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Abstract

This personal essay described the development of the field of Biomedical
Engineering from its early days, from the perspective of one who lived through that
development. It describes the making of a major invention using data that had been
rejected by other scientists, the re-discovery of an obscure fact of physiology and its
use in developing a major medical instrument, the development of a new medical
imaging modality, and the near-death rescue of a research project. The essay
concludes with comments about the development and present status of impedance
imaging, and recent changes in the evolution of biomedical engineering as a field.
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Correspondence
An Electrical Engineer becomes a Biomedical Engineer

I started as an undergraduate Electrical Engineering (EE) student in the early 1960’s.

But at co-op jobs in defense electronics, I decided that EE was not my chosen field. In-

stead, on graduation I joined the Peace Corps doing electric power engineering in the

developing world. I returned to do a Masters in EE, which included a biomedical pro-

ject, part of a surgical research project in trauma. With that degree, I took a draft-

deferrable job in defense electronics. At age 26, I began my career as a biomedical

engineer by rejoining the trauma research project at Albany (NY) Medical College

(AMC). This was a project that brought computer technology to the study and care of

injured patients. It consisted of a dedicated hospital room with then-state-of-the-art

physiological monitoring equipment and computers (terminals to a remote mainframe)

at the bedside. The project was run by a surgeon, Dr. Samuel R. Powers, Jr., and three

faculty members at Rensselaer Polytechnic Institute (RPI) who provided technical expertise.

It was staffed by a Surgical Fellow, a medical technician, and now an electrical engineer.

I thus began to learn the technical aspects of clinical medicine and research with on-

the-job training. The equipment and techniques for physiological measurements at

that time were not sophisticated or well-designed for clinical use. The whole concept

of intensive care was in its infancy, and technical support from commercial equipment

suppliers was weak. Also, trauma was just being recognized as an important problem

by the National Institutes of Health (NIH). Specifically, what came to be called Adult

Respiratory Distress Syndrome (ARDS) was just being recognized, largely due to the
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experience in the Vietnam War, where it was first called “Danang Lung”. Dr. Powers’

group confirmed by measuring lung volume in these patients that the primary problem

involved lung collapse, which was reversed by Positive End-Expiratory Pressure (PEEP)

[1]. Before those years, PEEP was thought to be dangerous – today it is a commonplace.
Using Control Theory to Study the Lung, and a Delayed Payoff

After two years in that job, Dr. Powers advised me to get a Ph. D. in Physiology. He

arranged for my admission to the Albany Medical College, and helped me apply for an

NIH Special Fellowship to support my study. My dissertation evolved from a fortuitous

application of my knowledge of control systems that helped discover an unknown

physiological property of the lung. It had long been recognized that intrapulmonary

shunt caused arterial hypoxemia. I had observed in the Trauma Unit that sometimes

patients would move rapidly from a stable condition to one of high shunt and hypox-

emia. I hypothesized that if arterial hypoxemia could itself make shunt worse, a

positive-feedback system would result that might account for the instability. I designed

an animal experiment to test this, and with the help of a fellow graduate student,

Michael G. Levitzky, we went on to confirm the hypothesis and discover the underlying

mechanism [2].

There was a critical “aha!” moment during the first experiment to test that hypoth-

esis. We had placed an electromagnetic blood flow probe on the left main pulmonary

artery of a dog. When we made that lung hypoxic, we expected to see a decreased

blood flow, but the amplitude of the flow probe signal was unchanged. As we studied

the paper polygraph record, we found by happenstance a premature ventricular con-

traction, followed by a long diastole with zero flow. The diastole showed that the base-

line of the flowmeter had shifted, and masked a prominent retrograde flow in diastole.

The peak inflow was unchanged, but the net flow was in fact reduced by that retro-

grade flow in diastole. I attribute the recognition of that clue to my training to be

skeptical about instrumentation. Many years later, I was in the audience at an electrical

impedance tomography (EIT) conference in Manchester, UK, in 2009 when Marcelo

Amato from Brazil reported finding that the amplitude of the cardiac-frequency pulsati-

lity over the lung fields was not diminished in local hypoxia. He conjectured that it was

due to the mechanism we had discovered, and I was thrilled to direct him to the paper

reporting our original work published 33 years earlier.
Institutional Origins of Biomedical Engineering

I completed the Ph. D. in two years and accepted an appointment as Assistant Profes-

sor in the newly-formed Center for Biomedical Engineering at RPI in 1974. Based on

my two years’ experience in the Trauma Center, I began teaching a course called ‘Clinical

Engineering’, a keystone course in a new Clinical Engineering Master’s program. I also

initiated a ‘Biomedical Engineering Laboratory’ course, which included the use of experi-

mental animals, a novelty at RPI. I was also appointed Assistant Professor in the Depart-

ment of Physiology at AMC, where I taught respiratory physiology to first-year medical

students for 20 years, thus helping maintain my clinical contacts. And I re-joined the

Trauma Center, now as an Investigator. This background probably contributed to my
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acceptance by the medical community, which has sometimes been an obstacle for biomed-

ical engineers. I’ve been something of a hybrid in many ways, and I’ve found that helpful.

