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Abstract

Background: When studying and designing an artificial bone in vitro with similar
features and functionality of natural bone by tissue engineering technology, the
culturing environment, especially the mechanical environment is supposed to be an
important factor, because a suitable mechanical environment in vitro may improve the
adaptability of the planted-in tissue engineering bone in the body. Unfortunately, up to
now, the relationship between mechanical stimuli and natural bone growth has not yet
been precisely determined, and it is so imperative for a prior study on effect of
mechanical loading on growth of the natural bone cultured in vitro.

Methods: Under sterile conditions, explant models of rabbit cancellous bone with

3 mm in thickness and 8 mm in diameter were prepared and cultured in a dynamic
loading and circulating perfusion bioreactor system. By Micro-CT scanning, a 3D model
for finite element (FEM) analysis was achieved. According to the results of FEM analysis
and physiological load bearing capacity of the natural bone, these models were firstly
subjected to mechanical load with THz frequency causing average apparent strain of
1000 pe, 2000 pe, 3000 pe and 4000 pe respectively for 30 min every day, activities of
alkaline phosphatase (AKP) were detected on the 5 and the 14" loading day and on
the 14™ and the 21 day, mechanical properties, tissue mineral density (TMD) of the
bone explant models were investigated and Von-kossa staining and fluorescence
double labeling assays were conducted to evaluate whether there were fresh osteoid
in the bone explant models. In addition, Western blot, Elisa and Real-time PCR were
employed to analyze expression of Collagen-I (COL-1), bone morphogenetic protein-2
(BMP-2) and osteoprotegerin (OPG) protein and RNA.

Results: The explant models of rabbit cancellous bone prepared under sterile
conditions grew well in the bioreactor system. With the increasing culturing time and
load levels, bone explant models in groups with 1000 pe and 2000 pe average
apparent strain experienced improving mechanical properties and TMD (P<0.05), and
results of Von-kossa staining and fluorescence double labeling also showed apparent
fresh osteoid formation. Under the same loading conditions, a up-regulations in protein
and RNA of COL-1, BMP-2 and OPG were detected, especially, relative genes notably
expressed after 21 days.

Conclusion: Our study demonstrated that mechanical load could improve function
and activity of osteoblasts in explant models of cancellous bone. Through regulations
of COL-1, OPG and BMP-2 secreted by osteoblasts, the mechanical load could improve
the tissue structural density and stiffness due to formation of fresh osteoid.
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Introduction

Natural bone formation in vivo is a complex process in which involved contribution of mul-
tiple cell types, physical and biological environment [1]. Mechanical cues play an important
role in bone regeneration and affect production and secretion dynamics of growth factors
(GFs) involved in osteogenesis [2-5]. In the 19th century, Julius Wolff firstly suggested that
external mechanical load can effectively change bone shape and structure [6]. In 1987, Frost
raised the “mechanostat” theory which has made a better explanation to Wolff’s law in the
level of tissue [7,8]. The positive influences of mechanical load on bone metabolism with im-
proved bone healing or remodeling have been clearly demonstrated in the veterinary and
clinical setting. However the processes involved in mechanical signaling remain in the most
part obscure.

Previous work has investigated some mechano-responsiveness of involvement of GFs in
osteogenesis with two-dimensional monolayer cell culture models in vitro. Using a four-
point bending device, MC3T3-E1 cells (a mouse monoclonal pre- osteoblastic cell line) were
exposed to mechanical tensile strain, which resulted in the altered expression of 1992 genes,
41 of which were involved in the mitogen-activated protein kinase (MAPK) signaling path-
way, ERK in addition, also played an important role in response to mechanical strain, while
the membrane-associated receptors integrinf1 andp5 were determined to regulate ERK ac-
tivity and proliferation of cells in opposite ways. Mechanical tensile strain could also appar-
ently promote osteoblasts differentiation through BMPs/Smad pathway in vitro, in turn, it
could lead to accumulation of Smad proteins caused by a drop in Smurf levels, subse-
quently, and enhance BMPs/Smad signaling [9,10], but they did not effectively embody the
physiological interactions either between neighboring cells of different types or between cells
and extracellular matrix. However, bone tissue contains a large number of different cell
types which interact to maintain the bone metabolism. Some studies have confirmed that in
bone, mechanical stimuli is transmitted through the extracellular matrix (ECM) to resident
osteoblasts, osteocytes, periosteal cells and osteoclasts [11,12], therefore, there is a need for
models in vitro that represent the physiological diversity and characteristics of bone forma-
tion to practically study the effects of mechanical cues on this process.

