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a method is proposed to estimate both the CO and SVR of a heterogeneous cohort of

intensive care unit patients (N = 48).

Methods: Spectral and morphological features were extracted from the finger
photoplethysmogram, and added to heart rate and mean arterial pressure as input
features to a multivariate regression model to estimate CO and SVR. A stepwise feature
search algorithm was employed to select statistically significant features.
Leave-one-out cross validation was used to assess the generalized model performance.
The degree of agreement between the estimation method and the gold standard was
assessed using Bland-Altman analysis.

Results: The Bland-Altman biastprecision (1.96 times standard deviation) for CO was
-0.01£2.70 L min~" when only photoplethysmogram (PPG) features were used, and for
SVR was -0.874412 dyn.s.cm™ when only one PPG variability feature was used.

Conclusions: These promising results indicate the feasibility of using the method
described as a non-invasive preliminary diagnostic tool in supervised or unsupervised
clinical settings.

Keywords: Cardiac output, Systemic vascular resistance, Photoplethysmography,
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Background

The volume of blood ejected by the heart per unit time is a vital physiological parameter
known as the cardiac output (CO). CO varies, depending on the oxygen and nutrient
requirements of the organs and tissues; the other major determinants of CO include blood
volume status, cardiac contractility and systemic vascular resistance (SVR).

SVR is the aggregate resistance to blood flow in the systemic circulation. The amount
of resistance to flow is related to the size of the blood vessel by Poiseuille’s law and
vessel diameters are controlled by the sympathetic nervous system through variation
of vasoconstrictor tone. Vessel sizes decrease and the SVR increases when there is an
enhancement in this tone, while the suppression of this tone results in the opposite. An
increase in resistance can lead to a decrease in CO, and vice versa.

Measurements of SVR and CO can provide important information about the overall
hemodynamic performance of patients for diagnostic purposes. For instance, CO can
be used to examine the cardiac status of critically ill patients and assist in the diagnosis
of those with suspected cardiovascular diseases, like acute coronary syndromes, hypov-
olemia, valvular stenosis, myocarditis, cardiomyopathy and arteriosclerosis [1]. Low CO
can indicate potentially adverse cardiovascular events such as cardiogenic shock [2]. Sim-
ilarly, SVR can be a useful diagnostic tool, as deviation beyond the normal SVR range
may be an indicator of critical illness. For example, an increase in SVR may be observed
in hemorrhagic shock due to trauma, and ischemic and hemorrhagic stroke patients [3],
while a depression in SVR is evident in distributive shock patients such as those with sep-
sis [4] or anaphylaxis. Continuous monitoring of SVR has been suggested as a diagnostic
and research tool [5].

The current gold standard for CO measurement, the thermodilution technique [6],
is an invasive procedure requiring the insertion of a pulmonary artery catheter. Recent
developments have enabled CO to be estimated non-invasively (or with minimal inva-
siveness) using Doppler ultrasound, thoracic bioimpedance and pulse contour analysis
[6-10] but few of these methods have not been used extensively in clinical settings [11].
Some of the reasons for the underutilization of these non-invasive methods include the
requirement of a trained operator, the cost of the required specialized equipment and
their disposable components, as well as the accuracy, precision and reproducibility of the
measurement methods. As an example, the Doppler ultrasound method requires well-
trained personnel to operate [12] and the uncertainty of the flow profile and diameter of
the blood vessel contributes to the inaccuracy of the method [8,13] and the bioimpedance
method has demonstrated poor results in numerous validation studies in critically ill and
septic patients [8]. The minimally invasive pulse contour analysis technique requires con-
tinuous measurement of the arterial pulse pressure waveform from a peripheral artery
(where the waveform itself can be measured invasively or non-invasively) as well as
calibration against a standard method (such as transpulmonary thermodilution). Pulse
contour analysis is considered minimally invasive because the patients in a critical care
setting are assumed to already have the central venous and arterial cannulation required
for transpulmonary thermodilution and thus no additional catheter is required [6]. The
Finapres or the Portapres device [7,10], used with the Modelflow pulse wave analy-
sis method, can be used to continuously monitor cardiac output non-invasively, but
these devices are currently not widely used in the clinical setting. None of the exist-
ing non-invasive measurement methods are without drawbacks, or are suitable for all
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cohorts of patients, and the search for a low-cost, easy to use technique for different
situations continues.

