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Abstract

Background: The second-order, infinite impulse response notch filter is widely used
to remove electrical power line noise in electrocardiograms (ECGs). However this
filtering process often introduces spurious ringing artifacts in the vicinity of raw
signal with sharp transitions. It is challenging to simultaneously remove these two
types of noise without losing vital information about cardiac activities.

Objective: Our objective is to devise a method to remove the power-line
interference without introducing artifacts nor losing vital information. To this end we
have developed the "hybrid approach" involving two-sided filtration and multi-
iterative approximation techniques. The two-sided filtration technique can suppress
the interference but some cardiac components are lost. The lost information can be
restored using multi-iterative approximation technique.

Results: For evaluation, four artificial data sets, each including 91 ECGs of different
heart rates, were generated by a dynamical model. Four publicly-accessible sets of
clinical data (MIT-BIH Arrhythmia, QT, PTB Diagnostic ECG, and T-Wave Alternans
Challenge Databases) were also selected. Our new hybrid approach and the existing
method were tested with these two types of signal under various pre-determined
conditions. In contrast with the existing method, the hybrid approach can provide
more than 27.40 dB and 37.77 dB reduction in signal distortion for 95% and 60% of
artificial ECGs respectively; it can provide in excess of 11.78 dB and 17.48 dB
reduction in distortion for 95% and 60% of these real records respectively.

Conclusions: Overall, a significant reduction in signal distortion is demonstrated.
These test results indicate that the newly proposed approach outperforms the
traditional method assessed on both the artificial and clinical ECGs and suggest it
could be of practical use for clinicians in the future.
Background
Biopotential signals, such as electrocardiogram (ECG), often suffer from power-line

interference (PLI, 50 or 60 Hz) since the recorded signal is an output of the electric

fields of coupling states surrounding main power lines (PLs) and the power of the

body. PLI is probably the most common problem encountered in the processing of

biopotential signals. Essentially, a notch filter is adapted for minimizing PLI because of

its ability to reject narrow band noise. Indeed, the second-order, infinite impulse re-

sponse (IIR) notch filter is routinely applied for this purpose [1-3]. Because of the
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transient response effect of the notch filter, the impulse response of this type filter gen-

erally has an oscillatory behavior, which may cause microvolt-level ringing artifacts

(RAs, typically ranging between 0 and 40 μV) in the immediate regions of input signal

with sharp transitions. Besides, it will cause undesirable attenuation in signal compo-

nents at frequencies close to the center frequency (50 or 60 Hz). Tolerable signal dis-

tortion needs a narrow stopband bandwidth (SBW); however, a narrower SBW results

in a longer transient response time (TRT); whilst a longer TRT often incurs more ser-

ious RAs. It is an inherent contradiction. When an ECG signal is being processed, the

RAs occur in the right side of QRS complexes, and consequently, this implies that

many cardiac components are lost in ST-T regions. Serious distortion (signal distortion

caused by the SBW itself and the appreciable RAs) may make the ECG signal more dif-

ficult to interpret, particularly for the ST-T segment analysis, QT interval estimation,

the detection of Ventricular Late Potentials (VLPs) and so on [4-6]. Removal of PLI

however should be done with utmost stringent efforts not to eliminate or distort the

raw signals without introducing artifacts nor losing vital information [7-9]. Many so-

phisticated digital methods have been investigated to cope with either 50 or 60 Hz

interference [10-12], and they satisfy the requirement for suppression and even elimin-

ation of PLI during ECG signals acquisition. However, it is impossible to design an IIR

notch filter to remove PLI without causing distortion [13-15], and this problem is still

unsolved in practice. In this paper we address the challenges to simultaneously remove

the PLI and RAs without losing critical cardiac components by developing a new

method which we call the "hybrid approach".

Being motivated by early pioneering work on investigating the RAs phenomena

caused by the suppression of PLI, in this paper, the hybrid approach comprising two-

sided filtration and multi-iterative approximation techniques, is proposed to simultan-

eously minimizing the PLI and associated RAs. In the first instance, the two-sided fil-

tration technique is partitioned into four steps, which are applied to eliminate the PLI,

localize the RAs and remove them afterward, whilst handling the boundary effects

which are caused by the practical causal filter. To deal with the inherent contradictions,

next the multi-iterative approximation technique is accomplished in three steps, which

are adopted to sequentially reconstruct the lost cardiac information. A combination

may thus prove to be more effective in eliminating these two types of noise. The elab-

orate scheme of the hybrid approach is stated in Sect. 3.

From the practical viewpoints of industrial and clinical applications, a bio-model-

oriented diagnostic signal processing technique should be evaluated on the clinical

data that are acquired from numerous subjects, as well as the artificial data that

cover a variety of specific pre-determined conditions. Using artificial ECGs has a typ-

ical advantage, in that the signal distortion can be precisely calculated, since the ideal

signal (i.e., "true" signal) can be reset to any desired case. In this study, the perfor-

mances of the proposed and existing methods are evaluated in detail with artificial

ECGs which are generated by an open-source program [16,17], as well as four well-

used, clinical ECG databases. All of these real data are accessible to the public at

Physionet [18]. We compared these two methods with respect to signal distortion in

the absence and presence of artificial PLs, respectively. We also examined noise re-

duction in the presence of artificial PLs. Specifically, these data sets are classified

into four groups: with and without the addition of artificial electrical PLs under the
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notch filter with the center frequency of 50 and 60 Hz, respectively. The first two

groups that without PLs, are designed for quantitatively investigating the signal dis-

tortion. The other two groups, which mixed with the artificial PLs, are chosen for

evaluating the distortion in an environment with interference, together with examin-

ing the capacities of the newly presented and old methods for removing PLI. The re-

lationship of SBW and TRT of notch filters has not been well delineated, to provide

more insight in the next section we also detail the key properties of finite impulse re-

sponse (FIR) and IIR notch filters, so that their properties can be compared with

each other. Additionally, related RAs are quantitatively examined, and the challenges

are outlined.

Problem statement

A digital notch filter is a band-stop filter that passes all frequency components except

those lying within a narrow range centered on a center frequency f0. The magnitude re-

sponse of an ideal notch filter may be given as below,

Hd ejω
� ��� �� ¼ 1; ω ≠ ω0

0; ω ¼ ω0

�
ð1Þ

where ω = 2πf/fs is the normalized digital frequency, ω0 = 2πf0/fs is the normalized cen-

ter frequency at f0. fs is the sampling rate, and f is the specified frequency. In practice,

the notch filter has a SBW at f0, that is, Δω = 2πΔf/fs. Δω and Δf are normalized and

digital SBWs, respectively.