Bone explant culture has a short lifespan in vitro, as they often undergo central necrosis
due to vascular occlusion and rate-limiting mass transfer. The loss of the vascular system
has implications in limiting the size of tissue sample that can be harvested, since cells in
culture depend upon diffusion of nutrients and metabolites as well as for removal of waste
by vascular system. Proliferation may thus be limited to the outer cell layer while necrosis
may occur in the centre of the explants. Jones et al. [13] designed an ex vivo mechanical
load culture system for 3D ovine, bovine and human cancellous tissue which overcame
some of the limitations discussed above. There is currently a great deal of interest in try-
ing to develop artificial bone in vitro by tissue engineering, Jaasma et al. [14] developed a
dynamic flow perfusion bioreactor which led to a increase in early-stage bone formation
marker of collagen-GAG scaffolds seeded with osteoblasts.

In this study, we used a new dynamic load and circulating perfusion bioreactor sys-
tem which was independently developed by Academy of Military Medical Science,
China [15]. It could accurately provide a compressive strain with different magnitudes
and frequencies, as well as perfusions under different flow conditions with easy control
and steady performance, which could be an ideal dynamic culture and loading device
for cultivation of natural bone and tissue engineering bone.
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The aim of the present study was to determine whether the rabbit cancellous bone
explant models responded with physiological reaction patterns to force. The physio-
logical reaction patterns were reflected by the increase in apparent stiffness and bone
mass in the form of newly-formed osteoid. In that way, we will demonstrate the grow-

ing microenvironment of tissue engineering bone in vitro.

Materials and methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM) with Penicillin 100 U/ml and Strepto-
mycin 100 pg/ml and Fetal bovine serum (FBS) were obtained from HyClone, USA.
Protein Quantification Kit and Alkaline Phosphatase (AKP) Delection Kit were
manufactured by Nanjing Jiancheng Bioengineering Institute, China. Tetracycline
hydrochloride (#0422) was purchased from Amresco (Amresco, USA), Calcein (#0875)
was purchased from Sigma (Sigma, USA), Mouse Anti-Collagen I antibody [COL-1]
(#ab90395) was purchased from Abcam (HK) Ltd., Rabbit Osteoprotegerin (OPQG)
ELISA Kit and Rabbit Bone Morphogenetic Protein-2 (Bmp-2) ELISA Kit were pur-
chased from Cusabio Biotech Co., LTD, USA. Von-kossa Ca Staining Kit was pur-
chased from GENMED SCIENTIFICS INC., USA. TRIZOL was purchased from
Invitrogen (Invitrogen, USA). All other chemicals of reagent grades were obtained
from Sigma unless otherwise noted.

Animals

Naturally mated 3-month old New Zealand White rabbits were obtained from the
Laboratory Animal Center of Academy of Military Medical Sciences, China. The animal
experiments were in accordance with the governmental guidelines for the care and use
of laboratory animals and approved by Academy of Military Medical Sciences Ethics
Committee, China.

Preparation of rabbit cancellous bone explant model

Firstly, rabbit femoral heads were extracted from two legs of 3 month-old rabbit, then
a femoral head was merely made into one cancellous bone tissue slice with 3 mm
thickness in an aseptic processing cutting machine which was designed by our team
(this cutting machine can slowly run and control cutting thickness), and a hole punch
was used to determine its size in 8 mm diameter. After the adipose on surface of cancel-
lous bone explant models was removed, these cancellous bone explant models were cul-
tured with DMEM medium (containing 15% FBS suitable for tissue cultivation) in the
chamber of dynamic loading and circulating perfusion bioreactor system which has circu-
lating perfusion effect during 3D cultivation besides mechanical load function.