The photoplethysmogram (PPG) sensor is a non-invasive, low-cost and easy to use
device that is routinely used in clinical settings to measure blood oxygen saturation levels.
The device usually consists of light emitter (single or dual wavelength) and a photode-
tector, packaged in a small and highly portable form factor. The sensor is usually applied
to the earlobe or the finger of the patient and it is comfortable enough to enable contin-
uous measurement over a long period of time; in this study, the PPG signal was used as
one of the inputs to estimate CO or SVR. The use of the PPG signal in the estimation of
CO or SVR has been studied previously. Recently, Wang et al. proposed a method to esti-
mate CO noninvasively using the PPG and electrocardiogram (ECG) during exercise that
required an initial calibration [14]. In the studies by Awad et al., multi-linear regression
analysis was performed to estimate CO and SVR from PPG features, such as pulse width
(PW) [4,15]. Although the bias of their CO and SVR estimations was small, the precision
was considered not sufficiently high for providing absolute values suitable for clinical use.
A multivariate approach to classify SVR into discrete categories based on PPG features
was previously developed by our research group and showed good results, especially in
identifying patients with low SVR [16]; but the method did not provide an estimate of the
actual SVR value. In many small hospital or prehospital care settings, the ability to follow
the longitudinal trend of CO and SVR is very important as it enables monitoring of the
effects of treatment on patient outcomes. The development of an approach that can pro-
vide an accurate estimate of SVR based on PPG measurement was therefore considered
desirable, as it is the first step to enable trend monitoring.

In this study, it is proposed that a more accurate estimation of SVR and CO may be
obtained using a multivariate regression model based on the use of PPG and routine
cardiovascular measurements. Specifically, unique features extracted from the PPG vari-
ability (PPGV), which were anticipated to improve the estimation accuracy, were used
in the regression model. PPGV is the beat-to-beat fluctuation in the PPG waveform and
the spectral power distribution of the PPGV has been found to be correlated with SVR
[17] and to be potentially useful for clinical diagnosis (e.g., sepsis [18,19]). In addition to
the PPGV features, the multivariate model in this study incorporated pulse wave mor-
phological features from the PPG waveform (the pulse width) to help estimate CO and
SVR. Furthermore, stringent model selection and assessment of generalized performance
of this estimation model were implemented with a nested leave-one-out cross validation
procedure (LOOCYV).

Methods

Database

The analysis was performed on data obtained from a heterogeneous group (N = 48) of
post cardiac surgery patients from the intensive care unit (ICU) at the Prince of Wales
Hospital, Sydney, Australia, as described previously in [17]. The patients had the following
physiological characteristics (mean+SEM): 33 males and 15 females, age (69+1.5 yr),
heart rate (HR, 8442 bpm), CO (5.7£0.2 L/min), mean arterial pressure (MAP, 78+3
mmHg), central venous pressure (CVP, 14.540.7 mmHg) and SVR (926+36 dyn.s.cm ™).
Thirty-six (N = 36) of these patients were mechanically ventilated with a respiratory rate
of approximately 9-15 breaths per minute and a tidal volume of approximately 500 mL.



Lee et al. BioMedical Engineering OnLine 2013, 12:19 Page 4 of 16
http://www.biomedical-engineering-online.com/content/12/1/19

Written informed consent was acquired from each patient or his/her next of kin prior to
inclusion in the study. The study was approved by the Human Research Ethics Commit-
tee of the Prince of Wales Hospital, and conducted according to the Australian national
guidelines on ethical research involving human subjects, as well as the World Medical
Association Declaration of Helsinki.