With these beginnings in the early 70’s, the RPI program was one of the first in the

country. Over the next decade, the Center for Biomedical Engineering added faculty,

student enrollment doubled, and the activity became a Department within the School

of Engineering. I ran a research laboratory studying the pulmonary circulation, with

NIH support, and advised a number of Ph.D. and Masters Students. The department

faculty was generally involved with patient-level or organ-level studies, many in pros-

thesis development. Since I started in the clinical environment, I have always kept my

research interests and projects closely allied with current clinical problems. I am some-

times disappointed to read theoretical studies by biomedical engineers that seem need-

lessly remote from clinical use.
Impedance Imaging - an idea whose time may soon come

Around 1985 I was approached by a mathematician who was looking for a simple piece

of electrical engineering data. David Isaacson, Professor of Mathematics, was making a

theoretical study of Electrical Impedance Imaging, and wanted to know what noise level

would be expected in measuring small voltages on the human chest at high audio fre-

quencies. I knew nothing of Impedance Imaging, and told him I didn’t expect it to

work, but I had a lab and we agreed on an experiment that could answer his question.

We found an interested undergraduate, and by the end of the summer, we showed he

was right, it would work, and with roughly what noise levels. From that beginning,

which involved a Radio Shack audio amplifier, a hand-wound variable-tap resistor and

32 jumper wires with alligator clips, it became clear that we needed a multi-channel,

computer-controlled instrument. I had worked in the Trauma Project with Prof. David

Gisser, and when I approached him with the instrument design problem, he responded

with four pages of hand-drawn circuits, and the project was under way [3].

The funding for this project involved a small miracle. The Trauma Unit was still

functioning at this time, funded as a Program Project by NIH. At the last renewal of

this Center Grant, after 22 years of support, I was Principal Investigator of one section,

which proposed to use Impedance Imaging to study the lung with ARDS. The Site Visit

team approved my project with a high priority and intact budget, but disapproved the

whole Center. An NIH administrator named Lee Van Lenten managed to separate the

EIT project from the Trauma Center, assign a new grant number, and change the insti-

tution from AMC to RPI. We had 5 years of full funding, and felt we’d caught a heli-

copter off the Titanic.

Electrical Impedance Imaging, as the name implies, is a technology for forming

images of the interior of the body, based on organs’ varying electrical properties, using

data from electrodes applied to the skin around the region of interest. Since it usually

involves a single ring of electrodes and thus images a slice of the body, it is also called

Electrical Impedance Tomography [4]. Some newer instruments operate across a broad

frequency spectrum, and perform Electrical Impedance Spectroscopy. Most instru-

ments measure both the real and imaginary components of the signals, and can repre-

sent the complex impedance. This relatively new field began in about 1986, with initial

work by a group in Sheffield, UK, and us. The European Community funded a
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Concerted Action to support several laboratories in Europe, and we were declared to

be “honorary Europeans” and were invited to the conferences. At that time, we were

the only group in the field from the US. Now there are several.

The technology works by applying small, high-frequency currents (or voltages) to

many (usually 16 to 256) electrodes, and measuring the resulting voltages (or currents).

Most of the European systems used a single current source and multiple voltage mea-

surements, which is relatively easy to build, and works fairly well. We elected to use as

many current sources as we had electrodes (32) and measure voltage on all these elec-

trodes. This system has theoretical advantages over single-source systems, but is a lot

harder and more expensive to build [3,5]. Both designs have existed since around 1988,

and neither has replaced the other to this day. The other important design criterion for

multiple-source systems is whether to use voltage or current sources. Current sources

are less sensitive to high-spatial-frequency noise, but are difficult to implement for

broadband applications, and are intolerant of open electrode connections. We used

current sources for our single-frequency instruments, but moved to voltage sources for

the broadband ACT 4. Prof. Gary Saulnier has since patented a current source design

that is suitable for use in broadband, multiple source applications.

For over two decades, my colleagues and I have been at the cutting edge of this tech-

nology, having to define the problems before we could solve them. It is an exhilarating

experience to be part of a small but world-wide community of workers trying to invent

something completely new. The caveats for those who would pursue such a path are

many, however. There needs to be a balance between developing a promising idea be-

cause it seems to have potential, and identifying an application for which it is truly use-

ful. Clinical utility is a high hurdle. But if you don’t have a vision, it’s hard to do

anything.

