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Abstract

Background: The extraction of brain tissue from cerebral MRI volume is an
important pre-procedure for neuroimage analyses. The authors have developed an
accurate and robust brain extraction method using a hybrid level set based active
contour neighborhood model.

Methods: The method uses a nonlinear speed function in the hybrid level set model
to eliminate boundary leakage. When using the new hybrid level set model an active
contour neighborhood model is applied iteratively in the neighborhood of brain
boundary. A slice by slice contour initial method is proposed to obtain the
neighborhood of the brain boundary. The method was applied to the internet brain
MRI data provided by the Internet Brain Segmentation Repository (IBSR).

Results: In testing, a mean Dice similarity coefficient of 0.95±0.02 and a mean
Hausdorff distance of 12.4±4.5 were obtained when performing our method across
the IBSR data set (18 × 1.5 mm scans). The results obtained using our method were
very similar to those produced using manual segmentation and achieved the
smallest mean Hausdorff distance on the IBSR data.

Conclusions: An automatic method of brain extraction from cerebral MRI volume
was achieved and produced competitively accurate results.

Keywords: Brain extraction, Hybrid level set, Active contour neighborhood,
MRI volume
Background
Brain extraction or skull stripping is an important pre-procedure in many neuroimag-

ing analyses. Any subsequent analysis, such as registration between fMRI and T1-

Weighted MRI, measurement of brain volume, brain tissue classification into White

Matter, Gray Matter and GSF, and cortical surface reconstruction, will be highly

dependent on the robustness and precision of the brain masks which are generated in

the brain extraction step. Manual brain extraction requires an operator with profes-

sional knowledge about cerebral anatomy, and is extremely time-consuming. As a con-

sequence, many automatic and semi-automatic brain extraction techniques using

image processing have appeared in recent years. These require the operator to provide

a few initial parameters prior to running the extraction process. These techniques can
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generally be categorized into three types: region-based, boundary-based and hybrid

methods. We briefly describe and compare these methods as follows.

The region-based methods divide the cerebral image into several regions using

thresholding or clustering techniques by observing that the intensities of the voxels be-

longing to the same tissue are similar. The brain region can be extracted from these

regions by morphological operations and region merging. Lemieux [1] proposed an al-

gorithm which utilizes several intensity thresholds and morphological operations to re-

move the non-brain areas. Coxs [2] used a Gaussian mixture model to estimate an

intensity range in order to extract the brain areas in a slice-by-slice manner. Hahn and

Peitgen [3] presented a pre-flooding height based watershed algorithm to group image

voxels with similar intensities then merged the largest connected components to obtain

the brain volume. The region-based methods are usually sensitive to image processing

parameters and image artifacts, such as noise and intensity inhomogeneity. Therefore,

the region-based methods usually require the user to determine the proper initial

parameters.

The boundary-based methods are used to locate a closed contour which partitions

the cerebral image into the internal part (brain) and the external part (non-brain). The

contour can be a tessellated mesh or a continuous curve. Smith [4] proposed a well-

known boundary-based method called the Brain Extraction Tool (BET). BET initializes

the brain contour with a tessellated mesh and pushes the mesh to the brain boundary

with some smoothing forces and a pushing force. BET is relatively insensitive to param-

eter settings because of the globally defined pushing force. The main drawback of BET

is that the brain boundary is often over-smoothed due to the global pushing force. An-

other widely used boundary-based method is Brain Surface Extraction (BSE) [5]. BSE

uses a series of procedures to separate brain and non-brain tissues: anisotropic diffu-

sion filtering, Marr-Hildreth edge detector and morphological operators. When using

morphological operators the initial parameters can badly affect the accuracy of the ex-

traction results. Many boundary-based methods use an active contour model which has

resulted in great progress in medical image segmentation during recent years. Zhuang

[6] developed an active contour model based level set method (MLS) that defines the

image data function according to the pushing force used in BET and the smoothing

function according to the mean curvature of the evolving curve. MLS can achieve good

results in most cases. However, it is easy for MLS to leak through a weak boundary.

Zhang [7] developed a brain extraction method using an improved region-based local

binary fitting (LBF) model which is less sensitive to intensity inhomogeneity, but the

extraction result can be over-smoothed by the leakage detection method when the rate

of curvature is high.