Using a Universal Clinical Workstation Monitor (Spacelabs Healthcare, WA, USA), HR,
CO, systolic and diastolic blood pressures and CVP were measured from each patient in
the supine position. Arterial blood pressure was measured invasively using a radial artery
catheter, and MAP was subsequently recorded. CVP was measured invasively using a
catheter inserted into the superior vena cava while the CO was measured via a pulmonary
artery catheter using the thermodilution method. No other interventions were performed

5

during the measurement period. SVR, in units of dyn.s.cm™, was calculated from other

measurements using the following formula:

80 x (MAP — CVP)
co ‘

SVR = (1)

Following the measurement of CO, the PPG signal was recorded from the tip of the
right index finger of each patient using a reflection mode infrared (940 nm) finger probe
(ADInstruments, Sydney, Australia) connected to a PowerLab data acquisition system
(ADInstruments, Sydney, Australia). The PPG signal was sampled at either 200 Hz or 1
kHz and recorded for a duration of approximately 10 min. The signal was not subjected to
any high-pass filtering prior to sampling to preserve the baseline variation. As described
in a previous publication [17], the 48 sets of data used in the analysis were obtained after
the exclusion of 16 sets of poor quality PPG signals (from a larger pool of 64 subjects)
which contained severe motion artifact or baseline drift, frequent ectopic (abnormal)
beats, and barely recognizable cardiac pulses which prohibited reliable pulse detection.

PPG signal analysis and feature extraction

The derivation of various PPG features and their respective meanings have been explained
in detail in a previous publication by the authors [16]. The two main categories are the
spectral features derived from the low frequency (LF, 0.04-0.145 Hz), mid frequency (MF,
0.08-0.145 Hz) and high frequency (HF, 0.145-0.45 Hz) bands and the morphological
feature. Spectral features include the normalized low-frequency power (LFyy;), the nor-
malized mid-frequency power (MFyy;) and the low-frequency to high-frequency power
ratio (LF/HF) of the PPGV. The morphological feature used is the pulse width (PW),
which is the normalized width (in time) of the PPG pulse at half of its amplitude (peak
to trough). In addition to the PPG signal features, the additional non-PPG-based features
of HR, MAP and the ratio of MAP to HR (MAP/HR) were also used. In summary, there
are three PPGV (spectral) features, one PPG morphological feature and three non-PPG-
based features, giving seven features in total. Several notch-related features described in
the previous work of the authors [16] were not included in the feature pool because not
all patients had a clear dicrotic notch or inflection point. This complicates the accurate
extraction of the feature value. It was found that these features caused unstable LOOCV
feature selection (described in a later subsection) when left in the feature pool.
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Regression analysis
The CO or SVR was estimated as a weighted sum of a chosen subset of M features from
the pool of all extracted features, described in the previous section, by means of linear
least square modelling. In the following exposition, the unknown variable to be estimated
is assumed to be CO, but the methods are equally applicable to estimate SVR.

For each CO, denoted y;,i = 1,2, ..., N, assumed to be related to the selected features

X; =[xi1, %12, . . ., xip) T by a set of weights W =[ wq, wa, ..., war]T and a constant w1 as
follow

~_ ~T ~

Vi =X; W+ Warq1. (2)

In matrix form,
y=X'W 4wy - 1
=[X"11]w 3)
= Xw
where y is a column vector and the j-th row of y, 3;, is the CO of the j-th subject; X is a
matrix with the j-th row representing the M features of the j-th subject augmented with
a column of ones, 1; and w =[ w1, wa, ..., war, war1]7 .
The set of weights, w, which defines the CO least square model for the M selected
features, can be solved by using the relationship

w=X"y (4)

where X is the Moore-Penrose pseudoinverse of the matrix X.

