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Abstract

Background: Predictions of the forces transmitted by the redundant force-bearing
structures in the knee are often performed using optimization methods considering
only moment equipollence as a result of simplified knee modeling without ligament
contributions. The current study aimed to investigate the influence of model
complexity (with or without ligaments), problem formulation (moment equipollence
with or without force equipollence) and optimization criteria on the prediction of
the forces transmitted by the force-bearing structures in the knee.

Methods: Ten healthy young male adults walked in a gait laboratory while their
kinematic and ground reaction forces were measured simultaneously. A validated 3D
musculoskeletal model of the locomotor system with a knee model that included
muscles, ligaments and articular surfaces was used to calculate the joint resultant
forces and moments, and subsequently the forces transmitted in the considered
force-bearing structures via optimization methods. Three problem formulations with
eight optimization criteria were evaluated.

Results: Among the three problem formulations, simultaneous consideration of
moment and force equipollence for the knee model with ligaments and articular
contacts predicted contact forces (first peak: 3.3-3.5 BW; second peak: 3.2-4.2 BW;
swing: 0.3 BW) that were closest to previously reported theoretical values (2.0-4.0 BW)
and in vivo data telemetered from older adults with total knee replacements (about
2.8 BW during stance; 0.5 BW during swing). Simultaneous consideration of moment
and force equipollence also predicted more physiological ligament forces (< 1.0 BW),
which appeared to be independent of the objective functions used. Without
considering force equipollence, the calculated contact forces varied from 1.0 to 4.5 BW
and were as large as 2.5 BW during swing phase; the calculated ACL forces ranged from
1 BW to 3.7 BW, and those of the PCL from 3 BW to 7 BW.

Conclusions: Model complexity and problem formulation affect the prediction of the
forces transmitted by the force-bearing structures at the knee during normal level
walking. Inclusion of the ligaments in a knee model enables the simultaneous
consideration of equations of force and moment equipollence, which is required for
accurately estimating the contact and ligament forces, and is more critical than the
adopted optimization criteria.
© 2013 Hu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Introduction
The knee joint plays a pivotal role in the normal function of the lower extremity during

activities of daily living. The function of the knee relies upon a well-coordinated mech-

anical interaction between its force-bearing structures, including muscles, ligaments,

menisci, articular cartilage and posterior capsule [1,2]. Knowledge of the forces trans-

mitted by these force-bearing structures is essential for understanding and evaluating

the function of the joint (normal or pathological), as well as for relevant clinical appli-

cations such as design and implantation of joint replacements. However, direct meas-

urement of these forces in vivo is only possible in exceptional conditions such as

through instrumented prostheses [3-6]. Therefore, mathematical modeling in conjunc-

tion with non-invasive experimental measurements has been – and still remains – the

most commonly used approach for predicting the forces transmitted by the various

force-bearing structures in the musculoskeletal system [7-12].

Basically, the process of estimating the forces transmitted by the force-bearing struc-

tures of the knee joint using a mathematical modeling approach involves two stages.

The first stage is the calculation of the resultant forces and moments at the joint center

relative to its distal segment (i.e., tibia) through the inverse dynamics analysis of mea-

sured kinematic and kinetic data [13,14]. The second stage is the geometrical modeling

of the musculoskeletal system of the joint, giving the lines of action and lever arm vec-

tors of each of the modeled force-bearing structures including the ligaments, muscles

and articular surfaces [11,15]. Since the resultant forces and moments have to be pro-

vided by the force-bearing structures, the two force systems, namely the system of the

resultant forces and moments, and the system of all the force-bearing structures, are

equipollent. Two force systems are equipollent (equally powerful) if they have the same

total force and total moment about the same point, e.g., knee joint center. This is dif-

ferent from the definition of equilibrium that requires that the sums of all external

forces and moments be zero. When using the equations of equipollence, the articular

surfaces are often modeled as rigid and the ligaments as non-extensible (e.g. [7]). At

each time instance during the movement, the equations of force and moment equipol-

lence at the joint center can then be used to distribute the resultant forces and mo-

ments to the individual force-bearing structures.