Micro-CT scanning and finite element analysis

Mechanical stimulation can affect the proliferation and differentiation of bone cells,
and ultimately affect regeneration of bone tissue, however, the strain and stress apply-
ing on cells in bone tissue cannot be measured accurately, but it can be effectively cal-
culated in theory by Micro-CT scanning and finite element (FEM) analysis. In this
experiment, the cancellous bone explant models extracted from rabbit femoral heads
were scanned by a high-resolution Micro-CT (Skyscan 1076 X-ray Micro-tomography,
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Belgium) with a 9 um thickness in Beijing University of Aeronautics and Astronautics,
China. Then the scanning results were treated with Mimics software for 3D models,
three-dimensional inverse reconstruction software Geomagic for Nurbs surface,
Solidworks for scaffold 3D model and FEM analysis in mechanical load of 1000 pe,
2000 pe and 3000 pe respectively.

Alkaline phosphatase (AKP) activity assay

After mechanical load using dynamic loading and circulating perfusion bioreactor
system, all cancellous bone explant models were rinsed 3 times in PBS (unstressed
model samples as the control group were incubated under the same conditions for
the maximum period of mechanical loading application), these samples then were
cut into about 1 mm?® size and tardily homogenized in RIPA buffer (400 uL)
containing protease and phosphatase inhibitors at 4°C. Total protein was collected
after centrifugation at 12000 r/min for 15 min, and quantified by BCA™ Protein
Quantification Kit. The absorbance (OD) value of AKP was detected according to
AKP activity assay Kit, and its activity was calculated as the following formula:

SOD
AKP(U /gprot) =% oD

x St phonel quantity (0.003mg) + S protein quantity (g).

SOD: Sample OD value; St OD: Standard substance OD value; St phonel quantity:
Standard subatance phonel quantity; Sprotein quantity: Sample protein quantity.

Tests of mechanical properties

Mechanical properties of cancellous bone explant models were assessed on the clas-
sical mechanical Micro Tester (INSTRON 5865, USA). Testing conditions were set as
a 0.5 N preload and 2 mm/min loading rate until the occurrence of maximum stress/
maximum load, and a stress—strain, stress under maximum load and elastic modulus
were obtained, which will determine the influence of different levels of mechanical

load on the stiffness of bone explant models.

Measurement of tissue mineral density

Tissue mineral density (TMD) was determined by a high-resolution Micro-CT scanning
described as above. The cancellous bone models were mounted in a cylindrical speci-
men holder to be captured in a single scan. Scanning conditions were set as a 55 kV
peak voltage and 9 pm slices. Calculation of TMD (g/cm?) was performed according to
gray value of bone explant models by the postprocessing of Micro-CT.

Osteoid staining according to Von-kossa

Originally designed as a technique to detect inorganic phosphates via silver nitrate,
technique of Von-kossa has been found wide acceptance as a mineralized tissue
marker. In this study, Von-kossa staining was performed to determine the presence of
mineralization after rabbit cancellous bone explant models were stimulated with differ-
ent mechanical loads. These models were fixed in 4% paraform for 24 h at room
temperature, and made into 5 um undecalcified tissue sections (supported by Tianjin
Hospital, China).The sections were de-hydrated and incubated with 5% silver nitrate
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solution under ultraviolet light for 60 min. Un-reacted silver was removed with distilled
water for 5 min and 5% sodium thiosulfate for 2 min. The latter was rinsed away for
5 min with distilled water again, and treated repeatedly by 0.1% nuclear fast red staining
for 2 min. Then all images were captured using a microscope (Olympus, Japan) with
predetermined magnification of 10 and 20. To assess volume of osteoid, the osteoid bands
were measured manually using Image Proplus 6.0. There were totally 5 samples in each
group, and 8 fields of every sample were evaluated by this software.

Observation of the fluorochrome double-labeling

In fluorochrome labeling, two different substances were added to the culture medium
in chamber of the dynamic loading and circulating perfusion bioreactor system at de-
fined time: a dose of 5x10™* mol/L Tetracycline hydrochloride from the first day to the
6™ day, and 50 pg/ml Calcein from the 9™ day to 14™ day or the 16™ day to the 21°
day. In labeling groups for 14 days and 21 days, all these cancellous bone explant
models were arranged in 1000 pe for 14 d, 2000 pe for 14 d, 1000 pe for 21 d and 2000
e for 21 d respectively. Especially, labeling for 21 d without mechanical load was set
as the control group. Then all the bone explant models were undecalcified with a
thickness of 10 um as described above. The image acquisition of entire section were cap-
tured at 390 nm for Tetracycline and 485 nm for calcein respectively using a laser scanning
confocal fluorescence microscope (Perlin Elmer Ultra View Vox, UK) with a magnification
of 40. The evaluation of bone formation were also finished by Image Proplus 6.0.