An unknown CO value can be estimated using the set of features extracted from the
PPG waveform from the relationship in (2), once the appropriate weights have been dis-
covered. The mean-squared error (MSE) between the measured and the estimated CO
(or SVR) of the model is calculated as

48

1 A 2
MSE = ;m -2 (5)
=

where y; is the gold standard measure of CO for the i-th subject. The MSE may be used
as a measure of how well the estimated CO agrees with the measured gold standard CO.
The set of features were selected using a feature selection algorithm and the model is then
validated using the LOOCYV method, as described in the following section. The degree of
agreement between the estimated and the measured CO is evaluated using Bland-Altman
plots [20].

Feature transformation

The squared and cubed value, as well as the logarithms of each feature is added into the
feature pool to expand the seven existing features to a total of 28 features in the feature
pool. These features, referred to as the transformed features in this paper, are included
to ensure any non-linear relationship between the features and the CO is captured by the
multivariate model.

Leave-one-out cross validation (LOOCV)
If all of the subjects are used in the training phase to obtain the model (weight vector w)
which is subsequently used to estimate y;, the MSE in (5) will typically be underestimated.
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This is due to the reason that the model is optimized to reduce the MSE of the training
data, but not on unseen data. Models that do not generalize well to new data are said to
be “overfitted” to the training data. The data used for testing must not be used in either
the training or feature selection phases in order to obtain an unbiased measure of the
generalized performance (expected error rate for new, unseen data) when testing is done.

In this study, a nested leave-one-out cross-validation scheme was used. This was
achieved by repeatedly dividing the data into three sets (training, feature selection and test
sets) such that the data in the test set did not appear in the feature selection or training
sets for a given iteration.

Figure 1 shows the block diagram of the nested LOOCV. The procedure used to imple-
ment the nested LOOCYV was as follows. In the outer LOOCYV loop, one set of subject
data was set aside to be used as the test data. The remaining subjects’ data (N=47 in our
case) was used in the inner LOOCYV loop to select features and train a regression model
to be tested on this withheld subject. This procedure was repeated 48 times, leaving out
one subject on each run.

In the inner loop, another LOOCYV procedure was used to select a set of features. One
set of subject data was removed and the remaining 46 subjects’ data was used to select
a set of features, based on a statistical F-test of the significance of their inclusion in the
multiple regression model; the details of this procedure are outlined in the next section.
To improve the reliability of the features selected, This inner loop was repeated 47 times
by sequentially setting aside one set of subject data from the set of 47 subject data avail-
able. Histograms of the frequency of a certain feature being selected across these 47 runs
(HIST1) and of the number of features selected in each run (HIST2) were used to select
the final subsets of features employed in the model used to test the outer-most withheld
(48th) subject against. The specifics of how HIST1 and HIST?2 are used to select the final
feature set for testing is described in the following example.

Suppose if after 47 repeats of feature selection, three features are most commonly
selected according to HIST2, then, the three most frequently selected features from
HIST1 should be used to build the model.

In the outer LOOCYV loops, once the model size and features to be used were fixed, the
model was retrained using all the 47 sets of subject data, and the one set that was left
out earlier was used as the test set. This ensures that testing is performed on data unseen
before in the training phase. The estimation error for each subject was calculated and the
MSE calculated using (5).

Feature selection

In the inner most loop of Figure 1, a stepwise feature selection was employed. The regres-
sion model is initiated with only a constant term, with each of the available features being
sequentially added if they improve the model. The improvement to the current model
was evaluated using the partial F-statistic on the sum of squared error [21]. In brief, the
F-statistic quantified the amount of improvement due to adding a feature to the model,
for a given sample size. If a feature was statistically significant (at 95% confidence level),
it was added to the model. After every step of feature addition, the features that were
already selected were tested to check if their removal would improve the model (also at
95% confidence level). The search stopped when no feature addition or removal resulted

in a significant improvement in the model. The procedure described above was repeated
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Outer LOOCYV loop (assess generalized performance): repeat 48 times

