flickering sequences of our phase-tagged SSVEP-based BCI system. The
system architecture of the system in (a). The four phase-tagged flickering sequences at 20 Hz, where the
inter-stimulus phase delay was set at 90° (± 45° phase margin) in (b).
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flickering sequences were generated by a microprocessor (C8051F120, Silicon Laborator-

ies Inc., USA), programmed with Keil IDE software. The flash onsets (from OFF states to

ON states) in the flickering sequences served as trigger events for the subsequent process.
C. Experimental tasks

All subjects were requested to participate in a classification study and an application

study. In the classification study, each subject was requested to gaze at each of the four

visual stimuli for 60 seconds. After gazing at each visual stimulus, subjects were asked

to take a 1 min rest. Another 60 seconds were also recorded from subject’s resting state

while keeping his/her eyes open. We took the first halves (30 seconds) of the five re-

cordings (i.e., four gaze recordings and one eye-opened resting-state (non-gaze) record-

ing) for multiclass SVM training, and the other halves of the five recordings were used

to test the feasibility of multiclass SVM in classifying different conditions. Since accur-

ate classification usually depends on correct information of input data, statistical Z-test

was applied to the input vectors (see below) obtained from each gaze condition of

training data and those input vectors which rejected the null hypothesis (p < 0.05) were

excluded from multiclass SVM training. In the application study, the subjects were

instructed to shift their eyes to target the four visual stimuli for 80 trials (20 trials for each

visual stimulus) in randomized order. Each trial contained the following steps: (1) An on-

screen message (↖: LED1; ↗: LED2; ↙: LED3; ↘: LED4), located at the central position of

the stimulus panel, was presented to instruct the subject to gaze at a designated visual

stimulus; (2) The subject kept gazing at the designated visual stimulus until the subject re-

ceived an auditory biofeedback. If the recognized gazed target was correct (i.e., the same

as the one instructed by on-screen message), the auditory feedback would be a beep

sound. Otherwise, a buzz sound would be generated to inform the subject of the wrong

detection; (3) The subject perceived the auditory biofeedback, then shifted his/her gaze

back to central position to prepare for next on-screen message. The experimental para-

digm of the application study for each trial is shown in Figure 2.
D. SSVEP signal processing

Extraction of SSVEP amplitude and phase features

Oz EEG signals were bandpass-filtered within 17–23 Hz to obtain SSVEP responses by

means of applying a causal Butterworth filter (6th-order, IIR Butterworth filter). The
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Figure 2 The experimental paradigm of the application study for each trial.
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frequency components of SSVEPs at 20 Hz were extracted in every 4 cycles using Fou-

rier method with 75% overlapped sliding Hamming window. The frequency component

at ith time window can be expressed as:

Fi ¼ 1
K

XK
n¼1

si n½ �⋅e −j2π f 0
f s
n
; ð2Þ

in which Fi is the frequency component at ith time window, si[n] is the bandpass filtered

data of ith time window, K (K = 200) represents the sliding Hamming window length,

and fs (fs = 1 KHz) and f0 (f0 = 20 Hz) are the sampling frequency and visual stimulus

flickering frequency. The amplitude and phase features of frequency component Fi are

arranged as an input vector, denoted as xi, subjected to input points of multiclass SVM

classification. The input vector xi is represented as

xi ¼ Fij j
∠ Fið Þ

� �
; ð3Þ

where | ⋅ | is the absolute value operator, ∠ (Fi) = tan − 1(Im{Fi}/Re{Fi}) is the phase angle

of Fi, and Im{Fi} and Re{Fi} are imaginary and real values of Fi, respectively. In the clas-

sification study, one-minute Oz EEG signals were recorded for each condition. There

were 2985 input vectors obtained from each subjects, including the four gaze and one

resting-state (non-gaze) conditions. In the application study, the beginning 0.5 s transition

time (10 input vectors) in each trial (see Figure 2) was excluded to avoid the contamin-

ation of eye-motion artifact.

Classification of SSVEP amplitude and phase features using multiclass SVM

We adopted “one-against-all” multiclass SVM which constructs one binary SVM for each

class to distinguish samples of one class from samples of all remaining classes [26,35-37].

