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Abstract

Background: Model-based Roentgen Stereophotogrammetric Analysis (MBRSA)
allows the accurate in vivo measurement of the relative motion between an implant
and the surrounding bone (migration), using pose-estimation algorithms and three
dimensional geometric surface models of the implant. The goal of this study was
thus to investigate the effect of surface model resolution on the accuracy of the
MBRSA method.

Methods: Four different implant geometries (knee femoral and tibial components,
and two different hip stems) were investigated, for each of which two reversed
engineering (RE) models of differing spatial digitizing resolution were generated.
Accuracy of implant migration measurement using MBRSA was assessed in
dependence on surface model resolution using an experimental phantom-model set
up.

Results: When using the lower quality RE models, the worst bias observed ranged
from -0.048 to 0.037 mm, and -0.057 to 0.078 deg for translation and rotation
respectively. For higher quality reverse engineering models, bias ranged from -0.042
to 0.048 mm, and -0.449 to 0.029 deg. The pair-wise comparisons of digitizing
resolution (higher vs. lower quality) within the different implant type revealed
significant differences only for the hip stems (p < 0.001).

Conclusion: The data suggest that the application of lower resolution RE models for
MBRSA is a viable alternative method for the in vivo measurement of implant
migration, in particular for implants with non symmetrical geometries (total knee
arthroplasty). Implants with larger length to width aspect ratio (total hip arthroplasty)
may require high resolution RE models in order to achieve acceptable accuracy.
Conversely, for some axis the bias for translation are clearly worse for translation, and
are marginally better for rotations using the lower resolution RE models instead of
the higher ones. However, performed box plots ranges were well within what has
been reported in the literature. The observed lower accuracy and precision of the
measurements for hip stem components for rotations about the superior-inferior
direction is presumably the result of the nature of the MBRSA method. This well
known effect within MBRSA for rotations about the axis of symmetry of axially-
symmetric objects do not change the contour of the projected image to as large a
degree as motion about a non-symmetric axes. It is not possible to detected this
small motion as accurately using pose-estimation methods. This may affect the
“higher” accuracy for the applied lower resolution RE models.
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Background
Roentgen Stereophotogrammetric Analysis (RSA) is a highly accurate method for the

in vivo detection of musculoskeletal kinematics [1-4]. Continuous improvements in

object recognition, mathematical as well as computer-graphics algorithms, have allowed

the RSA method to find a wide range of applications within the field of orthopaedic

research [5-13]. The RSA method remains of particular clinical importance, because it

allows the measurement of implant migration in the first two postoperative years,

which has been shown in long term clinical studies to correlate well with a later aseptic

implant loosening [14,15]. Implant migration presents the three dimensional motion

between an implant and its surrounding bone over a follow up period of two years in

relation to the direct post-operative situation [16]. Furthermore, aseptic loosening re-

mains a major problem associated with total joint arthroplasty [17-19] and RSA present

the gold standard to quantify the implant fixation [17,20]. The power and clinical rele-

vance of RSA is to investigate implant fixation within a relative short observation inter-

val has been documented based on long-term studies [14,15].

Model-based RSA (MBRSA) is a method, utilizes bone markers as well as pose-

estimation algorithms and three dimensional surface models of the implant to compute

the in vivo migration of the implant [2,5,21]. To date, computer aided design (CAD)

drawings or reverse engineering (RE) technologies have been used to obtain the neces-

sary three dimensional surface models of the implants. To determine implant motion, a

virtual contour of the three dimensional surface model of the implant is projected into

the RSA-image pairs, and matched (fitted) against the actual contour of the implant,

which is detected by means of the canny-operator edge detection algorithm [22]. The

three dimensional surface model is thereby translated and rotated by the pose estima-

tion algorithm until the best match (fit) between the actual and virtual contour is found

[5,6,21]. Similar geometry-based methods have been previously developed for measure-

ments of implant migration [8,23], as well as to investigate joint-kinematics by means

of fluoroscopic image sequences [24-31].