Training loop: repeat until no further improvement

Leave- Leave- Select a
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1 43 one-out 7| one-out 16 7| feature subset [~ Feature

subset

47
subjects

subjects subjects

Improvement

N
Best feature subset

Update and save histograms HIST1
(selected features) and HIST2
(number of features)

HIST1 and HIST2

A 4

from HIST1 and
HIST2

l

:I Train “final” model |

1
1
1
1
|
1
1
1
1
1
Select feature subset 1
1
1
1
1
1
|
1
1
4

r

Calculate mean- Qreate pooled
histogram of
HIST1 and

HIST2

squared-error,
Bland-Altman analysis

Figure 1 Block diagram of the nested LOOCV procedure. In the inner most loop, the search for the best
feature subset (for the 46 subjects in that loop) is performed by sequentially adding/removing features
into/from the model, followed by an F-test to check the improvement made to the model. The middle loop
is repeated 47 times, where each repetition returns a “final” model, as determined by HIST1 and HIST2, to the
outer most loop. In the outer most loop, an LOOCV is performed where a test subject data was withheld and
used to test the model returned by the middle loop, which has no prior information on the withheld data.
The generalized performance was estimated from the 48 test results, and pooled histograms of HIST 1 and
HIST2 were plotted to determine which features were most useful in estimating CO and SVR.

47 times, leaving one subject’s data out, so that the results of these 47 different searches
can be pooled to create HIST 1 and HIST?2.

The entire procedure described in Figure 1 was performed several times, using different
starting feature pools. To study the usefulness of the PPG signal in estimating CO and
SVR, features not directly derivable from the PPG signal (such as MAP) were removed
from the feature pool when the feature selection algorithm was executed. Furthermore, to
study the usefulness of PPGV features in the estimation task, a feature pool that contained
only the PPGYV features was used. The performances of the regression models selected in
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these two cases were compared to the model found from the complete feature pool, and
comparisons of performances between models that used only a single feature (univariate
models), where feature selection becomes trivial, were also made.

Bland-Altman analysis
Agreement between the methods in this study was calculated using the bias and precision
plot method described by Bland and Altman [20,22-24].

In addition to the correlation, bias and precision performance, the percentage error
of the estimation method, calculated as 100 xprecision divided by mean (average of all
subject CO or SVR values), was also reported to compare the agreement of the estimation
method with the gold standard.

Results

Table 1 lists all the features in the feature pool and their associated number, which
are used to reference the feature in the discussions that follows. Table 2 shows the
performance figures of the regression model for CO and SVR estimation, for each of
the different starting feature subsets drawn from the entire feature pool. The correla-
tion, bias (mean difference between measured and estimated value) and the precision
(1.96 x standard deviation (s.d.) of the differences) of the estimation method when com-
pared to the thermodilution method, calculated using the Bland-Altman analysis, and the
percentage error are also shown in Table 2. Note that the correlation value is the correla-
tion of the measured value (CO or SVR) with the estimated output which was subjected
to nested LOOCV.

Figure 2 is the pooled histogram of the selected features used to estimate CO (top) and
the pooled histogram of the number of features used to estimate CO (bottom). In other
words, Figure 2 is the sum of the 48 HIST1 and HIST2, where each of them is a histogram
generated by leaving out one subject before feature selection proceeds. These histograms
were pooled to study which features were most influential, and how many features were
usually selected. Note that the features were not selected based on this figure because
it contains information on all subjects including the test subject and thus, will result in
a biased estimate of the performance. Figure 3 is similar to Figure 2, with the estimated
variable being SVR.

Figures 4 and 5 show plots of the estimated variable plotted against the measured vari-
able, along with the line of equality, for the best CO and SVR models, respectively. The
Bland-Altman plot of the best CO and SVR estimations are depicted in Figures 6 and 7.