FIR and IIR notch filters

Let Hf(z) denote the transfer function of a second-order, FIR notch filter,

Hf zð Þ ¼ 1−2γz−1 þ z−2 ð2Þ

where γ = cos ω0. Hf(z) is simple and easy to implement. However, a disadvantage in

using this kind filter is that the SBW of Hf(z) is relatively large, which could not meet

the specifications [19]. In order to be applicable at narrow SBW situations, a Hf(z)

based second-order, IIR notch filter is then commonly used [3,20],

Hi zð Þ ¼ β0⋅
Hf zð Þ

1−2γβ0z−1 þ 1−λð Þβ0z−2
ð3:aÞ

where β0 = 1/(1 + λ) and λ = tan(Δω/2). We regulate 0 < λ < 1 in this study. Eq. (3.a) can

be rearranged as follows,

Hi zð Þ ¼ b0 þ b1z−1 þ b2z−2

a0 þ a1z−1 þ a2z−2
ð3:bÞ

where a0 = 1, b0 = b2 = β0, a1 = b1 = − 2γβ0, and a2 = (1 − λ)β0. First provided γ ≠ − 1, Hi

(z) contains two poles (α1 and α2) inside the unit circle |z| = 1 at z complex plane,

α1;2 ¼ β0⋅ γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ λ2−1

q� �
ð4Þ

where α1 + α2 = − a1, α1 ⋅ α2 = a2. The stability and settling time of Hi(z) are character-

ized by these two poles.
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Let x[n] and y[n] be the input and output signals at discrete time n, respectively. This

filter can be implemented by the following difference equation,

y n½ � ¼ −
X2
k¼1

aky n−k½ � þ
X2
k¼0

bkx n−k½ � ð5:aÞ

where the subscript k refers to the kth-order index of Hi(z). By deduction, in essence,

Eq. (5.a) can be identified as follows,

y n½ � ¼
X∞
k¼0

h k½ �x n−k½ � ð5:bÞ

where h[k] represents the impulse response of Hi(z) (see Appendix A),

h k½ � ¼

b0; k ¼ 0
−a1ð Þh k−1½ � þ b1; k ¼ 1

−a1ð Þh k−1½ � þ −a2ð Þh k−2½ � þ b2; k ¼ 2
⋮

−a1ð Þh k−1½ � þ −a2ð Þh k−2½ �; k ≥ 3

8>>>><
>>>>:

ð6Þ

Hi(z) is a stable system, since |a2| < 1 and |a1| < 1 + a2. When Hi(z) contains a pair of
complex valued poles or a single negative pole, h[k] will cycle back and forth between

negative and positive during the transient state [21], which indicates that h[k] is associ-

ated with an oscillatory behavior.

Recalling Eq. (5.b), let us consider a finite case, this can be written as,

y n½ � ¼
XK
k¼0

h k½ �x n−k½ � ð7Þ

where K is a positive integer. One interpretation of Eq. (7) is that it represents a FIR

notch system. Figure 1(a)-(d) display FIR and IIR notch filters calculated by Eqs. (6)

and (3.b), respectively. Notably, the higher order K of the filter, the weaker intensity the

pass-band ripples and greater the selectivity. Consulting Figure 1(a)-(d), it is clear that

this kind FIR filter has the following limitations: (A) The order K is considerably higher

than that of an equivalent second-order IIR filter meeting the same requirements. It

thus has far more computational complexity. (B) Because of many pass-band ripples,

signals that include the information of interest inside the relevant frequency bands will

be grossly distorted. This is an issue related to the pseudo-Gibbs phenomena.

Inherent contradictions

The Hi(z) is often used for removing PLI. Figure 2(a)-(c) display an input clinical ECG that

is corrupted by real PLI, the output of the input signal after passing it to Hi(z) and the

relevant residue portion, respectively. In Figure 2(b) we see that PLI is well canceled.

Ideally, PLI should be eliminated without any undesirable effects to distort the raw signals.

Unfortunately, this cannot be achieved completely. RAs can sometimes interfere with the

ST-T regions. The Hi(z) operates with IIR of oscillation, which probably distorts the input

as well as attenuates the amplitude by producing RAs. Consequently, important cardiac

components will be lost. In contrast to the ECG signal, RAs are not remarkable. In other

words, they may pollute the ST segments (1 to 20 μV) [8], but they are not distinguishable

by the naked eye unless the intensity of which is greater than a threshold, such as 1 μV.
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Just as in Figure 2(b), it seems as if there were no RAs. However, if we carefully check

Figure 2(c) (as indicated by arrows), we find that they still exist.

Sharp transitions of signal may generate noticeable and intolerable RAs in the imme-

diate vicinities of these abrupt changes. Figure 2(d)-(f ) is another example, in which we

clearly see the spurious effect of RAs: RAs with the amplitude up to 30 μV, as shown in

Figure 2(f ). Therefore, the RAs should be carefully removed to prevent the distortion

of input signal. The main cause of RAs is due to the abrupt bandstop of Hi(z), spectral

components that lie within the Δf, as well as those close to f0 ±Δf/2, will be attenuated;

this is the frequency-domain description. In the time domain, the cause of RAs is Hi(z)

itself: infinite impulse and oscillatory responses.

In order to quantitatively investigate the relationship between abrupt discontinuities of

input signal and the corresponded RAs, we begin with the unit impulse signal, which is,

δ n½ � ¼ 1; n ¼ n0
0; n≠ n0

�
ð8Þ
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Figure 1 Effects of different values of K. (a) FIR filter with K = 50; (b) FIR filter with K = 100; (c) FIR filter
with K = 200; (d) IIR filter with K =∞; (a)-(c) are calculated by Eq. (6), respectively. (d) is calculated by Eq.
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(See figure on previous page.)
Figure 2 Results of processing of notch filters Hi(z). (a) Clinical ECG with 50 Hz real PLI; (b) The output
of this kind filter when applied to the signal in (a); (c) Differentiated components of (a) and (b); (d) Clinical
ECG without PLI; (e) The output of the signal in (d) after passing it to this kind filter; (f) Differentiated
components of (d) and (e); (g) A simulated unit impulse signal (1 mV); (h) The output of Hi(z) when applied
to the signal in (g); (i) Differentiated results of (g) and (h); (j) The distributions of σ2v at various SBW; (k) The
distributions of duration of RAs at various SBW.
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where n0 is a specific time. For simplifying the mathematics that follows the processing,

by definition, δ[n] starts at 0 (n0 = 0), and goes to ∞. By making δ[n] pass through the sys-

tem Hi(z), and letting yf[n] be the output, ν[n] = δ[n] − yf[n] the difference. The variance of