The accuracy of RSA in general has been investigated in several experimental

phantom-model studies, or by means of double (repeated) patient examinations during

clinical application [5,6,8,9,11,12,21,32-36]. As has been previously stated by Ryd et al.

(2000), “… the accuracy of RSA depends on a large number of factors including the

radiographic equipment, the RSA set-up, the number of markers, size of and distance

between marker configurations” [37]. This principal can be extended to MBRSA, in

stating that accuracy in this case is also dependent on the quality of the geometric sur-

face models used. A characterization of this effect is of interest because one application

scenario which has been proposed is the integration of a RE scanning step into the im-

plant manufacturing process for quality assurance purposes. Current RE technology

has advanced to such a degree that this scenario could become reality. The cost of RE

devices has dropped whilst the quality of the digitized surface models is improving and

scanning time has been reduced. An additional digitizing step within the manufacturing

process would, as a side-effect, provide accurate surface models which could further be

used for MBRSA and may facilitate wider application of the method for standardized

early preclinical studies as suggested by Valstar et al. (2005).

The influence of the source and mesh density of three dimensional geometric models

(CAD, RE, number of triangles) on MBRSA accuracy has been previously investigated
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[5]. As a result, RE models take account of the highest degrees of manufacturing tole-

rances. Interchangeable applicability of MBRSA using RE models with the classical

marker-based RSA method has been shown in previous studies [16,38,39] However, the

effect of the digitization quality of the RE models for differing implant geometries has

not. A characterization of this effect is of interest because one application scenario

which has been proposed is the integration of a reverse engineering scanning step into

the implant manufacturing process for quality assurance purposes. This is of interest,

because the time required for lower resolution scanning is significantly less than for

high resolution scanning. With the digitizing equipment available to us, the scanning

time for one implant, which includes both the time for digitization and mesh gene-

ration, is approximately 120 minutes for the higher resolution device (i.e. ATOS II,

GOM mbH, Braunschweig, Germany), and about 90 minutes for the lower resolution

device (i.e. ATOS I, GOM mbH, Braunschweig, Germany). Acquisition time is thus an

important parameter, especially when considering that some manufacturers envision

scanning every manufactured prosthesis for MBRSA as well as quality assurance pur-

poses. Current reverse engineering technology has advanced to such a degree that this

scenario could become reality. The cost of reverse engineering devices has dropped

whilst the quality of the digitized surface models is improving and scanning time has

been reduced.

The goal of this study was thus to evaluate the effect of RE spatial digitizing reso-

lution on the accuracy of MBRSA migration measurement in an experimental

phantom-model set-up. We compared the two commercially available devices at our

disposal, with slightly different volumetric point spacing, spatial resolution, and total

acquisition times. We hypothesized that different spatial digitization resolutions do not

affect the accuracy and precision of migration measurement using MBRSA, and that

accuracy of the method using RE models attained using the two commercially available

digitizing systems falls within the range of accuracy reported for marker-based RSA in

the literature.
Methods
Lower resolution RE models (ATOS I) were compared with earlier obtained high reso-

lution RE models (ATOS II) [38] using the same migration measurement protocol pre-

viously used (measurement set-up, phantom model). These RSA radiographs were

analyzed a second time using lower resolution models. The images were generated

within a uni-planar RSA measurement set-up, consisting of two synchronized analog

roentgen tubes (Philips MCD 105 and Philips Medio 50 CP-H, Philips, Medical Systems

GmbH, Hamburg, Germany) and a carbon-fiber calibration box (Medis Medical

Imaging Systems bv, Leiden, Netherlands). A bone and implant phantom-model was

rigidly attached to the calibration box. The bone and implant phantom-model enables

the simulation of implant migration which was represented with respect to a global

fiducial coordinate system defined relative to the calibration box (Figure 1). This

phantom-model was constructed to enable the migration simulation of the implant

according to two different protocols: zero relative prosthesis-bone motion, in which the

prosthesis and bone are moved as one rigid body together, and relative prosthesis-bone

motion, whereby the prosthesis is moved relative to the bone [38]. A Plexiglas tube was