Given the resultant forces and moments via inverse dynamics analysis, and the

lines of action and lever arm vectors of the force-bearing structures determined

by the geometrical model, the only unknowns left to be determined are the mag-

nitudes of the forces transmitted by the individual force-bearing structures. How-

ever, owing to the high degree of mechanical redundancy of the musculoskeletal

system, solving the resulting simultaneous equations of force and moment equi-

pollence remains a great challenge. For example, in the locomotor system there

are at least 47 muscles in each leg influencing locomotion [16]. The equations

available for dynamic equilibrium, however, are far too few to determine uniquely

all the forces in the muscles, as well as other force-bearing structures simultan-

eously. In other words, there are an infinite number of solutions to this problem.

One way to resolve this problem is to reduce the number of unknowns based on

mechanical and physiological considerations to make the problem determinate

such as combining muscles of similar function as a group [17,18]. Another more

widely used approach is to select a unique solution from the infinite number of
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solutions based on certain optimization principles such as minimization of the

sum of muscle forces [8-10,19-22].

Previous studies using optimization approaches have focused mainly on exploring the

optimization principles (objective functions) that best predicted muscle recruitment

patterns. The constraints considered have thus received less attention and are largely

simplified. Even though theoretically both force and moment equipollence should be

considered, as was done in some of these studies [9,10,23], most studies considered

only equations of moment equipollence [8,16,19,20,24]. It remains unclear whether fur-

ther inclusion of force equipollence equations to the force-distribution problem would

affect the optimum solution given the same objective function.

Another concern about the consequences of the exclusion of the force equipollence

is the subsequent calculation of the forces in the passive structures. In previous studies,

the ligaments restraining the joint were either not modeled in detail [16] or were sim-

ply ignored [23]. Therefore, some studies calculated the muscle and contact forces first,

considering only moment equipollence in their optimization problems. With the pre-

dicted muscle and contact forces the equations of force equipollence were then used to

calculate the unbalanced forces, shear components of which were subsequently attrib-

uted to the restraining structures, i.e., the ligaments [10]. Whether the unbalanced

shear forces are indeed equal to the shear component of the resultant ligament forces

requires further clarification. In other studies that considered only moment equipol-

lence as a result of modeling without ligaments, only muscle and/or contact forces

were predicted assuming that ligaments contributed little to the joint resultant mo-

ments [20]. No attempt was made to use the equations of force equipollence to calcu-

late the unbalanced forces or restraining forces, or to check whether the predicted

forces of muscles and/or contact surfaces satisfied the force equipollence equations.

In the literature, various objective functions have been proposed to predict muscle re-

cruitment patterns and force magnitudes for various joints using models of different

complexities and different problem formulations [8,23-25]. Seireg and Arvikar [23]

compared 14 criteria for predicting muscles forces in the lower limb during static pos-

tures and found that there was more than one criterion that could reasonably predict

muscle activity patterns according to surface electromyography (EMG). Collins used a

2D model of the lower limb to evaluate the ability of various optimization criteria in

predicting muscle activity patterns during level walking and found that, of the six tested

criteria, five predicted similar patterns of muscle activity over a gait cycle [25]. In con-

trast, in the studies by Herzog and Leonard [24] and Challis and Kerwin [8], all the

tested criteria failed to predict muscle force patterns that were consistent with the ex-

perimental data.

Instead of using EMG data for the validation of the predicted muscle forces and

optimization criteria, EMG-assisted optimization methods take EMG data as input and esti-

mate individual muscle forces following their EMG profiles by minimizing a given objective

function subject to moment equipollence constraints [26]. With the same optimization

criterion and moment constraints these methods were found to predict more physiological

muscle force patterns, such as antagonist co-contractions, agonist synergy or other forms

of muscle force patterns, than optimization methods without EMG were able to [26-28].

However, similar to optimization methods, force equipollence constraints were not in-

cluded in previous EMG-assisted optimization formulations. Another limitation with EMG-
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assisted optimization is that muscles without EMG data, such as deep muscles, may not be

accurately represented in the formulation.