ν[n] is then calculated by,

σ2
v ¼

X∞
n¼0

v n½ �2 ¼
X∞
n¼0

δ n½ �−
X∞
k¼0

h k½ �δ n−k½ �
 !2

¼ 1−h 0½ �ð Þ2 þ
X∞
n¼1

h n½ �2

¼ 1−2h 0½ � þ
X∞
n¼0

h n½ �2

ð9:aÞ

By deduction (see Appendix B), we relate the σ2 and λ,
v

σ2v ¼
1

1−λ2
⋅λ; σ2v∝Δf
� � ð9:bÞ

In most practical applications, provided γ2 + λ2 − 1 ≤ 0 (i.e., tan(Δω/2) ≤ sin ω0, com-
monly, Δω/2≪ ω0), then the pole radius ρ for Hi(z) is given by,

ρ ¼ α1j j ¼ α2j j ¼ ffiffiffiffiffi
a2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− λ

1þ λ

r
;

If γ2 þ λ2−1 < 0; Imα1 ¼ −Imα2 ≠ 0
If γ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
1−λ2;

p
α1 ¼ α2 < 0

; ρ∝1=Δf
� �� ð10Þ

Referring to Eqs. (9.b) and (10), we come to the overall conclusions: (i) If λ≪ 1, σ2v
can be loosely interpreted as a linear function of Δf. With Δf increasing, more and

more signal components in the stop and pass bands will be modified in both the ampli-

tude ("ripple") and the phase. (ii) Eq. (10) expresses that when Δf→ 0, then ρ→ 1. In

other words, the wider the Δf, the closer the location of poles to the origin in the z

plane, meaning the system Hi(z) settles more rapidly (also meaning the system has a

shorter duration of TRT) [22]. Therefore, it indicates that the duration of RAs tends to

decrease as Δf increases. It is an inherent contradiction of notch filters.

To visualize this problem, next we use Eq. (8) to generate a 10-second-length signal

that is digitized at 1000 Hz, as shown in Figure 2(g). For convention, let the impulse

occur at n0 = 1 s (amplitude of the impulse is 1 mV). By making Δf with an increment

of 0.1 Hz from 0.5 to 10.0 Hz, we calculated the outputs yf[n] by Eq. (5.a) at f0 = 50 Hz
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with each Δf. We thus obtained 96 outputs. For each output, at a specified Δf, the dur-

ation of RAs is defined as the time from impulse to the point w, at which,

Xw
n¼0

δ n½ �−yf n½ �
	 
2

=
λ

1−λ2

� �
≥95% ð11Þ

Figure 2(h) shows the output at Δf = 3.0 Hz, and Figure 2(i) displays the correspond-
ing residual components. Figures 2(j) and (k) plot all the calculated results. Observe

that these results agree with the aforementioned conclusions.

The principle of this algorithm

As we have seen, a cardinal implication is how the QRS complex affects the output of sys-

tem Hi(z); to the system it always poses a big impulse. Because Hi(z) is a causal filter, notice-

ably time-decaying RAs can only occur on the right side of QRS complexes, see Figures 2

(e), (f), (h) and (i). This implies that RAs only depend on the input waveforms regardless of

whether the output waveforms which are of steep transitions or not. In addition, Eqs. (9.b)

and (10) offer insights on the determinants of Hi(z), which are uniquely controlled by its Δf.

These key intrinsic properties of Hi(z) would be applied in this newly developed approach.

As before, x[n] denotes the input, the number of samples is L and xT[n] denotes the

counterpart of the signal x[n], that is, xT[n] = x[L − 1 − n]. Then we construct a mirror

extended signal,

xme n½ � ¼ x n½ �; 0 ≤ n ≤ L−1
xT n−L½ �; L ≤ n ≤ 2L−1

�
ð12Þ

We explore two-sided filtration and multi-iterative approximation techniques to
eliminate the probable PLI and RAs which are contained in xme[n]. For the various fil-

ter parmeters, let yrme n½ � denote outputs of the signal xme[n] after passing it to the sys-

tems Hi(z), ynme n½ � denote outputs of this new method when applied to xme[n].

Two-sided filtration technique

The design procedure can be summarized as follows:

Step 1 - Initialization

Given fs and f0, at a specified Δf, we use Eq. (3.b) to calculate filter coefficients a1, a2, b0,

b1 and b2. bCons = ⌊ fs=fb ⌋, ⌊∙⌋ represents a round operator, fb = 125 Hz is a constant.

bCons is an integer that is chosen to accommodate different fs. If bCons < 2, letbCons= 2.

Step 2 - Twice notch filtering

(i) First notch filter suppressing. We pass the xme[n] to the notch filter, that is the

Eq. (5.a) with filter coefficients calculated in the previous step, and get the output

yrme n½ � as the system output. Then we can obtain the differential components dyme[n]

using the derivative filter followed,

dyme n½ � ¼ xme n½ �−yrme n½ � ð13Þ

Figure 3(a) illustrates yme
r [n] with the lost cardiac components, as indicated by the
arrows. By means of signal-mirror extension, for a single filtering of xme[n], it

includes two operations: one is conducted in x[n] in the forward direction, see

Figure 3(b), which shows the first half of dyme[n] (0 ≤ n ≤ L – 1 ); the other is
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Figure 3 Schematic diagram of the two-sided filtration technique. (a) The output yrme n½ � of the notch
filter Hi(z) when applied to the signal in Figure 2(d); (b) First half of dyme[n]; (c) Another half of dyme[n]; (d)
First half of dy

0
me n½ �; (e) Second half of dy

0
me n½ �; (f) First half of lsme[n]; (g) Second half of lsme[n]; (h) Segment

of jsme[n]; (i) Residues xme n½ �−ynme n½ �; (j) The ultimate output ynme n½ � of the signal in Figure 2(d) processed by
the present method. (c), (e) and (g) show results at relevant positions of the first halves. To this example, it
is implemented at fs = 500 Hz with f0 = 50 Hz, and Δf = 3.0 Hz.
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conducted in the counterpart xT[n], which is equivalent to be operated in x[n] in the

backward direction, as displayed in Figure 3(c), which shows the next half of dyme[n]

(L ≤ n ≤ 2L – 1) at relevant positions of the first half. The "relevant positions"

means a sample at n is corresponded to the sample at n* (n* = 2L – 1 – n),

hereinafter the same. Because Hi (z) is a causal system, detectable RAs in both halves

of dyme[n] lie on right and left arms of the same QRS complexes, respectively.

(ii) Second notch filter suppressing. Sequentially, let dyme[n] be filtered by Eq. (5.a)

with the same filter, we obtain the output dy
0
me n½ �. dyme[n] may involove the PLI,

RAs and distorted components which are caused by the boundary effect [3].