Figure 1 Reference RSA radiograph. A) Migration is represented with respect to a global fiducial
coordinate system defined relative to the calibration box translation along the medio-lateral (x-axis, red)
and superior-inferior (y-axis, blue) axes constitute in-plane motion, and translation about the posterior-
anterior-axis (z-axis, green) out-of-plane motion; rotation about the posterior-anterior-axis (Rz-axis, green)
further described in-plane motion, and about the medio-lateral (Rx-axis, red) and superior-inferior axes
(Ry-axis, blue), out-of-plane motion respectively. B) The applied implant phantom-model enables the
simulation of implant migration. This migration simulation was enabled by the micromanipulators
integrated within the phantom model. The imposed set-point motion within the measurement protocol
was 1.0 mm for translation about each axis, as well as 1.31 deg for out-of-plane (x-, y-axis) and 1.19 deg for
in-plane (z-axis) rotational motion.
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used to simulate the bone about the implant (Figure 2; inner cylinder). In order to simulate

bone makers adjacent to the various implant geometries tested, 36 spherical tantalum

markers of 1.0 mm diameter (Tilly Medical Products AB, Lund, Sweden) were inserted into

the Plexiglas tube. A further Plexiglas tube was used to represent the soft tissue surroun-

ding the bone (Figure 2, outer cylinder). The prosthesis components investigated were

rigidly fixed onto the Plexiglas beam, which can be positioned within the Plexiglas tube

using micromanipulators. Three rotational and one translational manipulator were used,

whereby the single translational manipulator was repositioned to allow translational

motion about each of the three axes of motion investigated. Accuracy of the translational

(ThorLabs Inc. Europe, Karlsfeld, Germany) as well as the rotational manipulator (Newport

GmbH, Darmstadt, Germany) was characterized using laser-interferometry. Average mean

(bias) and standard deviation relative to set points were less than 0.005 ± 0.002 mm in

translation, and 0.000 ± 0.007 deg in rotation (n = 10 repetitions). The Plexiglas tube

representing bone, as well as the plate to which the prosthesis components were attached,

were both rigidly fixed to the precision manipulators in the zero relative prosthesis-bone

motion protocol (Figure 2). Motions about six degrees of freedom were thus imposed on

the implant and bone attached rigidly to one another (hence the term “zero relative

motion”). Since no true motion between both rigid bodies takes place, the set-point of

measured migration should thus be exactly zero. In the relative prosthesis-bone motion

protocol, the Plexiglas bone tube was rigidly fixed, whereby the implant was moved relative

to the tube (hence the term “relative motion”).



Figure 2 Phantom Model. The phantom model enables the migration simulation of the implant
according to a zero relative prosthesis-bone motion and a relative prosthesis-bone motion protocol. For the
relative prosthesis-bone motion protocol the inner cylinder must be rigidly fixed to the phantom model
basic (image in upper left corner). The prosthesis components investigated were rigidly fixed onto the
Plexiglas beam. This beam can be positioned within the Plexiglas tube using micromanipulators for
translation and rotations. Three rotational and one translational manipulator were used, whereby the single
translational manipulator was repositioned to allow translational motion about each of the three axes of
motion investigated.
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Investigated prosthesis designs and RE models

Four typical prosthetic components that varied in geometric design (Argomedical

GmbH, Gifthorn, Germany) were investigated (Figure 3): one femoral (FEMUR) and

one tibial (TIBIA) total knee arthroplasty paired-component, and two femoral total hip

arthroplasty components, the Argo-TEP (HIP 1) and Antea (HIP 2). The geometric de-

signs of the investigated components represent typical geometries for knee and hip

total joint arthroplasty. Its basic geometric arrangement is similar to other prosthesis,

especially in a typical a-p radiographic view. The both hip stem components of hip

arthroplasty represents two typical design variations: one with a roundish long design

in superior-inferior direction in an a-p radiographic view, the other with a flat design

(expanded stem in medial-lateral direction) in the metaphyseal region. Individual RE

models of the four implants were generated using two different optical non-contact

fringe-projection digitizing systems (ATOS I and ATOS II, GOM, mbH, Braunschweig,

Germany) [40], in order to generate RE models of differing quality.