The hybrid methods try to integrate region-based and boundary-based methods to

improve the extraction result. Most of the hybrid methods are coarse to fine proce-

dures. Usually the region-based method serves as a pre-process to obtain the rough

brain region or boundary. The boundary-based method is carried out using the initial

contour obtained in the pre-process. Extraction results using hybrid methods are more

accurate since the initial contour is close to the brain boundary at the beginning of the

boundary-based stage. Ségonne [8] proposed a hybrid watershed algorithm (HWA)

combining a watershed algorithm and a deformable model, which applies the watershed

algorithm to get an initial brain volume for use in the deformable model. The
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deformable model is driven by a smoothing force following the definition in BET. An

atlas-based force is added to ensure that the deformed template possesses the shape of

a brain within certain tolerances. Huang [9] applied an expectation-maximization algo-

rithm to a mixture of Gaussian models to determine the initial brain contour for use in

the geodesic active contour evolution. Rex [10] developed a brain extraction meta-

algorithm (BEMA), which executes four extraction algorithms to obtain individual ex-

traction results in concert with an atlas-based registration procedure, and combines the

results to achieve the final improved brain extraction result using a variety of anatomi-

cally specified Boolean functions. It is obvious that BEMA is time consuming. To re-

duce the computational time required by atlas-based brain extraction, Eskildsen [11]

proposed an atlas-based method using nonlocal segmentation techniques that elimi-

nated the need for time-consuming non-rigid registrations. Sadananthan [12] used in-

tensity thresholding to generate a preliminary binary mask ideally including the brain

tissues, the skull and some thin connections between them. A graph cuts based image

segmentation technique (GCUT) was then used to remove the narrow connections.

GCUT is usually quite accurate but sometimes results in large errors due to following

the wrong edge and the boundary of the brain is usually too smooth. Iglesias [13] pro-

posed a robust, learning-based brain extraction system (ROBEX). ROBEX uses a ran-

dom forest classifier trained to detect the brain boundary. The contour is then refined

to obtain the final brain tissue results using graph cuts. ROBEX is quite robust, and

major errors are rare (e.g., leaving the whole cerebellum out, or an eye in). The main

disadvantage with ROBEX is that it produces over-smoothed results in brains with very

convoluted surfaces on the gyri and sulci.

The above mentioned hybrid methods have achieved great improvements in the ac-

curacy and robustness of automatic brain extraction techniques. However, none of

these automatic or semi-automatic methods is a complete substitute for the manual

method due to the appearances of over-smoothing, leakage through a weak boundary

and missing brain tissue caused by local convergence. It is hard to solve these problems

all at once. Brain extraction is a compromised problem where a semi-global under-

standing of the image is required as well as a local understanding [4]. For example,

using local region features is effective in obtaining a sharp brain boundary and elimi-

nating leakage, but can easily lead to local convergence at the edges between the white

and gray matter. In order to try to overcome this conflict we proposed a new brain ex-

traction method for T1-weighted MRI volumes.
Methods
We developed a new, automatic method called the hybrid level set based active contour

neighborhood model to extract brain tissue from T1-weighted MRI volume. Our

method was inspired by the Graph Cuts Based Active Contours (GCBAC) proposed by

Xu [14]. Xu defined the belt-shaped neighborhood region around a contour as the con-

tour neighborhood (CN). This was obtained by slightly dilating the current contour.

The closest contour that is a global minimum within its CN can then be found using

graph cuts, giving an initial contour. The CN and the closest contour were iteratively

replaced until the objective was achieved. In our work, we called the iteratively replaced

CN an active CN (ACN). Our proposed method pre-processed T1-weighted MRI scans
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with BET to generate the initial contour and the ACN. Then, an improved hybrid level

set model, using a nonlinear speed function which can eliminate the boundary leakage

effectively, was defined in the ACN to obtain a new contour. Since the initial contour

obtained by BET is close to the real brain boundary, the real brain boundary should be

the global minimum within the ACN obtained from the initial contour. Thus, our pro-

posed method should prove to be robust and accurate.

To extract the brain tissue from the 3D MRI volume an improved slice by slice solu-

tion was adapted to reduce time consumption and improve the extraction result. The

solution used the resultant contour from the current slice to initialize the contour in

adjacent slices by contracting or expanding the resultant contour of the current slice.