However, dy
0
me n½ � can only contains the major information of RAs and distorted

portions. Figure 3(d) shows the first half of dy
0
me n½ � and Figure 3(e) illuminates the

second half of dy
0
me n½ �. In order to localize RAs in the next step, we need the second

notch filtering operation. In fact, the possible PLI is directly suppressed in this step.

Step 3 - RAs localization

Let us first construct a sequence csme[n] implemented by the derivative operation as below,

csme n½ � ¼ dy
0
me n½ �−dy0

me n−bCons½ ��� �� ð14Þ

the time delay of Eq. (14) is bCons/2 samples. Next we let csme[n] pass through a low-pass

filter shown as follows, and let lsme[n] denote as the relevant output,

Hl0 zð Þ ¼ 1−z−lOrder

1−z−1
ð15Þ

where lOrder = 4 ∙ bCons, intrinsic delay of Hl0(z) is (lOrder − 1)/2 samples and the gain is

lOrder. For extracting the information of RAs, this low-pass filter is introduced to filter out

fluctuations around the input sample and suppress undesirable outliers. Figure 3(f) displays

the first half of lsme[n] and Figure 3(g) shows the second half. From Figures 3(f) and (g), it

is clear that triangle-like spikes localize the RAs.

Step 4 - Determination of the output

Likewise, we construct another sequence dsme[n], which results from the following

operation,

dsme n½ � ¼ lsme n½ �−lsme n
�½ � ð16Þ

The use of Eq. (16) makes it possible to distinguish the RAs by means of positive and
negative samples of dsme[n]. Due to the same consideration in Step 3, we let dsme[n] be

processed by another low-pass filter defined as below,

Hl1 zð Þ ¼ 1−z−jOrder

1−z−1
ð17Þ
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where jOrder = 16 ∙ bCons, the phase delay of Hl1(z) is (jOrder − 1)/2 samples and gain is

jOrder, and let jsme[n] denote the output. Figure 3(h) shows the first half of jsme[n], and

we see Figures 3(b) and (c), it is obvious that to each sample at position n: (1) if jsme[n] >

0, it represents that it gathers the information of RAs that lie within one arm of QRS

complexes (left or right); (2) if jsme[n] < 0, it means that it gather the information of RAs

that lie within the other arm of QRS complexes (right or left), see Figures 3(b), (c) and

(h). Therefore, to each sample, we eliminate RAs based upon the criteria as below,

(i) If jsme[n] < 0, ynme n½ � ¼ yrme n½ � þ dy
0
me n½ �;

(ii) If jsme[n] > 0, ynme n½ � ¼ yrme n
�½ � þ dy

0
me n

�½ �;
(iii) If jsme[n] = 0 and lsme½n� < lsme½n*�, ynme½n� = yrme ½n� + dy

0
me½n�;

(iv) Otherwise, ynme n½ � ¼ yrme n
�½ � þ dy

0
me n

�½ �:

Furthermore, another benefit of criteria (i)-(iv) is avoiding the boundary effect.

Figure 3(j) shows the output ynme n½ � processed by this new method, and Figure 3(i)

shows the residue portion xme n½ �−ynme n½ �. Pay special attention to the details of Figures 3

(a) and (j), and see the regions with arrows in Figure 3(j), then consult Figures 3(b), (c)

and (i), we easily find that RAs are mostly eliminated. Note worthily, variables bCons,

lOrder and jOrder are self-adaptive with respect to fs. Although the introduction of

both-sided filtration increases the memory requirements and the proposed method also

increases the complexity by introducing logical tests in Step 4, two-sided filtration re-

stores the phase distortions caused by the one-sided operation.

Multi-iterative approximation technique

The single implementation of previous technique has two minor drawbacks, both of

which are presented in Figure 3(i): (1) it is based upon the assumption that RAs consist

of non-overlapping portions at positions of both directions of x[n]. In fact, it would not

be able to distinguish overlapped RAs. However, Hi(z) of a small Δf may incur some ap-

preciable parts (greater than 1 μV) overlapped in the middle of adjacent QRS com-

plexes, as shown by the second and forth arrows in Figure 3(i). (2) Another major

limitation encountered in using such a practical filter is that the system will attenuate

waveforms constituted by high frequencies surrounding f0, as we see from positions

with first and third arrows in Figure 3(i). As in the former disadvantage, intuitively, we

might apply the Hi(z) with a larger Δf to overcome this. From Eq (9.b), however, such a

filter may cause more attenuation in signal components at frequencies close to f0, since

the duration of RAs and the amount of lost components are mutually dependent upon

each other.

A novel method that may overcome the fundamental problems is to repeat the pro-

cessing of two-sided filtration several times with various Δf; we name it as multi-

iterative approximation technique. Specifically, it can be partitioned into ternary steps

as below,

Step I - Denoising with a large reference Δf. In order to make distinctive RAs do not

overlap each other, the Hi(z) with a large enough Δf should be adapted. Whereas, it

does not denote that the larger the Δf, the better the performance. Consulting Eqs. (9.b)

and (10) and Figures 2(j), (k), it is clear that duration of RAs tends to decrease
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drastically as Δf increases at small Δf cases; but it decreases slightly at large Δf cases.

Furthermore, σ2v is roughly linear with respect to the Δf. Thus, an appropriate

compromise should be made to fit the task: an empirical and experimental Δf = 6.0 Hz

is employed here.

Input xme[n] is depicted in Figure 2(d). Figure 4(b) illustrates the residual part xme n½ �−ynme

n½ �, which is obtained at Δf = 6.0 Hz, and Figure 4(f) shows the related PSD spectrum. In

the time domain, certain amounts of components of QRS complexes have been obviously

lost, as we can see from Figure 4(b). It can likewise be seen in Figure 4(f) that parts of the

signal of interest, which are close to f0, have been suppressed because of this large Δf in

the frequency domain.

Step II - Reconstruction of details with a small target Δf. In Step I, we achieve a short

duration of RAs, and thus RAs can be eliminated. However, because of the large SBW

Δf, many cardiac components are lost. Thereby, in addition to possible PLs, residual

part xme n½ �−ynme n½ � also contains lost components of original signal. In order to extract

these useful details, xme n½ �−ynme n½ � is then to be processed by the two-sided filtration

technique with a small Δf (Δf < 6.0 Hz). Let xdme n½ � ¼ xme n½ �−ynme n½ � denote the input,
ydme n½ � the output.
Step I and Step II are complementary with respect to Eqs (9.b) and (10). To illustrate,

Figure 4(c) shows the ydme n½ � at Δf = 2.0 Hz and Figure 4(g) displays the relevant PSD

spectrum of ydme n½ �. It can be observed from Figures 4(b), (c), (f ) and (g) that most

details have been reconstructed.