In this study, the first-half (30 s) input vectors obtained from each condition (597

input vectors for each condition; 2985 input vectors in total) in the classification study

were used as input data to train the multiclass SVM for each subject. The trained

multiclass SVM was used to evaluate the classification performance in the classification

study and to detect the gazed targets in the application study. The amplitude and phase

features of training data were arranged into a 2 ×N (N = 2985) matrix for the multiclass

SVM training. The multiclass SVM was constructed by a set of binary SVMs to map

input data into output space. The classification of multiclass SVM was done by finding

the class with maximum output among all binary SVMs. It is worthy to notice that the

multiclass SVM should be retrained at the beginning of each session due to the consid-

eration of inter-session variability in SSVEPs.

Determination of effective epoch for user’s gaze condition

Since SSVEP is time-locked and phase-locked signal contingent to the flickering timing

of subject’s gazed target [34], user’s non-gaze condition will result in uncertainties in

the detected SSVEP phases. SSVEPs induced from a phase-tagged visual stimulus have

centralized phase distribution at the visual stimulation frequency, while resting-state

Oz EEG signals usually have phase distribution, measured at the same frequency,

randomly distributed over 0° to 360°. Accordingly, the discrepancy of phase distribution

can be used to discriminate gaze condition from non-gaze condition in the use of a
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phase-tagged SSVEP-based BCI. In this paper, Kolmogorov-Smirnov (K-S) test was

adopted to collect sufficient SSVEP phase information for gaze-target detections. K-S

test is a non-parametric method to determine if two sample sets are different from each

other [38,39]. Therefore, we reasonably assume the resting-state phases, measured at

the flickering frequency of visual stimulus, of Oz EEG signals were uniformly distrib-

uted over a full cycle. The effectiveness of gaze-target information for a sample set

can be examined by checking whether its phase distribution is away from uniform

distribution or not. The length of an effective epoch for gaze-target detection was

initially set at Z (Z = 10) input vectors and sent to K-S test to check its non-

uniformness. If the data set could not reject the null hypothesis (i.e., p value > 0.01),

one more input vector was added in the epoch. Once a data set passed K-S test, the

data set was defined as an effective epoch. For each input vector in an effective

epoch, a classification output was given by the trained multiclass SVM. The gazed

target for each effective epoch was then identified using a plurality voting system by

finding the class which gained a majority of votes. The overall flowchart of signal

processing is shown in Figure 3.
Filtering raw Oz EEG signal within 17-23 Hz, anchored 
to the trigger signals.

Extracting 20 Hz frequency components of filtered 
signal in every four cycles using FFT method.

Organizing the phase features from Z input points into a 
vector for the following K-S test. 

Checking whether the phase information from 
the K input points is significantly different from 
uniform distribution (p value < 0.01, K-S test)? 

Determining the K input pints as an effective epoch and 
sending the input points of the effective epoch for 

multiclass SVM classification. 

Identifying the gazed target by finding the class which 
gains a majority of votes in a plurality voting system.

Yes

No

Arranging the amplitude and phase features of frequency 
components obtained from each time window into input 

vector x=[|F| F]T. 

Setting Z=10 as initial epoch length for K-S test.

Z
=

Z
+

1

Sending the corresponding command to activate external 
devices.

Figure 3 The signal processing flowchart of the proposed system.
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Results
Figure 4a shows the signal processing for extracting amplitude and phase features in

subject 1. The upper panel shows the raw Oz EEG signal from a 30-s recording and the

lower panel presents the signal of raw Oz EEG signal filtered within 17–23 Hz. The

flash onsets of LED flickering sequence, marked by red dashed vertical lines, were

served as trigger events to segment the filtered EEG signal into cycles. The frequency

components were extracted every 4 cycles with 75% overlapped sliding Hamming
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Figure 4 The signal processing for extracting frequency components and phase distributions
obtained from the five gaze conditions. The signal processing for extracting amplitude and phase
features in (a). Oz EEG signals were bandpass-filtered within 17–23 Hz to obtain SSVEP responses by means
of applying a causal Butterworth filter (6th-order, IIR Butterworth filter). The frequency components of
SSVEPs at 20 Hz were extracted in every 4 cycles using Fourier method with 75% overlapped sliding
Hamming window. The difference of phase distributions obtained from the four gaze conditions (0°, 90°,
180°, 270°) and one resting-state (non-gaze) condition in subject 1 (b).
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window, and the amplitude and phase features of frequency components were arranged

into input vectors for multiclass SVM classifications. Figure 4b demonstrates the differ-

ence of phase distributions obtained from the four gaze conditions (0°, 90°, 180°, 270°)

and one resting-state (non-gaze) condition in subject 1. Each phase distribution was

the phase features of frequency components gathered from 30-s recording in different

condition. It can be observed that the phase distribution recorded from the resting-

state condition (right-lower panel in Figure 4b) is a uniform distribution which can be

distinguished from other gaze conditions using K-S test.