Table 1 Feature pool and their respective reference numbers

Feature x x2 x3 log(x)
LFny 1 8 15 22
MFny 2 9 16 23
LF/HF 3 10 17 24
HR 4 11 18 25
MAP 5 12 29 26
MAP/HR 6 13 20 27
PW 7 14 21 28

Each number represents a feature (left headings) and the transformation (top headings) that is used. For example, feature 1, 14
and 25 denotes LFyy, PW? and log(HR), respectively.
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Table 2 CO and SVR estimation performance and selected features

Estimated r Bias s.d. % error Feature pool
variable
Cco 045 0 149 51%  Allfeatures
(L min~") 0.54 -0.01 138 47% Only PPG features (i.e, all except 4-6, 11-13, 18-20,
25-27)
042 0 1.49 51% Only PW
039 -0.01 1.51 52% Exclude PPGV (i.e, all except 1-3,8-10, 15-17, 22-24)
0.30 -0.01 1.62 55% Only linear features (exclude 8-28)
SVR 0.50 145 236 50% All features
(dyn.s.cm_s) 0.55 6.50 211 45% Only PPG features (i.e, all except 4-6, 11-13, 18-20,
25-27)
0.14 -6.30 256 54% Only PW
040 3.17 233 49%  Exclude PPGV (ie, all except 1-3,8-10, 15-17, 22-24)
0.52 -7.28 217 46% Only linear features (exclude 8-28)

The performance figures achieved by the feature selection algorithm to estimate CO and SVR using different starting feature
subsets drawn from the entire feature pool. The correlation, Bland-Altman bias and s.d., as well as the percentage error achieved is
shown.

The performance indicators (correlation, bias and s.d.) for models constructed using a
single feature are shown in Table 3 for comparison with the multivariate model, for both
CO and SVR. Due to space constraints, only the ten best single features are shown in the
table, in descending order of s.d.. The correlation shown is the correlation of CO or SVR
with the estimated output subjected to LOOCYV, not the correlation of the feature itself
with the CO or SVR.
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Figure 2 Pooled histogram of selected features and number of features used when estimating CO.
Top: Pooled HIST1 - relative frequency of a feature being selected to estimate CO, bottom: Pooled HIST2 -
relative frequency of number of features being used in the CO estimation model. Two features were most
commonly selected by the feature selection algorithm; feature 22 (log(LFny)) and feature 28 (log(PW)).
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Figure 3 Pooled histogram of selected features and number of features used when estimating SVR
using the best multivariate model. Top: Pooled HIST1 - relative frequency of a feature being selected to
estimate SVR, bottom: Pooled HIST2 - relative frequency of number of features being used in the SVR
estimation model. Two features were most commonly selected by the feature selection algorithm; feature 24
(log(LF/HF)) and feature 28 (log(PW)). Feature 3 (LF/HF) was sometimes selected.

Discussion

In this study, multivariate regression models were developed to estimate CO and SVR
using a combination of features extracted from the PPG waveform, other routine cardio-
vascular measurements and the non-linear transformations of these features (quadratic
and cubic powers and logarithm transform). The biastprecision (1.96xs.d.) for the best
CO model found was -0.014 2.70 L min~!, and for the SVR model, the best bias pre-
cision achieved was -0.874412 dyn.s.cm™. Note that these numbers, and those in the
discussions that follow, are stated as bias+1.96 xs.d..

CO estimation

The relationship between CO and features extracted from the finger and ear PPG was
previously investigated by Awad et al. It was found that both finger and ear PPG widths
have significant correlation with the CO, the reason being an increase in CO increases the
amplitude but decreases the duration of the PPG waveform [15]. However, their multi-
linear regression model did not provide an estimate with good precision (s.d.=2.46 L
min~!). The authors suggested that non-linear analysis or application of a calibration
technique may be useful to improve the estimate. In this study, PW was found to have mild
but significant relationships with CO (r = —0.48,p < 0.0001; note that this is a direct
correlation coefficient with CO not subjected to LOOCYV). While it is difficult to compare
the estimation precision achieved in this study to that of the study by Awad et al., given
the difference in clinical setting, subject cohort, signal/features used (finger instead of ear
PPG pulse width) and the range of CO, it was found in this study that the utility of non-
linear transformation on the features slightly improved the CO estimation performance
from -0.0143.18 L min~! to -0.0142.96 L min~!, when PPGV features (LFny, MFny
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Figure 4 Plot of estimated CO against measured CO. Plot of estimated CO against measured CO for all 48
subjects, with the line of equality.