Step III - Reconstruction of slight details with the same target Δf. We can see the

vicinities indicated by arrows in Figure 4(g), ydme n½ � may still contain a little valuable

information, just as the results shown in Figure 4(c): the amplitude of which is greater

than 1 μV. To further reduce the distortion effects, similarly, let xsme n½ � ¼ xdme n½ �−ydme

n½ �, xsme n½ � is then be processed by the two-sided filtration technique with the same Δf

in Step II. Let ysme n½ � as the output. Figures 4(d) and (h) show ysme n½ � and the relevant

spectrum, respectively. We see that spectrum content in pass bands of Figure 4(h) is

flatter than that of Figure 4(g), this represents that most lost details have been

reconstructed, since the amplitude of ysme n½ � is substantially less than 1 μV as shown in

Figure 4(d).

The ultimate output signal is derived from,

ynme n½ � ¼ xme n½ �− xsme n½ �−ysme n½ �� �
; n ∈ 0; L−1½ �ð Þ ð18Þ

Figure 4(a) displays the residual part xme n½ �−yr n½ � obtained by the old method, and
me

the relevant PSD spectrum is illustrated in Figure 4(e). Observe that many cardiac

components, which lie in the pass bands, have been removed, as illustrated at

positions with the arrow in Figure 4(e). By this new method, lost components have

been minimized substantially in both time and frequency domains, as shown in

Figure 4(a)-(d) and Figure 4(e)-(h), respectively.

Although one should aim to fully restore the lost components, it should be noted at

this point that the residual coefficients ysme n½ � may still contain a certain amount of car-

diac components which fall within this SBW Δf (i.e., [f0 −Δf/2, f0 +Δf/2]); consequen-

tially, these components can never be reconstructed due to the so-called "frequency

overlap", as we can see from Figure 4(d). It is an inherent weakness of Hi(z). Figure 5
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Figure 4 Comparison of residual coefficients and relevant PSD spectra. (a) The xme n½ �−yrme n½ � results
from the old method (Δf = 2.0 Hz); (b) Residual part xme n½ �−ynme n½ � in Step I (Δf = 6.0 Hz); (c) Residual part
ydme n½ � in Step II (Δf = 2.0 Hz); (d) Residual part ysme n½ � in Step III (Δf = 2.0 Hz); (e)-(h) show PSD spectra of
sequences in (a)-(d), respectively. Spectra of (e)-(h) are calculated by Welch's method [26] at fs = 500 Hz.
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shows the flowcharts of the newly proposed algorithm; Figure 5(a) depicts the flowchart

of two-sided filtration technique; Figure 5(b) represents the flowchart of multi-iterative

approximation technique. Notably, Δf is the only parameter that needs to be specified

in this method.



(a)

(b)

Figure 5 Flowcharts of the newly proposed algorithm. (a) Flowchart of the two-sided filtration
technique; (b) Flowchart of the multi-iterative approximation technique. Yout½n� = Fi|HðzÞ <Xin[n]>
indicates that the input Xin[n] is filtered by the system HðzÞ, and the relevant output is Yout½n�.
ynme[n] = BSFT (xme[n], fs, f0, Δf ) indicates that the input xme[n] is processed by the Two-sided filtration
technique with the specified parameters fs, f0 and Δf , and the relevant output is ynme[n].
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Materials and evaluation

Artificial and clinical ECG data sets

We simulated four artificial ECG data sets with fs of 250, 360, 500 and 1000 Hz, re-

spectively. The generator generates realistic ECGs with user-settable parameters, such

as "sampling frequency", "internal sampling frequency" and so on. This generator can

be accessed from [16,17]. For this study, we used the generator to simulate 10-second-

duration data at "internal sampling frequency" of 2000 Hz (but 720 Hz for ECGs sam-

pled at 360 Hz) with the specified "mean heart rates", and regulated other parameters

with default values [17]. To assess the performance of these two methods in an envir-

onment with various sharp transitions, to each data set, we simulated ECGs with the

"mean heart rates" ranging from 50 to 140 beats per minute (BPM), in increments of 1

BPM. We thus obtained 91 data for each data set.

Four widely used sets of real ECGs (MIT-BIH Arrhythmia Database [MITDB], QT

Database [QTDB], PTB Diagnostic ECG Database [PTBDB], and the T-Wave Alternans

Challenge Database [TWADB]) were also selected for evaluation [18], see Table 1 for

details. All of these data were tested in this study.
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Performance metrics

The main power supply is not perfectly stable. In some countries, tolerance of the fre-

quency variation of PLs is 1% [23]. In poor electrical environments, however, the vari-

ation may up to 3% [24]. Because the bandwidth of real PLs is varying, in order to

assess the performance of this method under different situations, to both clinical and

artificial data, we conducted these tests by changing Δf of the Hi(z) from 1.0 to 4.0 Hz

with an increment of 0.1 Hz, respectively. In addition, to determine the capacity of

eliminating PLI, artificial PLs that were simulated by sinusoidal functions (with the

amplitude of 0.1 mV) at industrial frequencies (50 and 60 Hz, respectively), were added

to the raw data. To each lead, at a specified Δf, different situations can be categorized

into four groups: ❶ At f0 = 50 Hz, implement Hi(z) without PLI; ❷ At f0 = 60 Hz, imple-

ment Hi(z) without PLI; ❸ At f0 = 50 Hz, implement Hi(z) with the addition of 50 Hz

PLI; ➍ At f0 = 60 Hz, implement Hi(z) with the addition of 60 Hz PLI.

We evaluated the relative distortion produced by two methods. The old method

means the signals were only filtered by the Hi(z). To each input signal x[n], we obtained

the outputs yr[n] and yn[n] by processing input signal x[n] with the IIR filter, that is Eq.

(5.a) and this new method, respectively. We calculated the relevant ratio of percentage

root-mean-square difference (rPRD, in units of decibels [dB]), and it is given by,

rPRD ¼ 10logPRD2
r−10logPRD

2
n ¼ 10log

σ2r
σ2
n

ð19Þ

where PRD2
r ¼ σ2r

Am2 , PRD2
n ¼ σ2n

Am2 , Am2 ¼ ∑
L−1

n¼0
x n½ �2 , σ2r ¼ ∑

L−1

n¼0
x n½ �−yr n½ �ð Þ2 and σ2n ¼ ∑

L−1

n¼0

x n½ �−yn n½ �ð Þ2. rPRD illustrates, for the new method, how distortion of the input x[n] is quan-

titatively lessened in comparison with the old method. It is not feasible to access the purely

clinical signals, since these real signals might already contain PLs and other broadband

noises. We hence let these signals be processed via the new approach first, and let the

resulting signals be the inputs x[n] here.