In our classification study, one half of the recorded data was used for multiclass SVM

training, and the other half was used for multiclass SVM testing. Figure 5 shows the

decision surfaces of trained multiclass SVMs in classifying the five classes (four gaze

and one resting-state (non-gaze) conditions) in subject 1 and 6. The solid lines are the

decision boundaries to separate each class from others. Colors code the outputs of
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decision function of the trained multiclass SVM. The clear decision boundaries

illustrate the feasibility of using the SSVEP amplitude and phase features in classifying

different gaze conditions when operating a phase-tagged SSVEP-based BCI.

Table 2 presents the detected accuracies of multiclass SVM testing in the classification

study. The averaged effective epoch lengths were from 0.59 s to 0.77 s; the averaged accur-

acies were from 87.18% to 97.70%; compared to the conventional epoch-average method

with 14 cycles being averaged (detection interval = 0.7 s) [2], the detection accuracies were

from 60.71% to 82.62% for 20 subjects. The overall accuracies were 93.49% vs. 70.70%

(multiclass SVM testing vs. the conventional epoch-average method) which demonstrates

the superiority (p < 0.01, Wilcoxon signed rank test) of using multiclass SVM in improving

the SSVEP-based BCI performance.

To quantify the on-line performance of multiclass SVM, a command transfer rate

(CTI) and an information transfer rate (ITR) are introduced in addition to the accuracy.

The CTI is defined as the total experimental time (Ttotal) divided by the number of

total execution commands, and the ITR is defined as [1,40]:

Bits
command

¼ log2S þ P log2P þ 1−Pð Þ log2 1−Pð Þ= S−1ð Þ½ �; ð4Þ

ITR ¼ Bits
command

⋅
60
CTI

; ð5Þ

where S is the total number of visual flickers (S = 4) and P is the accuracy.

Table 3 shows the online results of execution time, accuracies, averaged effective

epoch lengths and ITRs from twenty subjects in the application study. The accuracies

were 90%, 97.5%, 91.25%, 83.75%, 93.75%, 96.25%, 88.75%, 95%, 88.75%, 86.25%, 92.5%,

91.25%, 87.5%, 85%, 96.25%, 81.25%, 93.75%, 90%, 86.25%, and 82.50%; the averaged

effective epoch lengths were 1.12 ± 0.18, 1.11 ± 0.18, 1.10 ± 0.17, 1.16 ± 0.21, 1.15 ± 0.21,

1.09 ± 0.18, 1.10 ± 0.19, 1.16 ± 0.22, 1.17 ± 0.24, 1.12 ± 0.20, 1.10 ± 0.16, 1.11 ± 0.19, 1.14 ±

0.23, 1.13 ± 0.22, 1.11 ± 0.19, 1.13 ± 0.18, 1.19 ± 0.25, 1.20 ± 0.26, 1.16 ± 0.23 and 1.11 ±

0.17 s; the ITRs were 50.87, 66.72, 53.73, 39.73, 56.73, 64.68, 49.38, 59.14, 47.34, 44.49,

56.28, 53.27, 45.98, 42.31, 63.80, 37.07, 55.51, 48.41, 43.52, and 39.25 bits/min for subject

1 to subject 20, respectively. The averaged results (mean ± SD) of overall twenty sub-

jects showed accuracy rate was 89.88 ± 4.76%, averaged effective epoch length was

1.13 ± 0.20 s and ITR was 50.91 ± 8.70 bits/min.