The above literature review indicates that further study is required to answer the ques-

tion whether the level of model complexity (i.e., with or without ligaments) and problem

formulation (i.e., moment equipollence with or without force equipollence) will affect the

ability of optimization-based methods in predicting forces transmitted by the force-bearing

structures of a joint, including muscles, ligaments and articular contact surfaces. Therefore,

the main purpose of this study was to investigate the influence of model complexity (with

or without ligaments), problem formulation (moment equipollence with or without force

equipollence) and optimization criteria on the prediction of the forces transmitted by the

force-bearing structures in the knee using a three-dimensional musculoskeletal model of

the locomotor system with a knee model that included all the major force-bearing struc-

tures, including muscles, ligaments and contact surfaces.

Methods
Ten healthy male adults (age: 23.2 ± 2.1 years; height: 161.1 ± 8.1 cm, mass: 56.4 ±

8.6 kg) participated in this study with written informed consent. They were free of any

history of neuromusculoskeletal diseases or impairments. Approval for this study was

provided by the Institutional Ethics Review Committee. For each subject, a total of 28

infrared retroreflective markers were attached to specific bony landmarks on each limb

for the description of the motion of the segments, including anterior superior iliac

spines (ASIS), posterior superior iliac spines (PSIS), greater trochanter, mid-thigh, med-

ial and lateral femoral epicondyles, tibial tuberosity, head of fibula, medial and lateral

malleoli, calcaneus, navicular tuberosity and the base of the fifth metatarsal [29]. Sub-

jects were asked to walk along an 8-m level walkway in a gait laboratory while the

three-dimensional (3D) trajectories of the markers were measured with a 7-camera mo-

tion analysis system (VICON 512, Oxford Metrics, U.K.) at a sampling rate of 120 Hz.

The ground reaction forces (GRF) were measured synchronously with two force plat-

forms (AMTI, Mass., U.S.A.) at a sampling rate of 600 Hz. A second-order Butterworth

low-pass filter with a cut-off frequency of 15 Hz was used to filter both the kinematic

and force plate data [30]. Motion data from at least three successful trials for each sub-

ject were collected for subsequent analysis.

A validated 3D model of the human locomotor system [11] was adopted for the ana-

lysis of the measured motion data. The human pelvis-leg apparatus was modeled as

four rigid body segments, namely the pelvis, thigh, shank and foot, connected by model

joints. The hip was modeled as a ball-and-socket joint and the ankle as a two-hinge

complex. The mobility of the tibiofemoral joint was controlled by a parallel spatial

mechanism, formed by the isometric fibers of the anterior cruciate ligament (ACL),

posterior cruciate ligament (PCL) and medial collateral ligament (MCL) as inextensible

elements, as well as the lines defining the contact normals of the medial and lateral tib-

ial plateau [31]. As a first approximation, the tibial condyles were modeled as planar

rigid surfaces, the femoral condyles as spherical surfaces, and the tibia and femur were

modeled as rigid bodies which maintained contact continuously in both compartments.

These conditions specified a single point of tibiofemoral contact in each compartment.

Formulae and model parameters describing the geometry of the knee model were taken

from Wilson et al. [31].
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As shown by Wilson et al., the parallel spatial mechanism model of the knee has one

degree of mobility so prescription of one model variable (e.g., flexion angle) is enough

to determine uniquely the motion of the model knee. Following Wilson et al., the

flexion angle was taken as the variable describing the degree of mobility of the knee in

the current study. Therefore, given the knee flexion angle, the motion of the model

bones and all the force-bearing structures involved in the model are determined, in-

cluding the lines of action of the ligaments and the contact normals.

The knee extensor mechanism, composed of the patellofemoral joint, patellar and

quadriceps tendons, was also included in the model. The patella was represented as a

point, namely the intersection of the quadriceps and patellar tendons [15,32,33]. In

conjunction with the parallel spatial mechanism model, the knee extensor mechanism

model takes into account the rolling motion of the femur on the tibia, as well as the

so-called screw home motion [34,35], determining the change of geometry of the patel-

lar tendon, quadriceps tendon and patellofemoral articular contact normal throughout

the full range of knee flexion. Thirty-four muscles or muscle groups were included, rep-

resented by single lines joining their origins and insertions, wrapping around the

underlying bones when necessary. Note that the ligaments and muscles were modeled

as pure force generators. Therefore, they were fully described by their origins and inser-

tions, as well as by the wrappings around the bones, giving their lines of action and

lever arm lengths (moment arms).