To each data set with a specified group, wherein first, for the results rPRDs calculated

from all of the various SBWs, we can figure out a threshold, at which, those results

that, in excess of a certain percentage of total rPRDs, are greater than this threshold.

Let rPRD|95% and rPRD|60% denote the thresholds with percentages of 95% and 60%,

respectively. To facilitate comparisons with the old method in examining the capability
Table 1 Four publicly-accessible sets of clinical data are selected for evaluation

Databases fs(Hz) Data numbers/Channels
(Durations)

Brief description

QTDB 250 105/2-lead It was chosen to represent a wide variety of QRS and ST-T
morphologies.(15 min.)

MITDB 360 48/2-lead It was obtained from 47 subjects and contains affluent
arrhythmia information.(30 min.)

TWADB 500 100/multi-lead Including subjects with risk factors, such as myocardial
infarctins, transient ischemia, ventricular and so on, as well as
healthy subjects.

(2 min.(appro.))

PTBDB 1000 549/15-lead It was collected from 290 healthy volunteers and patients.

(1.92 min.(appro.))
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of minimization of distortion at a specific SBW, then, for those results rPRDs outputted

by the same SBW Δf, at which (i.e., this single Δf ), we can define rPRD Δf
50%

��� denote the

threshold with a percentage of 50%. Therefore, rPRD|95%, rPRD|60% and rPRD Δf
50%

��� rep-

resent the overall performances of this newly presented method.

Results and discussion
Test results of the artificial and clinical data sets are shown in Figures 6 and 7, respectively;

where each histogram illustrates the results of a data set for a specific group. For each artifi-

cial data set of a specific group, we have 2821 results calculated by Eq. (19). For a specific

group, we have 6510, 2976, 28892 and 204228 results for QTDB, MITDB, TWADB and

PTBDB, respectively. Insets, in the last rows of Figures 6 and 7, display the statistical results

( rPRD Δf
50%

��� ) corresponding to the histograms in the first four rows, respectively; for a

specific group with varying Δf, each curve is associated to a histogram in the same

column. Tables 2 and 3 give the statistical results (rPRD|95% and rPRD|60%) corresponding

to the histograms in Figures 6 and 7, respectively.

Figure 6(a)-(e) and Figure 7(a)-(e) plot the results using the artificial data set and

QTDB (fs = 250 Hz), respectively. To groups ❶ and ❷, as Δf increases, it tends to pro-

duce larger rPRD Δf
50%

��� for both artificial and clinical data sets as a whole. By contrast, to

both groups ❸ and ➍, as Δf increases, it tends to produce rPRD Δf
50%

��� with relationships

that look like the exponential decay for artificial data sets, while relationships with

rPRD Δf
50%

��� decreasing first and then increasing for QTDB data as a whole. With regard

to different notch frequencies, the performances are significantly different for both arti-

ficial and clinical ECG data sets, as we see from Figures 6(e) and 7(e). From Table 2, to

four groups, the minimum rPRD|95% and rPRD|60% were 28.82 dB and 38.82 dB for

artificial ECGs, respectively. Similarly, in all of four groups, the minimum rPRD|95%
and rPRD|60% were 15.07 dB and 20.58 dB for QTDB ECGs as shown in Table 3, re-

spectively. It is worth noting that QTDB data was chosen specifically to contain a broad

variety of QRS morphologies (i.e., various kinds of abrupt discontinuities) [25]. At this

point, the results of QTDB ECGs are relatively more objective in the present study.

Figures 6(f )-(i) and 7(f )-(i) display the results using the artificial data set and MITDB

(fs = 360 Hz), respectively. Figures 6(j) and 7(j) are the relevant rPRD Δf
50%

��� relations of

Figures 6(f)-(i) and 7(f )-(i), respectively. MITDB includes in excess of 53 leads with ab-

normal, wide size or low intensity QRS waveforms, which are of low frequency compo-

nents (i.e., slow transitions or smooth variations). Therefore, this turns out that less

distortion results from the old method, since RAs always occur surrounding the notch

frequency f0, that is the high-frequency end in most ECG spectra. Hence, the perform-

ance of the new method is not very good for MITDB data, as illustrated in Figure 7(j).

Likewise, with respect to the different notch frequencies, the performances differ mark-

edly for both artificial and clinical ECG data sets, as we can see from Figures 6(j) and 7(j).

However, for the same notch frequency (50 or 60 Hz, respectively), the performances are

not significantly different for MITDB data without or with the addition of artificial PLs.

Of these statistical results, as displayed in Tables 2 and 3, for four groups, the minimum
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Figure 6 Histograms and relevant statistical results of artificial data sets. From left to right: the four
columns, (a)-(e), (f)-(j), (k)-(p) and (q)-(u), show results of data sets with fs of 250, 360, 500 and 1000 Hz,
respectively. For each data set, from top to bottom: the first four rows show results of four groups,
including groups ❶, ❷, ❸ and ➍, respectively. Four curves in each inset in the last row, which contains
(e), (j), (p) and (u), correspond to four histograms in the same column and ordered by the legends,
respectively.
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rPRD|95% and rPRD|60% were 28.91 dB and 38.75 dB for artificial ECGs, respectively; for

the QTDB recordings with four groups, the minimum rPRD|95% and rPRD|60% were

11.78 dB and 17.48 dB, respectively.

The statistical results of artificial data set and TWADB (fs = 500 Hz) are shown in

Figures 6(k)-(p) and 7(k)-(p), respectively. In terms of artificial ECG data with four

groups, as Δf increases, they exhibit consistent tendencies with these of artificial ECGs

sampled at 250 and 360 Hz. However, for the TWADB data with four groups, as Δf in-

creases, the performances depict no significant consistency as those of QTDB and

MITDB, since the rPRD Δf
50%

��� are divergent at sides of low and large SBWs, while rela-

tively convergent in the middle of SBWs. In addition, for the QTDB and MITDB data

sets, results with high probabilities lie in low sides of SBWs (i.e., less than 22 dB), but

for the TWADB data the results of high probabilities lie within high sides (i.e., greater
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Figure 7 Histograms and relevant statistical results of real data sets. From left to right: the four
columns, (a)-(e), (f)-(j), (k)-(p) and (q)-(u), show results of data sets with fs of 250, 360, 500 and 1000 Hz,
respectively. For each data set, from top to bottom: the first four rows show results of four groups, including
groups ❶, ❷, ❸ and ➍, respectively. Four curves in each inset in the last row, which contains (e), (j), (p) and
(u), correspond to four histograms in the same column and ordered by the legends, respectively.
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than 30 dB). In Tables 2 and 3, for the four groups, we see that the minimum rPRD|95%
and rPRD|60% were 27.88 dB and 38.60 dB, 14.66 dB and 24.86 dB, for artificial and