The first set of models was generated with a volumetric point spacing of 0.08 mm

and spatial resolution of 0.01 mm using the ATOS II system [38]. Additionally, the

same prosthetic components were digitized twice with a volumetric point spacing of

0.125 mm and a spatial resolution of 0.02 mm using the ATOS I system. The number

of digitized points of a scanned implant determines the number of polygons of the RE

model representing the three dimensional surface in the raw scanned state (not



Figure 3 Measurement protocol. Schematic diagram showing the investigated implants, differing RE
model quality, as well as the applied measurement protocols and analysis steps for each pair of RSA
radiographs. Same sets of RSA radiographs were analyzed a second time, using lower resolution RE model.
Only the high resolution RE model (ATOS II) of each investigated implant was replaced by lower resolution
model (ATOS I) within analysis. The calibration settings bone-marker and actual contour detections within
the pairs of RSA image remained unchanged from the first analysis using the high resolution models
(ATOS II).
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optimized or reduced). RE models were generated which consisted of between 227,693

and 722,808 polygons (113,934 and 361,406 points) for the ATOS II, as well as between

142,874 and 356,225 polygons (71,439 and 178,136 points) for the ATOS I digitizing

system. The raw meshes generated with the higher resolution ATOS II system were

thus about twice as large in terms of the number of polygons as the lower resolution

meshes. According to manufacturer suggestions at the time the investigations were

performed, each RE model was subsequently reduced to 5,000 polygons for use in the

pose-estimation algorithm within the MBRSA software (MBRSA 2.0 beta, MEDIS spe-

cials, Leiden, Netherlands). A quadric-based polygon surface simplification algorithm

[41] (Figure 4) was used for polygon reduction, and the quality of the resulting surface

models verified using mesh registration methods; a nominal-actual value comparison

was performed between reduced and raw scanned state RE models using the ATOS

Software v5.4 (ATOS Software v5.4, GOM mbH, Braunschweig, Germany). The diffe-

rence between the reduced and the raw scanned meshes was ≤ ± 0.05 mm in all cases

for the convex surface regions of the implant which contribute to the projected con-

tours of the implant and are thus relevant for pose-estimation.

Analysis

The same version of the MBRSA software package (MBRSA 2.0 beta, MEDIS specials,

Leiden, Netherlands) and analysis protocol were used for the repeated analysis of the

RSA radiographs. Only the RE model was replaced within each analysis: calibration set-

tings including thresholds, bone-marker and actual contour detections within the pairs

of RSA image remained unchanged from the first analysis [42,43], and thus do not



Figure 4 RE surface model. Surface model of a tibial total knee arthroplasty component generated with
RE technology. Also visible is a close up of the tibial stem, in order to illustrate the quality of the mesh. (A)
Surface model digitized using optical non contact digitizing system ATOS II, consisting of 113,934 points
and 227,693 polygons. (B) Surface model digitized using optical non contact digitizing system ATOS I,
consisting out of 103,188 points and 206,366 polygons. (C) Reduced ATOS II surface model (2,572 points
and 4,999 polygons), and (D) reduced ATOS I model (2,502 points and 5,000 polygons).
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contribute to the relative error between the analyses. Pose estimation of the replaced

RE models were performed by allowing the same iterative inverse perspective matching