Discussion
Among the current assistive technologies, the BCI has drawn the greatest attention due

to its independent of peripheral neuromuscular activities. A BCI recognizes the pat-

terns of brain waves induced from elaborately designed task, and then translates the

brain waves into control commands. However, since human brain is a complex system

which usually exhibits remarkable inter-individual variability [12,41-44], therefore,

choosing a robust classifier with flexibility to adapt inter-individual difference is crucial

for an effective BCI. In this study, we adopted multiclass SVM to classify five condi-

tions, including four gaze and one resting-state (non-gaze) conditions, in the use of a

phase-tagged SSVEP-based BCI. The amplitude and phase information of SSVEPs were

transformed into feature vectors for SVM training as well as classification. This is the



Table 2 The detected accuracies of multiclass SVM testing and the conventional epoch-
average method in the classification study

Subject
index

Multiclass SVM-based method The
conventional

epoch-
average
method
(detection

interval = 0.7
sec)

Accuracies for each class (Numcorrect/Numtotal) Averaged
accuracies
(Numcorrect/
Numtotal)

Averaged
effective
epoch
lengths

(s)

Class I Class II Class III Class IV

1 97.62% 98.18% 94.23% 94.55% 96.08% 0.59 82.62%

(41/42) (54/55) (49/52) (52/55) (196/204)

2 97.96% 96.00% 91.30% 93.62% 94.79% 0.63 78.06%

(48/49) (48/50) (42/46) (44/47) (182/192)

3 97.56% 88.68% 90.38% 91.49% 91.71% 0.62 65.82%

(40/41) (47/53) (47/52) (43/47) (177/193)

4 95.56% 100% 94.34% 97.37% 96.79% 0.64 67.86%

(43/45) (51/51) (50/53) (37/38) (181/187)

5 94.59% 92.59% 91.38% 93.62% 92.86% 0.61 77.38%

(35/37) (50/54) (53/58) (44/47) (182/196)

6 94.87% 97.50% 95.45% 93.02% 95.18% 0.72 64.29%

(37/39) (39/40) (42/44) (40/43) (158/166)

7 91.43% 93.48% 97.73% 93.35% 94.64% 0.71 75.00%

(32/35) (43/46) (43/44) (41/43) (159/168)

8 94.59% 87.18% 82.50% 85.00 87.18% 0.77 80.40%

(35/37) (34/39) (33/40) (34/40) (136/156)

9 91.49% 96.15% 93.02% 97.83% 94.68% 0.64 70.92%

(43/47) (50/52) (40/43) (45/46) (178/188)

10 93.62% 88.64% 84.44% 92.86% 89.89% 0.67 68.39%

(44/47) (39/44) (38/45) (39/42) (160/178)

11 89.13% 90.48% 95.00% 87.50% 90.34% 0.68 66.33%

(41/46) (38/42) (38/40) (42/48) (159/176)

12 92.86% 91.67% 91.38% 90.20% 91.46% 0.60 71.94%

(39/42) (44/48) (53/58) (46/51) (182/199)

13 92.31% 93.18% 85.71% 94.00% 91.28% 0.62 73.98%

(48/52) (41/44) (42/49) (47/50) (178/195)

14 100% 91.49% 95.24% 87.50% 93.33% 0.67 65.31%

(43/43) (43/47) (40/42) (42/48) (168/180)

15 95.56% 89.80% 98.11% 100% 95.92% 0.61 63.78%

(43/45) (44/49) (52/53) (49/49) (188/196)

16 95.35% 98.00% 100% 97.50% 97.70% 0.69 68.88%

(41/43) (49/50) (41/41) (39/40) (170/174)

17 100% 91.30% 90.70% 95.12% 94.12% 0.71 74.49%

(40/40) (42/46) (39/43) (39/41) (160/170)

18 93.62% 100% 91.11% 87.76% 92.90% 0.66 72.96%

(44/47) (42/42) (41/45) (43/49) (170/183)

19 93.33% 92.45% 93.33% 97.67% 94.09% 0.65 60.71%

(42/45) (49/53) (42/45) (42/43) (175/186)
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Table 2 The detected accuracies of multiclass SVM testing and the conventional epoch-
average method in the classification study (Continued)

20 98.08% 91.11% 91.84% 97.78% 94.76% 0.63 64.80%

(51/52) (41/42) (45/49) (44/45) (181/191)

Average (mean ± SD) 93.49 ± 2.58% 0.66 ± 0.05 70.70 ± 6.06%
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first SVM study on the classification of phase-tagged SSVEP-based BCIs. The study re-

sults have shown the feasibility of the proposed system, which demonstrates an

effective classifier could play an important role in designing a reliable BCI.