Description of the ACN Model (ACNM)

The proposed method for 2D MRI images comprises the following major steps:

1. The initial contour was estimated using a modified BET method for 2D images [15].

The white contour in Figure 1(a) is the initial contour using BET. The white

contour in Figure 1(b) is the brain boundary obtained using BET, which almost

encloses the brain tissue, but is too rough to express the detail structure of the gyri

and sulci. However, due to its robustness for obtaining the initial contour and

parameters, BET still provides a good initial contour for brain extraction.
Figure 1 Description of contour evolution in the ACN. (a) the initial contour; (b) the brain boundary
obtained by BET; (c) the ACN obtained by dilating the boundary in (b); (d) the brain boundary obtained by
iteratively performing the hybrid level set model in the ACN.
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2. An initial ACN was defined by dilating the initial contour. In Figure 1(c), the region

in the white ring is the initial ACN. Within the ACN, an improved hybrid level set

was performed to obtain a new contour. The improved hybrid level set redefined the

speed function of hybrid level set to avoid leakage through a weak boundary. Details

of the improved hybrid level set will be described in the following sections.

3. The brain boundary was obtained by iteratively replacing the new contour and the

ACN. In Figure 1(d), the brain boundary is more accurate than that in Figure 1(b)

and better depicts the convoluted shape of the gyri and sulci.
Initialization for 3D MRI volumes

For 3D MRI volumes, our method started with a slice in the middle of the volume. The

initial contour for the middle slice was estimated using the modified BET for 2D brain

images. For the residual slices, the initial contour was not estimated using the modified

BET but using the resultant brain boundary of its adjacent slice with respect to the

continuity of the brain surface. This is because the parameters in BET don’t fit all of

the slices in the 3D volume and result in bad initial contours in slices containing the

eyeball, brainstem and cerebellum part. In Figure 2(a), the initial contours for all of the
Figure 2 Comparison of the slice by slice contour initial method with each contour initialized by
BET. (a) each contour initialized by BET. (b) the slice by slice brain contour initial method; Blue curve
represents the initial contour and the red curve represents the resultant brain boundary.
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slices were individually obtained using the modified BET hence all of the initial con-

tours were badly initialized, leading to bad results in all of the slices. The initial method

in our work is quite like the initial method used in [6]. However, the initial contour is

always in the resultant brain boundary in [6]. Considering that in the 3D MRI volume,

the brain boundary in the neighboring slice can be either inside or outside of the resul-

tant boundary extracted from current slice, a new slice by slice initial method for 3D

MRI volumes was proposed and this performed better than the initial method in [6]. In

our work, the initial contour was obtained by contracting or expanding the current

boundary using a simple discriminant method. The discriminant method first partitioned

the image region where the intensity of the current slice is higher than that of the next

slice, designating this R1 and the rest of the image region R2. Then, if the resultant brain

boundary of the current slice covered R1 more than R2, the contour in the next slice was

initialized using a contracted resultant brain boundary, otherwise, the resultant brain

boundary was expanded.

The proposed initial method has some advantages. In the initial method, BET was

only performed once on the middle slice. In most of MRI volumes, the brain tissues in

middle slice are simpler than that found in other slices. The modified BET can immedi-

ately and robustly obtain the initial contour from the middle slice, but for other slices

containing the eyeball, brainstem and cerebellum part a bad initial contour might be

obtained. Setting the initial contour of the other slices from the resultant brain bound-

ary of the previous slice can effectively trace the change of the brain boundary in the

adjacent slices. Therefore, the initial contour is very close to the true brain boundary

at the very beginning and this ensures that the active contour evolves to the true

brain boundary using the hybrid level set model. This can save computational time

and improve the accuracy of the results. In Figure 2(b), the initial contour in the

50th slice of the 3D MRI volume was obtained using the modified BET and the ini-

tial contours in the rest slices were well initialized using the resultant brain bound-

ary from their adjacent slice. It can be seen that the brain boundaries in Figure 2(b)

are more accurate than those in Figure 2(a). Figure 3 shows the flow chart for 2D

brain extraction using ACNM. Figure 4 shows the flow chart for 3D brain extraction

using ACNM.
The hybrid level set model

The level set model has remarkable advantages for image segmentation. A lot of im-

proved models have been developed in the level set framework for different image seg-

mentation purposes and fields. Among these models, the boundary-based geodesic

active contour model and region-based Chan-Vese model have made great improve-

ments. Juan [16] introduced stochastic motion principles to minimize the object func-