The model was customized to individual subjects using homogeneous scaling tech-

niques suggested by Brand et al. [36] and White et al. [37]. The homogeneous scaling

matrices for each of the body segments were determined by minimizing the overall dif-

ferences between the measured and model-determined marker coordinates on the seg-

ment in a least squares sense. These marker coordinates included those of the skin

markers, as well as the joint centers as virtual markers. The center of rotation of the

hip was estimated using a functional method [38]. For the knee and the ankle models,

markers around the joints, including those on the femoral epicondyles and the malleoli,

were used for scaling purposes.

The measured skin marker trajectories and force plate data were entered into the

model to calculate the intersegmental resultant forces and moments at the joint centers

during gait using inverse dynamics analysis. Inertial properties of the segments were

determined using Dempster’s coefficients [39]. Skin marker movement artefacts were

minimized using the Global Optimization Method (GOM) [40]. The GOM is based on

the search for an optimal pose of the multi-link model of the locomotor system for

each data frame such that the overall differences between the measured and model-

determined marker coordinates are minimized in a weighted least squares sense,

throughout all the body segments, while subject to the model joint constraints. Seg-

ments were assigned different weightings using their residual errors as a guide. The

GOM considers measurement error distributions in the system and provides an error

compensation mechanism between body segments in order to reduce skin movement

artefacts. More details of the mathematical descriptions of the method and the deter-

mination of the weightings can be found in Lu and O’Connor [40].

For the present study, only the mechanics of the knee were considered so the result-

ant force
⇀
R and moment

⇀
M at the knee joint center, defined as the midpoint of the
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inter-condylar line, were transformed to the body-embedded coordinate system of the

shank segment with the origin located at the tibial tuberosity, the x-axis directed anteri-

orly, y-axis superiorly and z-axis to the right. These resultant forces and moments were

then distributed to the individual force-bearing structures considering force and mo-

ment equipollence as follows:
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lines of action; and
⇀
d
m

i ,
⇀
d
l

j and
⇀
d
c
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from the joint center to the insertions at the shank segment. Twelve muscles affecting

the mechanics of the knee were considered, namely rectus femoris, semitendinosus,

semimembranosus, biceps femoris (long and short heads), gastrocnemius (medial and

lateral heads), vastus intermedius, vastus medialis, vastus lateralis, as well as the gluteus

maximus and tensor fasciae latae that span the knee through the iliotibial tract. The lig-

aments included in the Wilson knee model [31], namely the ACL, PCL, MCL, the lat-

eral collateral ligament (LCL), and the medial and lateral contact forces were also

considered. Therefore, there were six equipollence equations in terms of 18 unknowns

to be solved.

The most essential consideration when applying optimization techniques is the

problem formulation, including the choice of design variables, the definition of a feas-

ible region and the selection of a proper objective function (criterion). In the current

study, force magnitudes of the muscles, ligaments and contact forces were chosen as

design variables. Equations of mechanical equipollence at the joint center were the

main equality constraints which formed the feasible region. Considering different de-

sign variable sets and equipollence equations at the knee, three types of problem for-

mulation were constructed. The first, denoted RM, considered muscle and articular

contact force magnitudes as design variables, and moment equipollence as the con-

straint. The second, denoted RML, considered muscle, ligament and articular contact

force magnitudes as design variables, and only moment equipollence as the constraint.

The third, denoted RFML, considered muscle, ligament and articular contact force

magnitudes as design variables, and both the force and moment equipollence as con-

straints. Each type of formulation included eight objective functions commonly used in the

literature, namely sum of muscle forces J1 ¼
X12
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muscle stresses J6 ¼
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. The first four were force-based ob-

jective functions and the last four were stress-based ones.

The stress of a muscle is defined as the transmitted force (Fi
m) divided by its physio-

logical cross-sectional area (PCSA or Ai). The PCSA data for the muscles were obtained

from Wickiewicz et al. [41] and Winter [39]. A Quasi-Newton procedure, Sequential

Quadratic Programming (SQP) [42], was used to solve the resulting constrained

optimization problems. In the solution process, a large upper bound of 5000 N was set

for the ligament and muscle forces, which enabled us to check whether different for-

mulations with different objective functions would be able to predict reasonable or

physiological forces in the muscles and ligaments.