TWADB data sets, respectively. Furthermore, from Figures 6(e), (j), (p) and Table 3, for

this clinical data set, the performance of the new method is better than that of the

QTDB and MITDB data sets as a whole.
Table 2 Statistical results of all of the four artificial ECG data sets

fs(Hz) Without PLI Additive PLI (0.1 mV)

f0 = 50 Hz (−❶-) f0 = 60 Hz (−❷-) f0 = 50 Hz (−❸-) f0 = 60 Hz (−➍-)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

250 28.82 38.82 33.20 42.53 29.49 40.25 35.93 45.29

360 28.91 38.75 34.76 42.60 29.67 40.48 36.86 45.60

500 28.09 38.60 33.01 41.05 27.88 39.20 34.66 43.68

1000 27.40 37.77 32.70 41.19 27.62 38.12 33.78 42.69



Table 3 Statistical results of all of the four clinical ECG data sets

fs (Hz) Without PLI Additive PLI (0.1 mV)

f0 = 50 Hz (−❶-) f0 = 60 Hz (−❷-) f0 = 50 Hz (−❸-) f0 = 60 Hz (−➍-)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

rPRD|95%
(dB)

rPRD|60%
(dB)

250a 17.05 21.86 15.07 20.58 17.46 22.14 16.02 21.10

360b 15.25 19.78 11.78 17.48 15.29 19.90 12.24 17.71

500c 14.66 26.16 14.71 24.86 15.53 26.66 15.76 26.71

1000d 14.67 24.20 15.88 23.85 16.58 25.38 18.07 26.07
aQTDB. bMITDB. cTWADB. dPTBDB.
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It can be clearly seen from Figures 6(q)-(u) and 7(q)-(u) that, for the artificial data set

and PTBDB (fs = 1000 Hz), respectively, the results of the artificial ECGs reveal no sig-

nificant difference compared with three earlier used artificial data sets. However, the

clinical ECGs have significant differences in the histograms as well as the rPRD Δf
50%

��� re-

lations to these of three previous clinical ECGs. As far as the histograms of the four

groups are concerned, they exhibit Gaussian probability distributions, since a huge

number of results was obtained (a total of 204228 results) for each group, as shown in

Figure 7(q)-(t). In terms of rPRD Δf
50%

��� relations, as shown in Figure 7(u), four curves

show tendencies toward convergence as Δf increases. Again from Tables 2 and 3, the

minimum rPRD|95% and rPRD|60% were 27.40 dB and 37.77 dB for artificial ECGs of

four groups, respectively; and for the PTBDB recordings, the minimum rPRD|95% and

rPRD|60% were 14.67 dB and 23.85 dB, respectively.

Generally, for the artificial ECGs of a specific group, differences of results which were

obtained from different data sets, show no special significance, since the only differ-

ences of each data set are the sampling rates fs and the duration L. Regarding the four

clinical ECG data sets (each including four groups), however, they showed obviously

different performances, since these data sets were obtained from various subjects and

with different emphases. In particular, the MITDB recordings, comprising many and a

broad variety of wide size QRS complexes, show relatively poor performance. From all

the results of artificial and clinical ECGs sampled at each fs, we can find that the per-

formance exhibited by the artificial data set is significantly better than that of the rele-

vant clinical data set. The reason is that the clinical ECGs may contain many low

frequency leads. In summary, all of these test results indicate that the proposed method

has the capacity to well reduce the PLI, and simultaneously, greatly minimize the RAs

for both artificial and clinical ECGs.
Benefits and limitations

As previously mentioned, we always want the SBW of a notch filter to be very narrow

for suppressing PLI. The FIR notch filter, which is defined by Eq. (7), does not encoun-

ter the "infinite impulse" problem, but it requires a large degree K to meet the specifica-

tion, and this often comes at the cost of high computational complexity. Additionally,

another problem with the FIR notch filter is that it may still produce RAs since it is os-

cillatory in the range of the "finite response", because K is a large number. In contrast,
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our hybrid approach provides primary benefits in eliminating specific interferences. It

is not limited to reducing fixed fundamental PLI (50 or 60 Hz) but also applicable to

removing the high-frequency harmonics for some worse cases, since the f0 can be tai-

lored to any desired frequency in this approach.

Thus far, all of our discussions are based upon the tan(Δω/2) ≤ sin ω0. In certain ap-

plications, however, some rare cases may still exist where tan(Δω/2) > sin ω0, especially

those ECG monitor systems with low sampling rates fs. In general, such situations

occur at fs = 2f0 + δf and 0 ≤ δf≪ fs. By Eq. (4), consider the following two possible cases,

(i) γ = − 1 That is, f0 = fs/2. According to Eq. (3.a), Hi(z) represents a first-order, IIR

notch filter that has only one pole α inside the unit circle, for this case,

ρ
0 ¼ αj j ¼ −α ¼ a2 ¼ 1−λ

1þ λ
; α < 0; ρ

0
∝1=Δf

	 

ð20Þ

Likewise, for the input δ[n], we can obtain the output variance,
σ2
0

v ¼ 1

1−λ2
⋅λ; σ2

0

v ∝Δf
	 


ð21Þ

Eqs. (20) and (21) demonstrate similar forms with Eqs. (10) and (9.b), respectively;
it implies that the hybrid approach is also applicable. However, real PLs own a

frequency bandwidth, the counterparts of PLs that lie within the right side of f0 will

pollute valuable information of low frequencies. It is a limitation not caused by the

method but fs itself. Therefore, we recommend δf ≥ 4.0 Hz for practical application

based upon the current study and literature [23,24].

(ii) − 1 < γ < 0 and γ2 + λ2 − 1 > 0 That is, |α1| ≠ |α2|. This yields (see Appendix C),

Max α1j j; α2j jð Þ ¼ γj j⋅
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ−2 þ γ−2λ2

q
1þ λ

;

α1 < 0; α2 < 0;Max α1j j; α2j jð Þ∝Δfð Þ
ð22Þ

Max(|α1|, |α2|) denotes the larger one of |α1| and |α2|. For |α1| ≠ |α2|, the settling

time of Hi(z) is mainly determined by Max(|α1|, |α2|) [22]. Within this situation,

using the Hi(z) of a larger Δf would not be able to achieve shorter durations of RAs

but with more cardiac components lost. The "larger" reference Δf is then set to the

specified target Δf in Step I to meet the uniformity within the approach. Thus, it is

worth emphasizing that more precautions should be taken when Δf is adjusted to

avoiding overlapping RAs in the middle of adjacent QRS complexes. Indeed, it is

essential to remember this limitation as well, since Eq. (10) is not universal but with

conditions.
Conclusions
Instead of frequency response, specifications of second-order, IIR notch filter may be

given in terms of the impulse response. In this study, we started with the impulse

response of Hi(z), the output σ2
v and the settling time that, concerning its behaviour in

the time domain, have been quantitatively investigated. Minimizing the RAs involved in