tion in the Geodesic Active Contours framework in order to overcome the local

minimum problem. Xie [17] proposed a Magnetostatic Active Contour Model, which

defines a force based on magnetostatics and hypothesized magnetic interactions be-

tween the active contours and object boundaries. This model is able to capture com-

plex geometries and multiple objects using a single initial contour. Wang [18] proposed

a new approach called the “fluid vector flow” active contour model which has the abil-

ity to capture a large range and extract concave shapes. The hybrid level set model [19]
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Figure 3 The flow chart for 2D brain extraction using ACNM.
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integrated both boundary and region information. The traditional function of the hy-

brid level set model is written below:

E ϕð Þ ¼ �α

Z
Ω

I � μð ÞH ϕð ÞdΩþ β

Z
Ω
g ∇H ϕð Þj jdΩ ð1Þ
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H(ϕ) being the Heaviside function defined as

H ϕð Þ ¼ 0; if ϕ < 0
1; if ϕ ≥ 0

�
ð2Þ

where I is the image to be segmented. g = g(|∇ I|) is the boundary feature map related

to the image gradient. ϕ is the level set function whose zero level set defines the active

contour. Ω represents the image domain. α and β are predefined weights to balance the

two terms on the right hand side of the equation. The first term on the right hand side

of the function is regarded as the region term where μ is the parameter related to

the lower bound of the gray-level of the target object. The first term encourages the

contours to enclose the regions with gray-levels greater than μ. The second term

on the right hand side of the function is the geodesic active contour function repre-

sented in the level set formulation. The role of this term is to encourage the contours

to attach to the areas with high image gradients. If ϕ is a signed distance function

(SDF), i.e. |∇ϕ | = 1, the associated curve evolution PDE in the level set formulation

can be simplified to

ϕt ¼ α I � μð Þ þ βdiv g∇ϕð Þ ð3Þ

The above equation can be considered as a speed function. Generally, the speed func-
tion consists of a combination of two terms: the data term and the smoothing term.

Accordingly, the region term in equation (1) is the data term and the geodesic active

contour function is the smoothing term.

Lefohn [20] proposed a linear piecewise speed function, shown in equation (4), which

depends solely on the grayscale value of the input data I at a point. T controls the

brightness of the region to be segmented and ε controls the range of grayscale values

around T that can be considered to be inside the object. In this way, a model situated

on voxels with grayscale values in the interval T ± ε will expand to enclose these voxels,

whereas a model situated on grayscale values outside that interval will contract to ex-

clude these voxels. The speed term is gradual (refer to Figure 5) and thus the effects
I

D(I)

T T+εT-ε

0

Figure 5 A linear speed function based on image intensity. It causes the model to expand over regions
with grayscale values within the specified (positive) range and contract otherwise.
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of D diminish as the model approaches the boundaries of regions with grayscale levels

within the T ± ε range.

ϕt ¼ ∇ϕj j αD Ið Þ þ 1� αð Þ∇⋅ ∇ϕ
∇ϕj j

� �
ð4Þ

Where

D Ið Þ ¼ ε� I � Tj j

The improved hybrid level set model

The above mentioned hybrid level set model performs well for the segmentation of

brain tissues. However, it has a few problems when applied to brain extraction. The

first problem is that brain extraction is image processing where a semi-global under-

standing of the image is required as well as a local understanding. However, applying

the hybrid level set model to brain extraction easily leads to local convergence. The sec-

ond problem is that the weak boundaries between the brain tissues and surrounding

tissues, with no efficient gradient, may make the gradient intensity based models [16-19]

lose effectiveness, although some of these models have a robust convergence ability. The

last problem is that the linear formulations for the data terms in equations (3) and (4) are

too simple to describe the regional information and this often leads to leakage through

a weak boundary.

To solve the last two problems a new nonlinear piecewise speed function, (shown in

equation (5)), was defined to suit brain extraction in level set solvers. The data term D(I)

in the new speed function depends on the grayscale value of input data I at a voxel, the

mean grayscale value μ of the ACN, the global maximal value Im in the ACN and three

regional static values Imax, Imin and Iμ in the neighborhood (N1 and N2) of the voxel. In

our research the size of neighborhood N1 was 40 and the size of neighborhood N2 was 20.