Since RM and RML considered only moment equipollence constraints, the forces cal-

culated using these two formulations might not satisfy force equipollence equations. In

the current study, the unbalanced force vector ⇀e, defined as
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for RML, provided a measure of the error associated with the sole use of moment equi-

pollence for force predictions.

RML and RFML considered the magnitude of the ligament forces so the total calcu-

lated forces of the knee ligament forces
⇀
L, defined as

⇀
L ¼

X4
j¼1

Fl
j

⇀
l
l

j; ð5Þ

were obtained for both RML and RFML, and their differences were then calculated as

an index to evaluate the performance of the RML.

Results

With the resultant forces
⇀
R and moments

⇀
M at the knee joint calculated using inverse

dynamics analysis (Figure 1), the forces transmitted in the muscles, articular surfaces

and ligaments were calculated using the three formulations with different objective

functions. The joint contact forces calculated using the three formulations (i.e., RM,

RML and RFML) were different both in patterns and magnitudes (Figure 2). For differ-

ent objective functions, the RM formulation predicted different results, the first peak of

the contact force varying from 1.0 to 2.8 BW and the second peak varying between 1.0

and 4.5 BW. Differences in the calculated contact forces for different objective functions

were also found in the RML formulation, the peak values during stance ranging from 3

to 4.5 BW and being as large as 2.5 BW during swing phase (Figure 2). These variations
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were largely reduced for the RMFL formulation, for which the first peak of the contact

force ranged from 3.3 to 3.5 BW and the second peak ranged from 3.2 to 4.2 BW.

Muscle recruitment patterns appeared to be quite different for different formulations,

and between force-based and stress-based objective functions, as can be seen in the re-

sults of a typical force-based objective (J3) and a stress-based objective (J7) (Figure 3).

Given the same formulation, muscle recruitment patterns for other muscle force-based

objective functions (J1, J2 and J4) were similar to those of J3, while those for other

muscle stress-based objectives (J5, J6 and J8) were similar to those of J7. Overall, the

muscle stress-based objectives tended to predict more active muscles than the muscle

force-based objectives (Figure 3).

While the ligament forces could not be calculated using the RM formulation, the liga-

ment forces calculated using RML and RFML were very different, both in pattern and

magnitude, but the differences between objective functions with the same formulation

were small (Figure 4). The forces of the ACL and PCL calculated using RML were sev-

eral times body weight, while those using RFML were less than the body weight. With

RML, the calculated ACL forces ranged from 1 BW to 3.7 BW, and those of the PCL

from 3 BW to 7 BW. The RML also predicted MCL and LCL forces during the swing

phase. With the additional inclusion of the force equipollence, the RFML predicted
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typical force-based objective (J3) and a typical stress-based objective (J7).
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ligament forces that were all less than 1.0 BW, and appeared to be independent of the

objective functions used (Figure 4). In contrast to RML, the RFML predicted MCL and

LCL forces during the stance phase.

Large unbalanced forces were found for both RM and RML (Figure 5). Considering

only moment equipollence and without modeling the ligaments, the RM showed a

maximum unbalanced force of about two times body weight (Figure 5) with a max-

imum RMS value of about 1.3 BW over the gait cycle (Table 1). With RML, apart from

the muscle forces, greater ligament forces were required to meet the moment equipol-

lence because the lever arm lengths of the ligaments were much smaller than those of

the muscles. These overestimated ligament forces and the muscle forces did not satisfy

the force equipollence, leaving a maximum unbalanced force of about −4.4 BW

(Figure 5). Compared to the ligament forces calculated by the RFML, a maximum RMS

difference of about 7 BW over the gait cycle was found for the RML (Table 1).

Discussion
The current study aimed to investigate the influence of model complexity, i.e., with

or without considering ligaments, and problem formulations on the performance of

various optimization criteria in predicting forces transmitted by the force-bearing

structures at the knee, namely muscles, ligaments and articular contacts, during nor-

mal level walking. Three different problem formulations in combination with eight

objective functions were considered. The results supported the hypotheses that, com-

pared to other formulations, simultaneous consideration of force and moment equi-

pollence produced more reasonable force estimations that were also less affected by

the optimization criteria employed.