It has been mentioned several times in the literature that the amplitude of SSVEP

can be used to discriminate the evoked SSVEP from background physiological activ-

ities. For example, Wu et al. [45] defined an SSVEP signal-to-noise ratio (SNR) in

which comparing the SSVEP power divided by averaged power of the selected

frequency window. Midderdorf et al. [46] applied an amplitude threshold for SSVEP to

control a binary switch. However, it is difficult to judge subject’s gaze condition only

from the information of SSVEP amplitude, owing to each subject has his/her own

SSVEP amplitude-frequency characteristic which results in the SSVEP responses vary-

ing with different visual stimulation frequencies. Moreover, the inter-subject variation

in background physiological activities also makes uncertainties in discriminating gaze

condition from non-gaze condition if only SSVEP amplitude is used.
Table 3 The online results of execution time, accuracies, averaged effective epoch
lengths and ITRs from twenty subjects in the application study

Subject
index

Ttotal (s) Accuracy (Numcorrect/
Numtotal)

Averaged effective epoch
lengths (s)

ITR
(bits/min)

1 129.50 90.00% (72/80) 1.12 ± 0.18 50.87

2 128.90 97.50% (78/80) 1.11 ± 0.18 66.72

3 128.05 91.25% (73/80) 1.10 ± 0.17 53.73

4 133.15 83.75% (67/80) 1.16 ± 0.21 39.73

5 132.30 93.75% (75/80) 1.15 ± 0.21 56.73

6 126.90 96.25% (77/80) 1.09 ± 0.18 64.68

7 127.75 88.75% (71/80) 1.10 ± 0.19 49.38

8 132.65 95.00% (76/80) 1.16 ± 0.22 59.14

9 133.25 88.75% (71/80) 1.17 ± 0.24 47.34

10 129.95 86.25% (69/80) 1.12 ± 0.20 44.49

11 127.65 92.50% (74/80) 1.10 ± 0.16 56.28

12 129.15 91.25% (73/80) 1.11 ± 0.19 53.27

13 131.35 87.50% (70/80) 1.14 ± 0.23 45.98

14 130.75 85.00% (68/80) 1.13 ± 0.22 42.31

15 128.65 96.25% (77/80) 1.11 ± 0.19 63.80

16 130.35 81.25% (65/80) 1.13 ± 0.18 37.07

17 135.20 93.75% (75/80) 1.19 ± 0.25 55.51

18 136.10 90.00% (72/80) 1.20 ± 0.26 48.41

19 132.85 86.25% (69/80) 1.16 ± 0.23 43.52

20 128.85 82.50% (66/80) 1.11 ± 0.17 39.25

Average
(mean ± SD)

130.67 ± 2.60 89.88 ± 4.76% 1.13 ± 0.20 50.91 ± 8.70
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Accordingly, in addition to SSVEP amplitude, we also took the information of SSVEP

phase into account. Due to the advantages of time-locked and phase-locked character-

istics of SSVEP, the SSVEPs generated from the subject’s gaze condition usually result

in a centralized phase distribution. In contrast, the EEG phases obtained from subject’s

resting-state (non-gaze) condition are irrelevant to flickering onsets of visual stimuli.

Figure 6 shows the 20 Hz phases of Oz EEG signals obtained from the gaze and the

resting-state (non-gaze) conditions in twenty subjects. The EEG phases were calibrated

to the mean phase of SSVEP phases from gazing at LED1 (θ1 = 0°) in each subject for

the purpose of cross-subject comparison. Figure 6a – e show the calibrated phases of

Oz EEG signals at 20 Hz when subjects were gazing at LED1, LED2, LED3, LED4, and

resting-state (non-gaze) condition for thirty-second recordings (597 fast Fourier trans-

form (FFT) time windows in each subject, FFT window length = 200 ms, window over-

lapping = 75%; twenty subjects pooled), respectively. The solid lines show the mean

phases, while the dashed lines indicate the mean plus/minus the standard deviations (i.e.,

mean ± SD) over the twenty subjects. The phase distributions obtained from the four

gaze conditions (Figure 6a – d) showed significant differences with uniform distribu-

tions (p < 0.001, K-S test). The phase distribution checked by K-S test showed no stat-

istical difference with uniform distribution (p > 0.05) in Figure 6e. It echoes the

decision surface of multiclass SVM results in Figure 5, in which the non-gaze class

presented a uniform distribution spanning over 0 degree to 360 degree with low amp-

litude at stimulation frequency. It also endorses the feasibility of using phase distribu-

tion to discriminate gaze condition from non-gaze condition.