ϕt ¼ D Ið Þ þ βdiv g Irð Þ∇ϕð Þ ð5Þ

where

D Ið Þ ¼
� exp � I � μ

Im � μ
t

� �
if I � μ < 0

exp � I � μ

Im � μ
t

� �
� exp � 2 Im � μð Þ � I � μð Þ

Im � μ
t

� �
if I � μ ≥ 0

8>><
>>:

Ir ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imax � Iminj j þ Iμ � I

�� ��
2

s

μ ¼ AVG I ACNð Þð Þ
Im ¼ MAX I ACNð Þð Þ
Imax ¼ MAX I N1ð Þð Þ
Imin ¼ MIN I N2ð Þð Þ
Iμ ¼ AVG I N2ð Þð Þ

In Figure 6, μ and Im control the range of the grayscale values that can be considered

to be located inside the brain tissues. Generally, the grayscale value outside the brain

boundary but inside the ACN (the region indicated by the red arrow in Figure 7) is

lower than μ. Hence, we set D(I) ≤ 0 to make sure the voxels with grayscale values in
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Figure 6 The nonlinear piecewise data term in the new speed function. Blue curve: the data term curve
with t=2; Green curve: the data term curve with t=4; Red curve: the data term curve with t=6.
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the interval [0 μ] were excluded by the contracting of the active contour. Observing

that some of the surrounding tissues in the ACN, such as eyeball, have grayscale values

bigger than Im (the region enclosed by the red ring in Figure 7), if the contour leaks

through a weak boundary in these areas, the contour can expand rapidly leading to a

very poor result. To avoid this happening, we set D(I) ≤ 0 to make sure the voxels with

grayscale values in the interval [Im 1] were excluded by the contracting of the active

contour. Whereas inside the interval [μ Im], D(I) > 0, the voxels in these areas are
Figure 7 A weak boundary between the brain tissues and eyeball tissues in the red ring. The intensity
of the region directed by the red arrow is lower than μ and the intensity of the region inside the red ring, with
a weak boundary, is higher than Im.
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enclosed by the expanding of the active contour. The speed parameter is t. In Figure 6,

t has the opposite effect on contour contraction and expansion in the interval [0 Im].

Increasing t can speed up contour contraction and slow down contour expansion, ac-

cordingly, decreasing t can slow down contour contraction and speed up contour ex-

pansion. When leakage occurs across a weak boundary, we can increase t to reduce the

expansion rate and increase the contraction rate, thus the leakage can be corrected.

Compared with the normal hybrid level set model, the smoothing term in the speed

function is defined by the regional value Ir not the image gradient. This is because the

image gradient near a weak boundary is not big enough to stop the contour evolution,

and the gradient between the white matter (WM) and the gray matter (GM) may be

higher than that near the brain boundary because of strong noise and intensity inhomo-

geneity. If we used the image gradient in the smoothing term, the contour would easily

leak though weak boundaries or stop at the intersection between the WM and GM. In

Figure 7, the region indicated by the red arrow and the region inside the red ring at the

edge of the brain boundary have large Ir values, which decreases the evolving speed of the

active contour and avoids the contour leaking though weak boundaries.

Results and discussion
Data sets

To measure the extraction accuracy of our method, we used the following two data sets

for performance evaluation:

(1). Data set 1: 18 normal T1-weighted MR image volumes with expert segmentations

were obtained from the Internet Brain Segmentation Repository (IBSR) [21]

developed by the Centre for Morphometric Analysis (CMA) at Massachusetts

General Hospital. Each volume has around 128 coronal slices, with 256 × 256 pixels

per slice and a slice thickness of 1.5 mm.

(2). Data set 2: 20 normal T1-weighted MR image volumes from IBSR, with 256 × 256

pixels per slice and a slice thickness of 3.1 mm.

Before performing evaluation, the ground truth of brain tissues must be defined first.