Western blot and ELISA assays

Total protein was extracted from cancellous bone explant models and quantified de-
scribed as above and all protein samples were stored at —80°C. For investigating some
differences in protein expression of bone explant models under different levels of
mechanical load, Western blot assay and ELISA assay were employed to evaluate
COL-1, OPG and BMP-2 respectively.

In Western blot assay [10], each group, a total of 40 mg of protein was separated by
SDSPAGE and blotted to a PVDF membrane. The membrane was blocked in TBST
with 5 % skim milk for 1 h and probed overnight at 4°C with appropriate Mouse Anti-
Collagen I antibody (1:1000 dilution). After washing in TBS, the membrane was incu-
bated with HRP conjugated goat anti-IgG secondary antibody (1:1000 dilution) at 37°C
for 1 h. Washing in TBS again later, the blots in the membrane were developed by an
ECL detection kit (Cwbiotech, China) for 5 min and exposed to Medical X-ray Film. In
this process, (glyceraldehyde 3-phosphate dehydrogenase) GAPDH was used as an in-
ternal reference control. Scion Image was used to perform semi-quantitative analysis.

ELISA of OPG and BMP-2, assays were performed according to the protocol of
manufacturer using a specific ELISA kit. Each protein sample was conducted in
triplicate with parallel 3-well culture plates to ensure accurate results. Then by
using a professional software Curve Exert 1.3 provided by Cusabio Biotech Co.,
LTD, USA, a standard curve was made for calculation of OPG and Bmp-2 values.

RNA extraction and quantitative real-time PCR
Total RNA was extracted from the cancellous bone explant models with the Trizol re-
agent according to the manufacturer’s instructions. Concentration and purity of RNA
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were determined by OD 260/280 nm absorption ratio. The total RNA was reversely
transcribed into single-stranded cDNA using SuperRT cDNA Kit (Invitrogen), which
were performed in a 20 pL reaction mixture containing 500 pM Of ANTP Mix, 2 pl of
primer mix (Life Technologies, USA) and 200 units of Superscript III reverse tran-
scriptase according to the manufacturer’s instructions (Cwbiotech, BEI JING). The re-
action mixture was incubated at 42°C for 60 min and at 85°C for 5 min. Quantitative
real-time PCR analysis was performed with an ABI 7500 fast Real-Time PCR machine
(Applied Biosystems, Foster City, CA, USA) using a Fast SYBR-green Master Mix kit
(Life Technologies, USA). The cycling profiles were 95°C for 20 s, 95°C for 3 s and
60°C for 30 s for a total of 40 cycles. The details of the primers were listed in Table 1.
Three independent experiments were carried out to determine relative mRNA levels. Using
the relative quantitative method, expression levels of PCR products were calculated.

Statistical analysis

All statistical analyses were performed using SPSS 13.0. All data were presented as the
means t S.D. from at least three separate experiments with triplicate samples. Significant
differences were evaluated by a two-tailed ¢ test. Significance was defined at p < 0.05.

Results
Culture and FEM analysis of bone explant models
The cancellous bone explant models prepared from rabbit femoral heads under sterile
conditions were of complete trabecular structure with a round and parallel shape 3 mm
in thickness and 8 mm in diameter (Figure 1A and B). These models could be cultured
in vitro using the dynamic loading and circulating perfusion bioreactor system for mech-
anical load study (Figure 1C and 1D) and also be scanned by Micro-CT for FEM analysis.
By Micro-CT scanning, a distinct structure and rich lacuna of trabecular bone could be
observed in bone explant models, it is suitable for cultivation in vitro by circulating flow
(Figure 2A); And a 3D model reconstructed by Mimics and scaffold 3D model are shown
in Figure 2B, C, D and E. There were some parameters involved by Ansys12.0 to be shown
in Table 2. In this analysis process, the number of elements affected by stress was assessed
through indexes of <500 e, 1000 pe, 2000 pe, 3000 pe and >4000 pe (Table 3, Figure 2F,
G and H). These results showed that the number of elements was significantly increased
when mechanical load was 3000 pe. According to the bone function adaptability model
with strain set up by Frost, it might be considered bone physiological strain in 50-2500
ue, because in the range it had a equal rate between bone formation and bone resorption,