(IIPM) algorithm [5] to run until the best fit was found, which was defined by the con-

vergence of the difference parameter below a set value. The difference parameter was

defined as the average of all deviations between both contours. A further stopping cri-

terion intended to prevent run-out, was set to 50 iterations but never reached in any of

the analyses performed.
Statistical methods

Accuracy was expressed as the bias and precision of measured values of motion (x, y, z, Rx,

Ry, Rz), whereby precision was expressed as the standard deviation (SD) of the repeated

measures (n = 10 per axis). Bias was defined as the average difference between the measured

and set-point values of motion. Set-point values were physically imposed using the micro-

manipulators as previously described [38]. The definitions of bias, precision, and “accepted

reference value” reported herein are derived from and conform to the guidelines set forth in

ASTM E-177-08. All computations were performed using SPSS (Version 13.0, SPSS Inc.,

Chicago, Illinois, USA). Box-plots were used to illustrate the variability of the data, and to

facilitate the identification of possible measurement outliers and extreme values.
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To compare migration measurement with the two digitizing resolutions and the four

prostheses components investigated, a two-factor ANOVA (p < 0.05) was performed

with two levels for the factor digitizing resolution (ATOS I, ATOS II), and four levels

for the factor implant type (FEMUR, TIBIA, HIP 1, HIP 2). The dependent variables

tested were the three components of implant translation and rotation respectively,

which were measured (x, y, z, Rx, Ry, Rz). Where significant interactions between digi-

tizing resolution and implant type were found, a simple main effects follow-up analysis

was performed to compare the factor implant resolution within each level of the factor

implant type.
Results
Using the zero relative motion protocol, significant effects for the factors digitizing

resolution (p = 0.011) and the implant type (p < 0.001) were observed, as well as an

interaction effect between these factors (p < 0.029). The follow-up pair-wise compari-

sons of digitizing resolution within the factor implant type revealed significant diffe-

rences for HIP 1 (p < 0.001) and HIP 2 (p < 0.001, Figure 5).

Using the relative motion protocol, a significant effect was found for the factor im-

plant type (p < 0.001), but not for digitizing resolution (p = 0.200). A follow up analysis

was nonetheless performed, because a strong trend towards an interaction effect was

observed (p = 0.067), revealed a significant difference within the factor digitizing reso-

lution for HIP 1 (p < 0.001, Figure 6).

Due to the similar trends for migration measured between the zero relative

prosthesis-bone motion (Figure 5) and relative prosthesis-bone motion (Figure 6), the

values of the descriptive statistics reported below and in the tables (Table 1) will refer

to the relative prosthesis-bone motion data only.

Bias for translational and rotational motion for all the prosthesis components investi-

gated ranged from -0.042 to 0.048 mm and -0.449 to 0.029 deg with the high resolution

models (ATOS II) [38], and from -0.048 to 0.037 mm and -0.057 to 0.078 deg for the

lower resolution RE models (ATOS I) respectively (Table 1). The worst rotational bias

of −0.449 deg was observed with the high resolution models (ATOS II) [38], for the hip

prosthesis with the largest length to width aspect ratio (HIP 1, Table 1 and Figure 6).

Interestingly, the results indicate a reduced maximum bias for HIP 1 observed for rota-

tional motion using RE models of lower digitizing quality (Table 1).

The SD as a measurement of data variability were observed in all cases for in-plane

and for out-of-plane motion with a maximum SD of ± 0.073 mm and ± 0.354 deg ob-

served when using the high resolution models (ATOS II) [38], and with a maximum

SD ± 0.181 mm and ± 0.330 deg observed for the lower resolution RE models (ATOS I)

respectively.
Discussion
The dependence of the accuracy of MBRSA on RE model quality was investigated in an

experimental phantom-model. For the measurement of in-plane implant motion, we

observed no statistical loss of accuracy or precision when using lower resolution RE

models. For out-of-plane motion, in particular for the total hip arthroplasty compo-

nents, a dependence on RE model quality was observed. We thus reject the hypothesis