Without a doubt the GM and WM are included in the ground truth and non-brain struc-

tures, such as the skull, dura, and eyes are excluded. However, there are different viewpoints

on other structures and tissues, such as the amount of extra-cerebral and content such as

cerebro-spinal fluid (CSF), blood vessels, and nerves to be included [11]. Some methods

define the ground truth as the WM and GM only, while others include CSF, veins, and the

optic chiasms. Considering that CSF in the T1-weighted MRI has low intensity and is easily

separated from non-liquid structures, and that subsequent analyses may benefit from the

inclusion of CSF as noted in [22], we followed the definition used in paper [11]:

Included in the ground truth

� All cerebral and cerebellar white matter

� All cerebral and cerebellar gray matter

� CSF in ventricles (lateral, 3rd and 4th) and the cerebellar cistern

� CSF in deep sulci and along the surface of the brain and brain stem

� The brainstem (pons, medulla)
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Excluded from the ground truth

� Skull, skin, muscles, fat, eyes, dura mater, bone and bone marrow

� Exterior blood vessels – specifically the carotid arteries, the superior sagittal sinus

and the transverse sinus

� Exterior nerves – specifically the optic chiasms
Evaluation metrics

(1). Similarity coefficients. We used Jaccard similarity, defined as JS ¼ M\Nj j
M[Nj j

, and Dice

similarity, defined as DS ¼ 2 M\Nj j
Mj jþ Nj j

, where M and N refer to the extraction result and

the ground truth respectively.

(2). Segmentation error: False Positives Rate (FP_Rate) and False Negatives Rate

(FN_Rate). we used FPRate ¼ Mj j� M\Nj j
Nj j

and FNRate ¼ Nj j� N\Mj j
Nj j

.

(3). Hausdorff distance between M and N. The Hausdorff distance is the maximum

distance of M to the nearest point in N, the definition of Hausdorff distance

between M and N is

HD M;Nð Þ ¼ MAX
a∈M

MIN
b∈N

d a; bð Þð Þ
� 	

where a and b are the points in M and N respectively, and d(a, b) is the Euclidian dis-

tance between a and b.
Comparison to other methods

A comparison to BET (The version in the MRIcro software), BSE (The version in the

Brainsuite9.0 software), WAT, HWA, GCUT and ROBEX was performed on the two

chosen data sets.

The software [23] (Additional file 1) developed for our research was programmed

using matlab2009 and was tested on a computer with 3GB of RAM and an Intel i7-

2600 CPU. The software took approximately 10 minutes to process each MRI volume.

Using this software, only parameters β and t from equation (5) needed to be set by the

user for each volume. In testing, we chose to use fixed parameters (β=1.2 and t=6) for

both data sets (labeled “ACNM One” in Tables 1 and 2) then changed these two pa-

rameters for each MRI volume in data set 1 (labeled “ACNM Two” in Table 1). “ACNM

Three” in Table 1 had the same optimal parameters as “ACNM Two”, but had different

initial conditions.

How the experimental results for the other methods were obtained is described as

follows. For BET, we changed the fractional intensity parameter in the range [0.3 0.8]

for each volume to obtain better performance. For BSE, we changed two parameters

(diffusion constant and erosion size) when the default parameters led to bad extraction

results for some volumes in data set 1 and 2. For WAT, HWA and GCUT, we used the

experimental results with fixed parameters for each data set reported in [12]. For

ROBEX, we used the experimental results with fixed parameters on the IBSR data sets

reported in [13]. However, paper [13] didn’t illustrate which IBSR data set was used, so

we used the same experimental results on data set 1 and data set 2.



Table 1 Comparison of ACNM with existing brain extraction approaches on data set 1:
BSE in Brainsuite software, BET in MRIcro software, WAT, HWA, GCUT and ROBEX using
IBSR data set 1 (18 × 1.5 mm scans)

Method DS mean
(SD)[range]

JS mean
(SD)[range]

FP_Rate(%)
mean (SD)[range]

FN_Rate(%)
mean (SD)[range]

HD mean
(SD)[range]

BSE 0.94(0.04) 0.90(0.07) 7.8(6.2) 3.7(6.3) 16.5(6.7)

[0.83-0.97] [0.70-0.95] [1.6-18.6] [0.5-28.5] [8-30]

BET 0.88(0.03) 0.78(0.04) 5.7(1.3) 17.5(4.9) 19.6(4.4)

[0.86-0.96] [0.72-0.93] [4.4-8.9] [1.0-24.9] [7-29]

WAT 0.91(0.08) 0.85(0.11) 18.8(29.7) 2.45(1.79) _

[0.60-0.96] [0.43-0.92] [5.3-134.3] [0.08-7.08]

HWA 0.88(0.03) 0.79(0.04) 27.1(6.8) 0.015(0.02) _

[0.82-0.91] [0.69-0.83]) [20.0-44.4]) [0-0.07]