Table 1 Sequences of primers used for qRT-PCR

Gene name Length (bp) Sequences of primer

5-GCGGTGGACTGCACAGGGAC-3'

BMP-2 186
3-AGGGGGTGCCCCTTCCCATC-S'
5"-CACATGCGTGCAGAACGGCG-3'

COL-1 184
3-CGCGTCTTCGGGGCAGACAG-5'
orG i1 5-GCTTCGACGTCACCCCTGCC-3!
3-AGGGGGTGCCCCTTCCCATC-S'
5-TGGCTCTAACAGTCCGCCTAG-3"

-actin 295

3-AGTGCGACGTGGACATCCG-S'
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Figure 1 Cancellous bone explant models and bioreactor system for 3 D-cultivation. These models
made from the rabbit femoral head were 8 mm in diameter and 3 mm in thickness, front (A ) and side (B)
view. the dynamic loading and circulating-perfusion bioreactor under working condition is shown in (C),
and the chamber of the dynamic load and circulating-perfusion bioreactor system is presented in (D).
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Figure 2 Results of Micro-CT scanning and FEM analysis. By Micro-CT scanning, microstructures of the
explant models could be observed in (A). 3D model was generated in Mimics as showed in B (solid model)
and C (free meshed). Using Solidworks, 3D model of the scaffold could be generated from these elements
(D and E). By finite element (FEM) analysis, strain distribution results of group 1000 pe, 2000 pe and 3000 pe
were shown respectively in F, G and H.
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Table 2 Some parameters involved in finite element analysis by Ansys12.0

Element Young’s modulus Poisson’s Number of

type (MPa) ratio (v) clements Appearant strain (pg) Height (mm)
10 node92 51.53 03 184035 1000-3000 0.95
Table 3 Strain distribution analysis of models under mechanical stimulus
Groups Numbers of elements in different strain ranges

< 500 pe 1000-3000 pe > 3000 pe > 4000 pe
1000 pe 8200 6000 100
2000 pe 4400 9500 400
3000 pe 2900 9800 1600

but mechanical load with larger than 3000 pe would lead to pathological bone modeling

and reconstruction, it was overload [16,17]. In our previous studies, with four point bend-

ing device in two-dimension condition, mechanical stimulation of 2500 e could promote

the proliferation and differentiation of osteoblasts, and a damage would occur to osteo-

blasts in 4000 pe or 5000 pe [2,9]. In two-dimension condition, the mechanical stress on

cells was able to be controlled, however, the mechanical stress was easily scattered in 3D

bone tissue model. Therefore, we firstly selected mechanical load level of 1000 pe, 2000

e, 3000 pe and 4000 pe in the following AKP detecting assay.

Specific AKP activity

In this assay, the cancellous bone explant models cultured in vitro experienced different

AKRP activities which were related to the mechanical load level. Compared with the control

group, mechanical load of 3000 e and 4000 pe at 1 Hz for 30 min per day in 5 days could

significantly downgrade the AKP activity (P<0.05). Thus, we have verified that overloading

mechanical stress could occur phenomenon of bone absorption discussed in other paper.

However, when models were treated with mechanical load of 1000 pe and 2000 pe at the

same frequency and loading time per day for 14 days, there was a notable increase in AKP

activity comparing to control group (Table 4). Considering the critical role of AKP activity

in osteoblasts calcification [18] and its effect in this assay, we specially assessed whether load

with different levels of 1000 pe and 2000 pe were able to improve tissue volume of rabbit

femoral head cancellous bone explant models by a series of experiments.