Among the three problem formulations, the RMFL predicted knee contact forces that

were in good agreement with results reported in previous studies, both in patterns and

magnitudes [5,18,43]. The results did not appear to be affected by the objective func-

tions used. In contrast, the knee contact forces calculated using the other two formula-

tions were quite different between objective functions (Figure 2). With the RM

formulation, the first peak of the contact force occurred at around 10% gait cycle (GC)
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Figure 5 Unbalanced force vectors and resultant ligament forces. Unbalanced force vectors for both

RM and RML with the eight objective functions (J1-J8). The resultant ligament forces
⇀
L for RFML are also

shown. X is the anterior (+)/posterior (−) component; Y is the superior (+)/inferior (−) component; and Z is
the lateral (+)/medial (−) component.



Table 1 Unbalanced forces and ligament forces

RMS values J1 J2 J3 J4 J5 J6 J7 J8

Unbalanced force vector for RM

x 0.43 0.37 0.32 0.23 0.39 0.30 0.25 0.19

y 1.15 1.21 1.12 0.94 1.03 0.86 0.74 0.71

z 0.09 0.06 0.07 0.06 0.08 0.06 0.05 0.06

Unbalanced force vector for RML

x 1.23 1.42 1.39 1.40 1.21 1.39 1.26 1.40

y 1.70 1.76 1.77 1.79 1.72 1.74 1.74 1.75

z 3.59 3.88 3.84 3.84 3.62 3.76 3.77 3.80

Differences between ligament force using RML and RFML

x 2.39 3.06 2.92 2.93 2.41 2.91 2.85 2.92

y 4.47 4.71 4.66 4.69 4.56 4.66 4.65 4.64

z 3.26 3.30 3.28 3.29 3.32 3.21 3.24 3.20

Root-mean-squared (RMS) values of the unbalanced force vector components using RM and RML formulations, as well as
RMS differences between the ligament force components using RML and RFML formulations. (Unit: BW).
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with magnitudes varying from 1.0 to 2.8 BW, and the force magnitudes of the second

peak at around 40% GC varied between 1.0 and 4.5 BW. These force values for both

peaks and the occurrence of the second peak were quite different from the in vivo data

reported in the literature which showed a force range of 2–3 BW, and a second peak at

about 50% GC [5,43]. During swing phase the contact forces calculated with RM rose

to a maximum of 1.0 BW, which were also too large compared to those previously

measured in vivo [5,43]. The great variability in the overestimated joint contact forces

using RM appeared to be the result of the different muscle recruitment patterns pre-

dicted using different objective functions because a large proportion of joint contact

forces come from muscles [6,18,40]. This dependence between the muscle recruitment

patterns, and thus the magnitude of the joint contact force, and objective functions

seemed to be related to the simplification of the knee model used. Previous studies

without taking ligament effects into consideration have failed to produce a muscle re-

cruitment pattern that matches the measured EMG well [11].

Even though ligaments were considered in the RML formulation, and the variability

of contact force magnitudes was reduced, the calculated contact forces were still differ-

ent between objective functions (Figure 2). The patterns of the calculated contact forces

were quite different from the two-peak patterns observed in previous experimental

studies [5]. The curves fluctuated throughout the gait cycle, with the peaks ranging

from 3 to 4.5 BW. The contact forces increased to as large as 2.5 BW during swing

phase, which disagrees with previous in vivo data [5]. These results were likely due to

the fact that the force equipollence was not considered in the formulation. With add-

itional consideration of the force equipollence, the RFML formulation improved the

performance of the knee model with ligaments.

Based on the knee model with ligaments, the RFML not only produced better esti-

mates of the contact forces and the occurrence of the peak values, but also reduced the

variability of the calculated forces for different objective functions (Figure 2). Apart

from good estimates in the stance phase, the maximum contact forces with RFML were

also less than 0.3 BW in magnitude during swing phase, which were more reasonable

than those obtained with RM and RML which rose to a maximum of 1.0 BW. Contact

forces measured using instrumented total knee replacements were less than about 0.3

BW during mid-swing phase of level walking [5,43]. The reduced variability in the cal-

culated contact forces from different objective functions suggests that the calculated
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contact forces were not sensitive to the objective functions used as long as both mo-

ment and force equipollence were considered with a knee model.