GCUT 0.91(0.02) 0.84(0.03) 19.3(4.0) 0.029(0.04) _

[0.87-0.93] [0.78-0.87]) [14.8-28.6] [0-0.15]

ROBEX 0.96(0.08) _ _ _ 13.3(2.6)

ACNM One 0.95(0.02) 0.90(0.03) 7.04(3.68) 3.58(3.95) 12.4(4.5)

[0.91-0.97] [0.83-0.94] [3.0-15.1] [0.58-14.28] [7-21]

ACNM Two 0.96(0.01) 0.92 (0.03) 5.28(2.06) 3.41(2.73) 10.5(3.0)

[0.93-0.98] [0.88-0.95] [2.81-10.35] [0.82-8.64] [7-18]

ACNM Three 0.94(0.03) 0.90(0.05) 4.66(1.6) 6.15(5.86) 14.9(4.4)

[0.85-0.98] [0.74-0.95] [1.21-8.11] [1.88-11.17] [7-24]

“ACNM One” represents performing the ACNM with fixed parameters. “ACNM Two” represents performing the ACNM
with varied parameters. “ACNM Three” represents initializing using a simple circle.
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In Tables 1 and 2, “ACNM One” with fixed parameters (β=1.2 and t=6) led to the

best JS, DS and HD coefficients out of all of the methods listed. The DS using “ACNM

One” was slightly lower than that using ROBEX, but this is not statistically significant.

The FN_Rate and FP_Rate coefficients weren’t as good as those using other methods.

Generally, the smaller the FN_Rate and FP_Rate are, the more accurate the extraction

results. However, if the extraction results include all of the brain tissue and a lot of

non-brain tissue, the FN_Rate equals 0. So an algorithm with a smaller FN_Rate and
Table 2 Comparison of ACNM with existing brain extraction approaches on data set 2:
BSE in Brainsuite software, BET in MRIcro software, WAT, HWA, GCUT and ROBEX using
IBSR data set 2 (20 × 3.1 mm scans)

Method DS mean
(SD)[range]

JS mean
(SD)[range]

FP_Rate(%)
mean (SD)[range]

FN_Rate(%)
mean (SD)[range]

HD mean
(SD)[range]

BSE 0.93(0.05) 0.88(0.08) 6.8(2.7) 6.3(9.5) 23.5(7.4)

[0.75-0.96] [0.60-0.93] [4.2-12.5] [1.1-36.5] [10-30]

BET 0.85(0.08) 0.75(0.11) 22.9(8.0) 9.0(11.3) 25.4(7.0)

[0.67-0.93] [0.50-0.87] [11.8-39.8] [0.2-29.6] [7-30]

WAT 0.76 (0.14) 0.64 (0.18) 18.4 (14.1) 24.5 (22.7) _

[0.47–0.92] [0.31–0.86] [5.2–61.2] [0.1–62.7]

HWA 0.78 (0.21) 0.68 (0.21) 131.2 (308.2) 1.9 (6.5) _

[0.16–0.88] [0.09–0.78] [19.4–1060.2] [0.0–28.9]

GCUT 0.85 (0.09) 0.75 (0.10) 38.3 (40.1) 0.01 (0.02) _

[0.49–0.90] [0.33–0.81] [23.1–207.5] [0.0-0.06]

ROBEX 0.96(0.08) _ _ _ 13.3(2.6)

ACNM One 0.94(0.02) 0.89(0.03) 9.14(4.6) 2.46(1.94) 12.6(5.6)

[0.91-0.96] [0.84-0.93] [3.6-17.5] [0.26-8.51] [6-25]
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FP_Rate does not always produce a more accurate result. An accurate and robust algo-

rithm must have a good trade-off between FN_Rate and FP_Rate. The FP_Rate and

FN_Rate were lower than 10% using “ACNM One” and BSE, which indicates a favor-

able and acceptable trade-off between the FN_Rate and FP_Rate. The smallest HD

coefficient produced using “ACNM One” suggests that it tends to preserve smaller

non-brain structures in the vicinity of the brain surface, such as the dura, while the

other methods preserve larger non-brain structures in the eye, neck and skull areas.