Figure 5 Migration within zero relative prosthesis-bone motion protocol. Box-Plots of migration
measured using MBRSA and the zero relative prosthesis-bone motion protocol, the higher (ATOS II, white
box) [38] and lower digitizing resolution RE models (ATOS I, gray box) are both shown. Gray background
colored plots represents in-plane, white plots out-of-plane motion. The boxes bound the 25th to 75th

percentile, the whisker bars show smallest and largest observe values. The horizontal line of the boxes
represented median value, the dashed lines indicate bounding range of RSA accuracy reported in literature
(i.e. between 0.05 to 0.5 mm, and between 0.15 to 1.15 deg) (Valstar et al. 2002, Kaptein et al. 2003).
Migration is shown in (A) medio-lateral, (C) superior-inferior, and (E) anterior-posterior translation as well as
for rotation about the (B) medio-lateral, (D) superior-inferior, and (F) anterior-posterior axes. Significant
differences were calculated by two-factor ANOVA (p < 0.05), as well as the effects within a pairwise
comparisons of the digitizing resolution in context to the dependent variables (x, y, z, Rx, Ry, Rz) were
presented by a bold star on top of a bracket.
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Figure 6 Migration within relative prosthesis-bone motion protocol. Box-Plots of migration measured
using MBRSA and the relative prosthesis-bone motion protocol, the higher (ATOS II, white box) [38] and
lower digitizing resolution RE models (ATOS I, gray box) are both shown. Gray background colored plots
presenting in-plane, white colored out-of-plane motions. Migration is shown in (A) medio-lateral, (C)
superior-inferior, and (E) anterior-posterior translation as well as for rotation about the (B) medio-lateral, (D)
superior-inferior, and (F) anterior-posterior axes (see Figure 5 for a description of the box-plots). Significant
differences were calculated by two-factor ANOVA (p < 0.05), as well as the effects within a pairwise
comparisons of the digitizing resolution in context to the dependent variables (x, y, z, Rx, Ry, Rz) were
presented by a bold star on top of a bracket.
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that spatial resolution of the RE models does not affect the accuracy of the model-based

RSA method. The effect of RE model resolution was different for the knee components

investigated and for the hip components. Thus, maximum confidence-intervals for trans-

lation are marginally worse, and for rotation somewhat better for the knee components

when using the lower resolution RE models (Table 1). Conversely, maximum confidence-



Table 1 Migration measured using MBRSA and the both RE models ATOS II and ATOS I
respectively using the relative prothessis bone motion protocol (N = 10)

Model In-plane Out-of-plane In-plane

x [mm] y [mm] z [mm] Rx [deg] Ry [deg] Rz [deg]

TIBIA ATOS II Bias .037 -.005 .048 .028 .007 .029

ATOS I .037 -.005 .024 .032 -.052 .035

ATOS II SD .022 .019 .032 .047 .123 .028

ATOS I .023 .019 .030 .044 .187 .025

FEMUR ATOS II Bias .032 -.001 -.042 -.055 -.060 .020

ATOS I .030 -.004 -.018 -.055 -.046 .011

ATOS II SD .028 .012 .037 .033 .029 .036

ATOS I .028 .013 .027 .026 .028 .019

HIP 1 ATOS II Bias .012 -.017 -.025 -.030 -.449 .026

ATOS I .013 -.015 .015 -.035 .078 .029

ATOS II SD .026 .023 .036 .038 .354 .015

ATOS I .025 .018 .058 .046 .298 .016

HIP 2 ATOS II Bias .021 -.007 -.017 -.079 -.138 .029

ATOS I .024 -.003 -.048 -.041 -.057 .034

ATOS II SD .036 .018 .073 .110 .204 .051

ATOS I .047 .014 .181 .099 .330 .058

ATOS II data results out of a previois study using the same migration measurement protocol and measurement set-up for
comparison [38]
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intervals for translation are clearly worse for translation, and are marginally better for ro-

tations using the lower resolution RE models. Nonetheless, the ranges of confidence inter-

vals for translation observed were well within what has been reported in the literature