Mechanical property assessment

Being loaded at 1 Hz for 30 min per day in 14 and 21 days, mechanical properties of
these cancellous bone explants models were detected by INSTRON 5865 tester. In
macroscopic view, the inspection showed different stress—strain curves among three

Table 4 Results of AKP activity assay of the explant models (n=3)

AKP(U/gprot)
Groups
5 days 14 days

Control 27.350+0.071 26.126+0.013
1000 pe 26.309+0.034 29.181+0.0417
2000 pe 28.121+0.212 33.218+0.034"
3000 pe 13.365+0.105 11.151£0.108
4000 pe 10.161+0.121 10.603+£0.010

“P<0.05, compared with the control groups.
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Figure 3 Stress-strain curves were obtained from mechanical tests of bone explant models on
Instron 5865. Curves 1#-3# were from group 2000 pe, 4#-6# group 1000 pe and 7#-9# the control group.

groups (Figure 3), further analysis indicated that, with increasing level of mechanical
load, the elastic modulus and the stress under maximum load gradually increased, and
mechanical strain of 2000 pe for 21 days could markedly increase the elastic modulus
of models, mechanical strain of 1000 pe and 2000 pe for 21 days had a significant effect
on the stress of maximum load comparing to the control group (P<0.05, Table 5).
Higher elastic modulus and stress of maximum load were apparent reflections of a bet-
ter mechanical property of bones.

Tissue mineral density analysis

Like the mechanical property assay, the cancellous bone explant models were also
treated with mechanical load of 1000 pe and 2000 pe for 14 and 21 days respectively.
By scanning and analysis, an improvement was gradually seen in TMD with time in-
crease under mechanical loading, especially, when cancellous bone explant models were
treated with mechanical load of 1000 pe and 2000 pe for 21 days, there was an obvious
difference in TMD comparing to control groups (P<0.05, Figure 4). This analysis re-
vealed that TMD variance could be related to the mechanical load level.

Observation of Von-kossa and fluorochrome double labeling

In order to determine whether mechanical load on cancellous bone explant models
could influence osteoid formation in vitro, Von-kossa staining and fluorochrome
double labeling were employed respectively at time points for 14 days and 21 days
under lasting mechanical load. These assays demonstrated a presence of fresh oste-
oid within the cancellous bone explant models in all the mechanical load groups.
In Von-kossa, the fresh osteoid is stained red and mineralized bone substance

Table 5 Mechanical property parameters of bone explant models (n=3)

Groups Elastic modulus (MPa) Stress of maximum load (N)

14 days 21 days 14 days 21 days
control 0.1107+0.0413 0.1129+0.0344 51.8014+0.0182 51.931140.0443
1000 pe 0.1134+0.0341 0.1190+0.0243 51.9462+0.0733 53.4947+0.1017
2000 pe 0.1503+0.0427 0.1712+0.0125 51.9981+0.0655 53.7294+2.3773

“P<0.05,compared with the control group.
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Figure 4 Tissue mineral density (TMD) analysis were performed using SPSS13.0. These analysis came
respectively from the data of different cancellous bone model samples scanned by micro-CT after being
stimulated for 14 days and 21 days. In group 1000 pe and 2000 pe for 21 days group, the TMD had a
change compared to the control group. (* P<0.05 vs. the control group).

which is black (Figure 5), and in fluorochrome double labeling, the fresh osteoid
were labelled by Tetracycline hydrochloride and Calcein (Figure 6). In every group,
40 fields was evaluated by analysis of Image Proplus 6.0. Arithmetic means were
then calculated as measurements of collection. The effects of von-kossa and fluoro-
chrome double labeling were compared in Figure 7 and Table 6. The analysis indi-
cated that the osteoid formation were improved with the increasing of load intensity and
time, the highest degrees of osteoid formation were seen in the group with maximum load
of 2000 for 21d in the two assays, but it was unparalleled between two assays. In Von-
kossa, significant differences might be observed between the control group and the load
groups, however, in fluorochrome double labeling, the significant differences were only
found between control group and the latter three groups (P<0.05).