Simultaneous consideration of moment and force equipollence on a knee model is

also critical for estimating ligament forces. Excluding force equipollence from the prob-

lem formulation led to an imbalance of the forces at the joint with resultant force er-

rors (Table 1), no matter whether the ligaments were included in the model (RM and

RML). The unbalanced joint forces using RM (Table 1) should not be viewed as liga-

ment forces as was often assumed in previous studies [5,16,24]. When only moment

equipollence was considered (RML), the objectives were largely to minimize the sum of

the muscle forces (or stresses) while counteracting the external moments. Since the

lever arm lengths of the ligaments were much smaller than those of the muscles, the

ligaments were required to transmit greater forces, leaving a maximum unbalanced

force of about −4.4 BW (Table 1 and Figure 5).

The calculated ACL forces ranged from 1 BW to 3.7 BW, and those of the PCL from

3 BW to 7 BW (Figure 4), some of which were close to or much greater than the max-

imum strength of the ligaments reported in the literature (e.g., ACL: 2160 N [44],

638 N [45] and 633 N [46]; PCL: 1073 N [45] and 571 N [46]). These values could not

be considered physiological during a non-strenuous activity such as level walking. With

the additional inclusion of the force equipollence (RFML), the calculated ligament

forces were quite different from those obtained using RML, both in magnitude and pat-

tern, and appeared to be independent of the objective functions used (Figure 4). The

ligament forces calculated using RFML were all less than 1.0 BW, and were within the

maximum strength. The current results showed that when both moment and force

equipollence were considered with a knee model, the selected objective functions

showed obvious effects on the magnitudes and patterns of the predicted muscle forces,

but less obviously on the calculated contact and ligament forces. A complete consider-

ation of mechanical equipollence (i.e., RFML) with a knee model appeared to be more

critical than the objective functions used for accurately estimating the ligament forces

in the knee during walking.

In the current study, performance of different models and formulations was evaluated

considering mechanical equipollence at the knee joint. Since recruitment and force pro-

duction of some muscles of the knee, such as the hamstrings and gastrocnemius, may

also be affected by the mechanical demands at the hip and ankle, further study consid-

ering mechanical equipollence at all three joints may be needed to confirm some of the

current findings. Since direct measurement of the forces in the force-bearing structures

was infeasible in living subjects, the current evaluation of the calculated contact forces

had to be performed based on previous published data, including in vivo data from pa-

tients with instrumented total knee replacements. Therefore, a certain level of discrep-

ancy between model predictions and experimental data should be expected, and the

current results should be interpreted qualitatively.

The ligaments were assumed to be inextensible elements. If the ligaments were

allowed to stretch under load, the femur would be displaced from its position as deter-

mined by the kinematic model of the knee and would translate on the tibial plateau

until force and moment equilibrium were satisfied. Consider the ACL as an example;

when the ACL was stretched to resist an anteriorly directed external force, the angle

between its line of action and the tibial plateau would be reduced, producing a greater
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shear component. This in turn reduced the total force needed in the ACL for resisting

this anteriorly directed shear force. Therefore, the assumption of inextensibility of the

ligaments appeared to result in an overestimation of the total ligament forces, and the

current results should be taken as an upper bound of the ligament forces. Further

study would be needed to provide a more direct account of the effects of the

inextensibility assumption.

The current study, performed on young healthy adults, aimed to investigate the influ-

ence of model complexity, problem formulation and optimization criteria on the pre-

diction of the forces transmitted by the force-bearing structures in the knee. A similar

study on pathological gait with muscle EMG data as a source of validation may be

helpful for future clinical application of the techniques discussed in the current study.

Conclusions
Model complexity and problem formulation affect the prediction of the forces transmit-

ted by the force-bearing structures at the knee during normal level walking. Inclusion

of the ligaments in a knee model enables the simultaneous consideration of equations

of force and moment equipollence, which is required for accurately estimating the con-

tact and ligament forces, and is more critical than the adopted optimization criteria.
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