Since “ACNM One” used the slice by slice initial method, slice thickness might affect

the performance, and that may be why“ACNM One” did a better job of processing data

set 1 with 1.5 mm thick slices than data set 2 with 3.1 mm thick slices, when the fixed

parameters remained the same for both data sets. We changed the parameters (β and t)

for each MRI volume in data set 1 to obtain more accurate results (“ACNM Two”

in Table 1) and found that if the parameters were properly set, all of the evaluation

metrics improved.

To prove how applying the slice by slice initial method to the middle slice impacts

on the brain extraction result, two different initial methods were used in conjunction

with our proposed ACNM method. In Table 1, “ACNM One” and “ACNM Two” ini-

tialized the contour in the middle slice using the resultant contour (the red curve in

Figure 8) from BET, and then performed ACNM using the slice by slice method.

“ACNM Three” initialized the contour in the middle slice with a circle contour (the

blue curve in Figure 8) close to the resultant contour from BET, and then performed

ACNM using the slice by slice method. The circle contour had the same centroid as

the resultant contour from BET and the area of the circle was set as 0.83 times the area

of the resultant contour from BET. Both “ACNM Two” and “ACNM Three” used the

same optimal parameters for the each MRI volume in data set 1. As shown in Table 1,

“ACNM Two” performed better than “ACNM Three”, which proves that initializing the

contour in middle slice using the resultant contour from BET improves the brain

extraction result.
Figure 8 Two different initial contours in the middle slice. Red curve: the initial contour using the resultant
contour of BET; Blue curve: the initial contour using a circle.
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Figure 9 shows the final results using our ACNM method, GCUT, BET and BSE on

the eighth volume on data set 1 as well as the manual segmentation result. We used

MIPAV [24] software to obtain 3D images from four different viewpoints. Compared to

the manual result, the final results using our ACNM method have fewer boundary leak-

ages on the brain surface than GCUT and clearer structures of the gyri, sulci and brain-

stem than BET and BSE, although there are some rough artifacts between the slices in

our final 3D results due to the independent way each slice is processed. It is obvious

that the results using GCUT showed some boundary leakages on the occipital pole, the

results using BET missed the cerebellum, and the results using BSE were oversmoothed

on the surface of the brain.

Compared to the other methods, the ACNM method used in our research led to

fewer boundary leakages and more accurate contours close to the brain boundary. This

was due to the more effective initialization method and more desirable hybrid level set

model that we used in the ACN. As an automatic brain extraction method, our ACNM

method is a considerably effective method with high accuracy and robustness.
Figure 9 Results of using the manual method, our method, GCUT, BET and BSE on the IBSR data.
(a) Manual method (b) Our method (c) GCUT (d) BET in MRIcro software (e) BSE in Brainsuite software.
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Conclusions
We proposed an accurate and robust brain extraction method using a hybrid level set

based active contour neighborhood model (ACNM). The proposed ACNM method has

the following advantages over existing brain extraction algorithms: Firstly, our method

uses a slice by slice contour initial method based on BET for 3D MRI volumes. This

initial approach can obtain a robust initial contour very close to the brain boundary,

which ensures that the active contour evolves to the true brain boundary, thus an initial

ACN including most of the true brain boundary can be defined. Secondly, the proposed

method only evolves the contour using the new hybrid level set model in the ACN.

Since the ACN is mainly in the neighborhood of true brain boundary, the resultant

brain boundary can be obtained more accurately and robustly. Thirdly, the new hybrid

level set model has a nonlinear speed function which can effectively eliminate boundary

leakage. Thus, the proposed method can extract brain tissues with a higher accuracy

and robustness when compared to other methods.

Although the proposed method has the above advantages, there are some disadvan-

tages with the current implementation. Firstly, the computational cost is higher than

the other methods so in future a GPU based accelerating technique will be applied to

greatly reduce the computational time. Secondly, two parameters need to be set manu-

ally, and if these parameters are set incorrectly the extraction result may not be accu-

rate. Estimating these parameters using a machine learning method is a future project.

Thirdly, our method was implemented as a 2D algorithm and may have resulted in

some rough artifacts between slices in the final 3D results. However, the experiments

carried out in our research showed that the 2D algorithm achieved more accurate ex-

traction results than some 3D algorithms by using the similarity between 2D cortical

contours on adjacent slices, which matches the conclusion in [6]. How to eliminate

these rough artifacts will be an important future project.
Additional file
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