Figure 5 Results of Von-kossa staining. These photos were captured with predetermined light intensity
under magnification of 10 (A-E) and 20(a-e). Photos from A (or a) to E (or e) represented the control group,
group 1000 pe loading for 14 days, group 2000 pe for 14 days, group 1000 pe for 21 days and group 2000
ue for 21 days, respectively. The fresh osteoid have also been specially marked with arrow.
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Figure 6 Results of fluorochrome double labeling. The explant models of cancellous bone were treated
with Tetracycline hydrochloride in the first 6 days, then Calcein from the 9" to the 14" day and the 16 to
the 21°" day. The fresh osteoid were labelled in green or yellow by Tetracycline hydrochloride and Calcein
in A (the control group cultured for 21 days), B (group 1000 e loading for 14days), C (group 2000 pe
loading for 14 days), D (group 1000 pe loading for 21 days) and E (group 2000 pe loading for 21 days).

COL-1, OPG and BMP-2 protein expression

COL-1, OPG and BMP-2 protein secreted by osteoblasts, play roles in regulation of
bone formation and extracellular matrix. In the present study, these results indicated
that mechanical load could regulate expression of COL-1, OPG and BMP-2 protein
(Figure 8, Table 7). As showed in Figure 8 (2), expression values of COL-1 protein (rela-
tive to internal reference GADPH) in 1000 pe and 2000 pe for 21 days were signifi-
cantly higher than the control group (P<0.05) by western blot assay. Through ELISA
assays, expression of OPG and BMP-2 protein were investigated. Interestingly, all
expression values of OPG and BMP-2 were improved under mechanical load the com-
paring to control group (P<0.05), yet which were not a striking action for expressing of
OPG protein under mechanical load of 1000 e for 14 days.

COL-1, OPG and BMP-2 mRNA expression

The analysis results of Quantitative real-time PCR for the expression of COL-1, OPG
and BMP-2 mRNA are summarized in Figure 9. We found that expression of three
genes were gradually increased with improvement of mechanical load level at any time.
Furthermore, under mechanical load of 1000 pe and 2000 pe for 21 days, there were

4 e

3 /
s / /
—

A B C D E
[ —— Von-kossa —=— Double labeliing ]

Thickness of osteoid in pm

Figure 7 Osteoid formation of bone explant models. These analysis were conducted by Image Proplus
6.0 and shown as A (the control group cultured for 21 days), B (group 1000 pe loading for 14 days),

C (group 2000 pe loading for 14 days), D (group 1000 pe loading for 21 days) and E (group 2000 pe
loading for 21 days).
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Table 6 Osteoid formation of bone explant models (n=40)

Groups Von-kossa (um) Double labeling (um)
control 0.8109+0,0013 0.3491+0.0072
14 d 1000 pe 14024400219 0.7984+0,0081
14 d 2000 pe 2.1175+0.1129" 2.2718+00481"
21.d 1000 pe 3.183+0.0876" 2.9632+00875"
21 d 2000 pe 4.3038+0.0602" 40562+0.1027

“P<0.05,compared with the control group.

significant upregulation in three genes, but, to mechanical load for 14 days, the striking
upregulation was only seen in COL-1 and BMP-2 under mechanical load of 2000 pe. In
addition, compared with protein expression of OPG, COL-1 and BMP-2, it also re-
vealed that the three proteins and the three genes could not accordantly response to
the same mechanical load condition in vitro.

Discussion

During evolution, bones have optimized its load-bearing role by adapting its architecture
and function to mechanical forces. Removal of mechanical load results in bone mass de-
crease while a suitable dynamic mechanical load can promote bone formation [19]. How-
ever, bones are sensitive to not static but dynamic load, static load has no effect on bone
remodeling, whereas a similar dynamic load is associated with bone mass increase [20]. A
single period of dynamic load can not only induce the periosteal surface to transform dir-
ectly from quiescence to active bone formation [21], but also modulate bone loss caused
by calcium insufficiency [22]. Therefore, dynamic mechanical load is a fundamental
physiological factor for regulating bony structure and function of bones [23]. In the
present study, we investigated the association between growth of rabbit cancellous bone
explant models and mechanical load. Mechanical load conditions of rabbit cancellous
bone explant models were obtained from finite element analysis. On the other hand, the
adaptive ability of bone tissues to the mechanical environment depends on the bone cells
[24]. Osteoblasts, the bone-forming cells are located on the surface of bones, which can
be activated by dynamic mechanical stimulus in vitro. AKP is a differentiation marker of
osteoblasts whose expression was enhanced under mechanical load of 1000 pe and 2000

pe in our experiments, and thus, it was considered that osteoblasts in these cancellous
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Figure 8 COL-1 protein expressing effect of mechanical load on bone explant models. (1) the
explant samples of cancellous bone were pretreated with different mechanical intensity and time, by
western-bloting, the expression of COL-1 and GADPH were identitied; (2) Through analysis of the gray
values using Scion Image, COL-1 expressing variances were showed due to different stress levels,

* P<0.05 compared with the groups.