Since brain waves are dynamic activities which are contingent upon variations in a

subject’s performance and state, linked to fluctuations in expectation, attention, arousal,

and task strategy [47-52], the generation of command output from an EEG interval

involving SSVEP-unrelated information may sometimes cause unexpected pitfalls in

BCI operation. To prevent the outputs of trained multiclass SVM from oversensitivity

to input data, the present study generated command outputs from effective epochs. An

effective epoch was determined to define the length of input data, containing sufficient

SSVEP information for a valid BCI output, by checking the phase distribution of input

points using K-S test. The input vectors in a determined effective epoch were sequen-

tially inputted into a trained multiclass SVM in each subject, and the multiclass SVM

outputs generated from those input vectors were gathered to produce a valid output

through a plurality voting process. The plurality voting process determined the valid

output by finding the visual target which gained a majority of votes from the multiclass

SVM outputs of all input points in the effective epoch, so that the accuracy and specifi-

city of the proposed BCI could be improved.

In our previous publication [2], subject’s gazed target was identified using the phase

feature of SSVEP only. Besides, the SSVEP was averaged over a large amount of epochs

(~30 epochs) to increase SNR and the confidence of phase detection. The epoch-

average process caused a long detection time (4.83 s/command) and resulted in the

consequence of low ITR. In contrast, in this multiclass SVM study, both the amplitude

and phase features of SSVEP were used and extracted in every 4 cycles. Input data

(amplitude and phase features of SSVEP) were mapped into high-dimensional feature

space by SVM kernel to achieve better classification. Owing to the input of dual

features and the benefit of multiclass SVM in classification, the averaged detection time
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Figure 6 The phase distribution of SSVEPs at 20 Hz obtained from the gaze and the resting-state (non-gaze) conditions in twenty subjects using Fourier method. The phase
distributions obtained from the four gaze conditions (a – d) showed significant differences with uniform distributions (p < 0.001, Kolmogorov-Smirnov (K-S) test), while the phase distribution
checked by K-S test showed no statistical difference with uniform distribution (p > 0.05) in (e).
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(Ttotal/Numtotal) in our application study (see Table 3) is 1.63 s/command which is

greatly shorter than the detection time in our previous study.

The present study focuses on testing the capability of using multiclass SVM to identify

subject’s gazed targets by classifying amplitude and phase features of SSVEPs. However,

according to some previous literatures, the phase of SSVEP can be influenced by the jitter

of stimulator triggers [15,17], strategic planning, organized searching [53], memory load

[54], emotional arousal [55], adaption of long-term stimulation [56], etc. Training a new

classifier has to be learned at the beginning of each session or adopting on-line phase

recalibration methods may be possible solutions to account for this phase drift problem in

our current design. The issue of recalibrating on-line SSVEP phase can be referred to our

previous publication [43] which utilized a biphasic stimulation approach to account for

the phase drift of SSVEP during flicker stimulation. Our future work will combine this

multiclass SVM method with on-line phase re-calibration technique to improve its

applicability.
Conclusions
In this paper, a multiclass SVM-based classification approach is proposed to discrimin-

ate subjects’ gazed targets for communication purposes. Subjects shifted their gazes at

different visual stimuli, and the amplitude and phase information of the induced

SSVEP were extracted for multiclass SVM to recognize the gazed targets. The salient

features of the proposed system are: (1) the amplitude and phase features were used to

classify four gaze and one resting-state (non-gaze) conditions; (2) the effective epoch

was determined to define the length of input data, containing sufficient SSVEP infor-

mation for a valid BCI output; (3) SVM outputs generated from input vectors of effect-

ive epochs were gathered to produce valid outputs through a plurality voting process.

The system demonstrates its feasibility with ITR performance in healthy subjects. In

future studies, the efficiency and reliability of this system for patients with motor

neuron diseases should be further investigated.
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