(Table 2). Translational motion is of most interest to us, because it has been correlated to

later aseptic loosening [14,15]. The largest data variability – bounded by 25th and 75th per-

centile in the box-plots (Figures 5D and 6D) and represented by SD (Table 1) – was in

general observed for the total hip arthroplasty components for rotational motion about

the out-of plane superior-inferior axis. Closer inspection of the data indicates that for the

hip components, the RE models of lower digitizing quality generally lead to a wider data

variability for out-of-plane motion: translational motion in the anterior-posterior direction
Table 2 Survey of RSA accuracy reported in the literature

Author Source Ranges Statistic

Selvik 1989 prosthesis marker 0.02 to 0.45 mm Max. error

−0.02 to −0.19 deg

Karrholm 1989 prosthesis marker 0.01 to 0.25 mm Standard deviation

0.03 to 0.6 deg

Valstar 2001 surface model (computer aided design) 0.22 mm Standard deviation

0.52 deg

Valstar et al. 2002 prosthesis marker 0.05 to 0.5 mm 95% confidence-interval

0.15 to 1.15 deg

Kaptein et al. 2003 surface model (RE) 0.14 mm Max. standard deviation

0.1 deg

Remark: The indexed literature is a selection of the published literature.
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(z, Figure 6E), as well as rotational motion about the superior-inferior axis (Ry, Figures 5D

and 6D). The accuracy of the model-based method was in general, as expected, lower for

out-of-plane than for in-plane motions. Thus, for both femoral stem total hip arthroplasty

components (Hip 1, Hip 2), accuracy of MBRSA is lower for rotations about the superior-

inferior axis, which represents out-of-plane motion along the long axis of the shaft of the

prosthesis component (Figures 5D and 6D).

Total hip arthroplasty components may require high(er) resolution RE models. The

lower accuracy and precision of measurements of the total hip arthroplasty compo-

nents for rotations about the superior-inferior direction is presumably the result of the

nature of the model-based method [8,38]. Rotations about the axis of symmetry of

axially-symmetric objects do not change the contour of the projected image to as large

a degree as motion about a non-symmetric axes, and can thus not be detected as accur-

ately using pose-estimation methods. We have however not systematically investigated

the hypothesis that larger length-to-width aspect ratios alone are responsible for this

difference, to do so would require a systematic study on simple representative geom-

etries with differing aspect-rations. In the author’s opinion, prostheses components

with significantly different geometries than those investigated herein should thus first

be characterized in order to verify the suitability of the models to be used. The accur-

acy of measuring migration using the MBRSA method can to date only be determined

my means of experimental phantom-model investigations. While similar results would

be expected from other prosthesis components of similar geometry, materials and

manufacturing tolerances, this must however still be verified. Besides the loss of accur-

acy previously observed for the femoral stem total hip arthroplasty components [8,38],

the results of this current study further show higher variability of motion data when RE

models of lesser quality are applied – in particular for rotational and translational mi-

gration in the out-of-plane directions.
Conclusion
In summary, the results of the current study suggest that the MBRSA method delivers

sufficient accuracy such that it could lead to wider application of RSA for the investiga-

tion of clinical implant fixation. In applications where more accuracy is required and in

particular for implants of similar geometry as the hip-stems investigated, the quality of

the RE model could become more meaningful. The MBRSA method is a promising ap-

proach, which enables the in vivo assessment of migration without the necessity of pla-

cing prosthesis markers. It furthermore allows migration measurement of prosthesis for

which marker-based RSA could to date not be applied due to marker attachment and

occlusion issues resulting from the typical geometry of such components. Nonetheless,

further studies will be necessary to investigate the applicability of MBRSA to specific

prosthesis components and designs before the method is used to investigate such pros-

theses in a clinical setting.
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