and LF/HF) were not used. When all features are included in the pool, the performance
increased slightly to 04£2.92 L min~!.

Further analysis revealed that excluding MAP and HR related features, i.e., using only
PPG features, further improves the CO estimation bias and precision (-0.01+2.70 L
min~!). This means that a reasonable estimate of CO can be obtained using only the PPG
waveform. From Figure 1, it can be seen that log(LFnys) and log(PW) were consistently

Plot of estimated SVR vs measured SVR with line of equality
1600 T T T T T
1400+ b
g
5 1200/ .
12}
c . D
> . *
) . .
£ 1000+ . . e 1
7 . . .«
el . . . . .
[} . e o .
= 800F - Ny . .
w
600 ° ‘ b
400 1 Il 1 Il 1
400 600 800 1000 1200 1400 1600
Measured SVR (dyn s cm’5)
Figure 5 Plot of estimated SVR against measured SVR. Plot of estimated SVR against measured SVR for all
48 subjects, with the line of equality.
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Bland-Altman plot for CO estimation
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Figure 6 Bland-Altman plot of the CO estimation. The solid line in the middle is the bias and the two lines
above and below are the limits of agreement, calculated as bias21.96xs.d.. Bias =-0.01 L min™', 1.96xs.d. =
270Lmin~".

selected to estimate CO. LFy; has been found to be related to the degree of vasodilata-
tion [17], and thus, may be used as a predictor variable for CO. PW was also found to be
correlated to CO in another study [15].

The percentage error of the estimation was 47%. Assuming that the thermodilution
method has up to 20% measurement error, the error rate was above the 30% error thresh-
old for the acceptance of a new method, as proposed by Critchley and Critchley [25]. The
performance achieved here does not reach this threshold. However, it should be noted

Bland-Altman plot for SVR estimation
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Figure 7 Bland-Altman plot of the SVR estimation. The solid line in the middle is the bias and the two
lines above and below are the limits of agreement, calculated as bias£1.96xs.d.. Bias = -0.87 dyn.s.cm™>,
196xs5.d.=412dynscm™.
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Table 3 CO and SVR estimation performance of single feature models

Feature CO (Lmin~") Feature SVR (dyn.s.cm‘s)

r Bias s.d. r Bias s.d.

28 042 0 1.49 24 0.55 -0.87 210
7 0.41 -0.01 1.50 15 0.52 -045 215
14 038 -0.01 152 8 0.52 -047 215
21 0.34 -0.01 1.55 1 0.51 -0.57 216
24 032 0 1.56 3 0.51 1.85 218
22 032 0 1.56 22 046 -1.13 224
25 0.28 0.01 1.58 13 045 0.13 225
1 0.28 0 1.58 6 0.44 -0.46 226
4 0.25 0.01 1.59 20 045 092 226
23 0.24 0 1.60 27 043 -0.89 228

The Bland-Altman bias and s.d. achieved when a univariate model is used. Only the 10 best single features are shown here, in
increasing order of s.d.. The best s.d. achieved when estimating CO using a multivariate model constructed using only PPG
features was 1.38 L min~'. For SVR, the multivariate model has an s.d. of 211 dyn.s.cm™.

that the above assumption regarding the acceptable percentage error of the thermodilu-
tion method is still a matter of debate [11,26], and so, the error threshold could be higher
than 30% for a new method to be accepted. Although it cannot be used interchangeably
with the ‘gold standard’ at this stage, given the portability and ease of use, the method
proposed here may nevertheless prove to be a viable alternative in unsupervised clinical
or emergency triage settings, in which other alternative methods may not be practically
applied.