Zhou and Zhang BioMedical Engineering OnLine 2013, 12:42 Page 21 of 24
http://www.biomedical-engineering-online.com/content/12/1/42
the signal of sharp transitions by removing PLI is a great concern in the processing of

biopotential signal. The detection and analysis of the VLPs in the ECG signal is highly

sensitive to the residual PLI and the RAs after the QRS complexes as a result of the

filtering technique applied. The artifacts may become considerable in cases of high and

steep complexes. Owing to the intrinsic properties of Hi(z), we proposed a hybrid ap-

proach, which utilizes Hi(z), to reliably suppress PLI as well as to aviod the generation

of RAs. It is applicable to different fs and easy to implement. In fact, Δf is the only par-

ameter that needs to be specified for this approach. Problems are greatly mitigated via

these techniques. Sufficient results and performance statistics are provided to validate

the reliability of this method in the test environment with a variety of conditions (e.g.,

artificial and clinical ECGs, of various fs, with altering Δf, etc.). An eventual consider-

ation related to practice is f0 of PLs. To the artificial PLs used in this study, f0 was set

to 50 or 60 Hz without varying. However, f0 of real PLs, similar to its bandwidth, may

fluctuate over a small range. Even so, we can refer to many previous studies for how to

adaptive tracking of the f0 with serious drift.

Appendix A: Proof of the Equation (6)
A real signal x[n] can be expressed as the sum of linear superposition of unit impulse

functions δ[n − k],

x n½ � ¼
X∞
k¼0

x k½ �δ n−k½ � ða:1Þ

where, if k = n, δ[n − k] = 1; otherwise, if k ≠ n, δ[n − k] = 0. By definition, to each im-

pulse function δ[n − k], the output is denoted as the impulse response h[n − k]. Consult-

ing Eq. (5.a), we obtain,

h n½ � ¼ −a1h n−1½ �−a2h n−2½ �
þ b0δ n½ � þ b1δ n−1½ � þ b2δ n−2½ � ða:2Þ

Provide Hi(z) is a causal system, then we conclude that,
(i) If n = 0, h[n − 1] = h[n − 2] = 0. Ignore δ[n − 1] and δ[n − 2], since δ[n − 1] = δ[n − 2]

= 0, then,

h n½ � ¼ b0 ða:3Þ

(ii) If n = 1, because h[n − 2] = 0, and δ[n] = δ[n − 2] = 0, which results in,

h n½ � ¼ −a1ð Þh n−1½ � þ b1 ða:4Þ

(iii) If n = 2, δ[n] = δ[n − 1] = 0, we have,

h n½ � ¼ −a1ð Þh n−1½ � þ −a2ð Þh n−2½ � þ b2 ða:5Þ

(iv) If n ≥ 3, δ[n] = δ[n − 1] = δ[n − 2] = 0, this yields,

h n½ � ¼ −a1ð Þh n−1½ � þ −a2ð Þh n−2½ � ða:6Þ

We thus obtain Eqs (5.b) and (6) in terms of the filter coefficients a0, a1, a2, b0, b1
and b2.
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Appendix B: Proof of the Equation (9.b)
The v[n] = δ[n] − yf[n] is equivalent to the input δ[n] to be processed by the following

comb filter,

Hc zð Þ ¼ 1−Hi zð Þ ¼ c0⋅
1−z−2

a0 þ a1z−1 þ a2z−2
ðb:1Þ

where c0 = λβ0. If γ ≠ − 1, Hc(z) also contains two poles at α1 and α2 inside the unit cir-

cle |z| at z plane.

According to Parseval's theorem, σ2v can be calculated by,

σ2v ¼
X∞
n¼0

v n½ �2 ¼ 1
2π

Zπ
−π

Hc ejω
� ��� ��2dω

¼ 1
2πj
∮ c

Hc zð ÞHc z−1ð Þ
z

dz

ðb:2Þ

where ∮c represents the integral taken around the unit circle in counter-clockwise direc-

tion, and let

F zð Þ ¼ Hc zð ÞHc z−1ð Þ
z

¼ −
c20
z
⋅ ∏

2

i¼1

1−z2

z−αið Þ 1−αizð Þ ðb:3Þ

By the Residue theorem, we can obtain Eq. (b.4),
σ2v ¼
X2
k¼1

Res F zð Þ; αk½ � ðb:4Þ

By Eq. (b.3), we calculate residue values ξ and ζ at each pole,
ξ ¼ F zð Þ��z¼α1
¼ −

c20
α1

⋅
1−α21

α1−α2ð Þ 1−α1α2ð Þ

ζ ¼ F zð Þ��z¼α2
¼ −

c20
α2

⋅
1−α22

α2−α1ð Þ 1−α1α2ð Þ

8>>>><
>>>>:

ðb:5Þ

And so,

σ2v ¼ ξþ ζ ¼ c20⋅
1þ a2

a2 1−a2ð Þ ¼
1

1−λ2
⋅λ ðb:6Þ

Appendix C: Proof related to the Equation (22)
For convention, we define,

ϕ ¼ 1þ φ
1þ λ

ðc:1Þ

where,

φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ−2 þ γ−2λ2

q
ðc:2Þ
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Take the derivative of both sides of Eq. (c.2) with respect to λ, which results in,

Δφ ¼ γ−2φ−1λΔλ ðc:3Þ

Then,
Δϕ ¼ 1þ λð ÞΔφ− 1þ φð ÞΔλ
1þ λð Þ 1þ λþ Δλð Þ

¼ γ−2φ−1λ 1þ λð Þ− 1þ φð Þ
1þ λð Þ 1þ λþ Δλð Þ Δλ

¼ ℱ λð Þ
G λð Þ Δλ

ðc:4Þ

where,

ℱ λð Þ ¼ γ−2λ 1þ λð Þ−φ 1þ φð Þ
G λð Þ ¼ φ 1þ λð Þ 1þ λþ Δλð Þ

�
ðc:5Þ

First assume the ℱ (λ) ≤ 0 is true, from Eq. (c.5), this yields,
γ−2λ 1þ λð Þ≤φ 1þ φð Þ ðc:6Þ

Solve Ineq. (c.6), we obtain (1 + λ)2 ≤ 0. Due to λ > 0, thus the assumption ℱ (λ) ≤ 0 is
false, then ℱ (λ) > 0. Because G(λ) > 0, we therefore have,

ℱ λð Þ
G λð Þ >0⇒Δϕ>0⇒

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ−2 þ γ−2λ2

q
1þ λ

∝Δf ðc:7Þ
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