Zong ming et al. BioMedical Engineering OnLine 2013, 12:35 Page 13 of 15
http://www.biomedical-engineering-online.com/content/12/1/35

Table 7 OPG and BMP-2 effect of bone explant models (n=3)

OPG(pg/ml) BMP-2(pg/ml)
Groups

14 days 21 days 14 days 21 days
Control 7.0490+0.126 7.0553+0.219 3.384440.227 3.3391+0.391
1000 pe 8.7778+0.230 15322040556 47232+0.243" 6.4394+0.480"
2000 pe 10.1096+0.366" 12.0148+0476 5.2203+0.140" 647300480

“P<0.05, compared with the control group.

bone explant models could be sensitive to mechanical load from a new dynamic loading
and circulating perfusion bioreactor system.

By the increasing activity of AKP, it was presumed that osteoblasts in cancellous bone
explant models might be supplied with adequate nutrients and preserved vigorous vital-
ity. This is supported by Dodd et al. [25] with observation of reduction in the number
of viable osteocytes as a result of the absence of mechanical stress in vivo, which was,
however, reversible after applying mechanical stress. In our investigation, the osteoblast
functions measured by osteoid formation in bone explant models (Von-kossa staining
and two fluorochromes labelling) were significantly improved in relation to the level
and time of mechanical load. Moreover, some other indexes on these models, such as
TMD, stiffness and elastic modulus, were also measured with improvement accordingly
for the occurrence of osteoid formation.

In addition, we also found a close association between COL-1, OPG and BMP-2 ex-
pression and mechanical load on cancellous bone explant models in this research. Pre-
vious studies have revealed that Osteogenic differentiation procedurally experiences
gene expression of ALP, OPG, COL-1, and BMP-2 in a time-dependent manner. COL-
1 is the most abundant protein in bone and the main composition of bone matrix, its
expression is complexly regulated by a set of different factors. Under 3D dynamic load
condition, COL-1 could be up-regulated after 3 days. OPG secreted by osteoblasts is a
sort of glycoprotein which can combine to osteoclast surface-factor NF-kf3 receptor ac-
tivator (RANK) competing with OPGL which is cognate ligand of OPG, both OPG and
OPGL can highly express in osteoblasts. RANK combining with OPG can block differ-
entiation and proliferation of osteoclasts, which will reduce generation of bone absorp-
tion, additionally, osteoclast surface F-actin which is bound to OPG can directly inhibit
bone resorption activity of mature osteoclasts; and BMP-2 plays an important role in
the regulation of bone formation and remodeling, which can improve bone formation
in bone tissue engineering, since all of them are secreted during differentiation or pro-
liferation of osteoblasts [26-34]. Expressions of COL-1, OPG and BMP-2 protein and

L-1
Py BMP-2

Relative mRNA expressing level
Relative mRNA expressing level

control 1000 pe 2000 pe control 1000 pe 2000 pe control 1000 pe 2000 e

Figure 9 Expressions of OPG, COL-1 and BMP-2 mRNA were detected using real-time PCR after
mechanical load with different intensities on the explant models for 14 days and 21 days. Mean Ct
value of target genes was normalized to housekeeping gene B-actin. * p<0.05 compared with the

control group.
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mRNA were assessed after mechanical load on cancellous bone explant models in our
experiments, showing a significant increase in mechanical level and time dependent
manner. It was made further clearly that these cancellous bone explant models had
trended to development of bone formation in molecule.

In summary, our study demonstrated that mechanical load could regulate function
and activity of osteoblasts in cancellous bone explant models. Through pathways of
COL-1, OPG and BMP-2, mechanical load improved TMD, stiffness and elastic modu-
lus due to the formation of fresh osteoid. This study firstly showed how mechanical
load influenced development of rabbit cancellous bone explant models in micro-
environment of dynamic loading and circulating perfusion bioreactor system.
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