SVR estimation

The research literature describing the measurement of SVR using non-invasive means is
not as extensive as the volume of publications on the same topic of CO, but this does
not lessen the importance of this hemodynamic parameter. Trends in SVR index were
monitored using invasive methods during different clinical interventions, in a study by
O’Dwyer et al. [5], and it was concluded in that study that continuous monitoring of the
SVR has much potential as a diagnostic and research tool, for example, in chest physio-
therapy studies, and as a rapid accurate assessment of patient response to therapy, such
as the effects of infusion of vasoactive drugs.

In a previous study from our research group, the LFyy; extracted from the PPGV was
found to be useful for identifying patients with a low SVR (< 900 dyn.s.cm™>) with a
high specificity [17]. The LF of the PPGV was used because it was found that an increase
in LF power was linked with sympathetic activation. The work was further developed to
categorise patients into different levels of SVR using a multivariate classifier [16]. Awad
et al. studied the viability of estimating SVR using a linear multiple regression model and
features from the PPG waveform, namely, the ear and finger PPG pulse width and ear PPG
pulse area [4]. It was found that the ear PPG has significant correlation with the SVR, and
the authors explained that it was a result of a prolonged transit time of the blood flow
due to peripheral vasoconstrictions. Although the estimation bias achieved in that study
was small (29.8 dyn.s.cm™?), the limits of agreement were admittedly too large (s.d.=587.3
dyn.s.cm ™).

In the analysis presented here, a quantitative estimate of the SVR with biastprecision
of 1454463 dyn.s.cm™> was achieved using a multivariate regression model constructed
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from PPG features and routine cardiovascular features. If PPG features alone were used
in the model, the bias+precision performance improved to 6.54+414 dyn.s.cm~>. The
spectral feature log(LF/HF) was consistently selected to estimate SVR, while the feature
log(PW) was selected 45 out of 48 times. The univariate model provided better estima-
tion of the SVR (—0.87 £ 412 dyn.s.cm ) than the multivariate model, using only feature
24 (log(LF /HF)). Also note from Table 2, that a regression model using the PPGV feature
log(LF/HF) provided better estimation than a regression model using only PW features
(—6.3 £ 502 dyn.s.cm™>).

Limitations

One of the major limitations in this study is the PPG signal quality degradation caused
by movement artifact, baseline drift, frequent ectopic beats or poor peripheral perfusion
leading to weak and unrecognizable cardiac pulses, which resulted in the exclusion of
sixteen sets of patient data. It is hoped that the promising results from this study and other
PPG applications related studies will motivate improvement in PPG sensor technology
and feature extraction algorithms in the future to mitigate these problems. One example
of such improvement involves the integration of an accelerometer motion sensor to reject
movement artifact [27].

The small sample size posed another challenge in developing the multivariate model
and assessing the validity of the model developed. Ideally, the model should be trained
using as many samples as possible to reflect the true population, but the model should be
tested using samples not used in the training phase. This problem was addressed by using
a nested LOOCYV for both feature selection and testing to obtain a fair estimate of the
generalized model performance. A larger training set is therefore desirable to definitively
demonstrate the performance observed in this pilot study with a reduced chance of Type-I

error.

Conclusion

This study provides a preliminary indication of the potential usefulness of a method to
non-invasively estimate CO and SVR using PPG signal. For the estimation of both CO and
SVR, it was shown that the incorporation of spectral features complements and improves
estimation achieved over using PW alone. The promising results obtained encourage fur-
ther research to validate the method in a larger cohort, ultimately enabling a non-invasive,
low-cost and easy to deploy alternative for estimating or tracking CO and SVR in clinical
triage or unsupervised clinical settings, where the observation of trends in CO and SVR
would have great value.
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