Many applications of EIT have been proposed, and tested for feasibility. In Russia, a

system is being marketed for breast cancer detection [6]. But by 2012, most other appli-

cations have languished, and the only other application that appears ready to become

commercial is the monitoring of cardiopulmonary function in acute care patients. An

instrument is being tested by Draeger, based on a 16-electrode design developed in

Germany [7]. Recently, a major US manufacturer of medical instruments has hired

three of our former students, and obtained an NIH grant to develop a commercial clin-

ical instrument. We are collaborating with that effort, which also has clinical colleagues

at Columbia University/NY Presbyterian Medical Center in New York.

Throughout these developments, our EIT project has had intermittent funding from

NIH, and 10 years of support through an Engineering Research Center from the Na-

tional Science Foundation. We have spent around $5 million, and built four generations

of instrument. The last was designed by Dr. Gary Saulnier of RPI, and is a 60-electrode

machine operating from 3 kHz to 1 MHz at 7 frames/sec. It has two plates with radio-

lucent electrodes that are placed on a 3-D mammography machine, allowing simultan-

eous 3-D mammograms and 3-D EIT images to be produced, in-register. We have

collaborated with Dr. Daniel Kopans at Massachusetts General Hospital to study breast

cancer patients, with results that are still being analyzed (Figure 1).

In the 26 years since our first publication, the EIT project has helped educate over

100 students, including several post-doctoral fellows. And four faculty members from

universities in Asia have visited for several months.



Figure 1 The latest ACT 4 instrument installed adjacent to a Tomosynthesis machine.
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Biomedical Engineering - Challenges and Prospects

While this instrumentation development project was taking place, the field of Biomed-

ical Engineering was changing radically. The discipline of Biomedical Engineering

started with a few random, isolated individuals who took an interest in some aspect of

health care and clinical medicine. They invented devices to solve specific clinical pro-

blems, such as the pacemaker, defibrillator, electrocardiogram (EKG) monitors and

thermodilution cardiac output detectors. The ad-hoc nature of the field is exemplified

by the fact that defibrillators were on the market for many years before defibrillator tes-

ters came along. When they did, it was discovered that all defibrillators delivered only

about 80% of their stored energy. That finding raised the question of which energy to

report to the operator – the stored energy, which is what all early machines reported,

or the more clinically relevant delivered energy. For many years, machines showed

both. Today, you can buy an Automatic External Defibrillator (thanks largely to the

work of Dr. Fred Chapman, one of my students) for a few hundred dollars, and keep it

in your home. Another interesting example is the Pulse Oximeter. It was invented in

Japan, but the inventor never filed a US patent. Many companies scrambled to enter

that market, and the price fell from around $3000 for the early versions to a device you

can buy for yourself for less than $40 [8]. The invention of that device holds a lesson

for any future device designer. For many years, several companies had tried to extract

oxygen saturation information from light shined through tissue. But the presence of

other pigments such as myoglobin made the problem complex, and the signals were

hard to process because they varied a lot with the heartbeat. Hewlett Packard sold a

machine with 8 different light wavelengths to try to separate out just the blood signal.

A man in Japan named Aoyagi realized that those pulse-related signals, which stymied

everyone else, actually contained the solution. The only thing varying was the arterial

blood. If he analyzed only the changes in light absorption, he only needed two wave-

lengths. He used the signal that everybody else tried to work around or eliminate.

Simultaneously with these changes, the technology of medical imaging expanded from

straightforward X-Rays to Nuclear Magnetic Resonance (now called Magnetic Resonance

Imaging because “nuclear” sounded scary), Computed Tomography, and Positron Emis-

sion Tomography. There was always something of a separation between these large



Newell BioMedical Engineering OnLine 2012, 11:94 Page 6 of 7
http://www.biomedical-engineering-online.com/content/11/1/94
instruments, marketed to radiology departments, and general BME, whose domain was

the entire medical care community. But each informed the other to some extent.

With the formation of organizations such as the Association for the Advancement of

Medical Instrumentation, which went on to organize Biomedical Engineering Techni-

cians, the field began to mature. I believe a critical role was played by the Veterans’

Administration Hospital system, which was quick to introduce the position of Clinical

Engineer to its system. Another early important step was made by Dr. Joel Nobel, who

founded the Emergency Care Research Institute [9], which began evaluating medical

instruments and soon began publishing a journal to support the work of Clinical Engineers.

ECRI has become a clearing house for clinical instrumentation reports of successes and

failures. If you believe that feedback can improve the performance of an engineering sys-

tem, you can appreciate the contribution of Dr. Nobel.
Quo Vadem?

These activities and ones like them defined the field of Biomedical Engineering from

the late 1960’s through the late 1990’s. At around that time, the instrumentation field

became, in many respects, a mature technology with developments better characterized

as incremental rather than groundbreaking. Between the late 1990’s and mid-2000’s,

the bulk of innovative activity moved to cellular- and molecular-level studies generally

characterized as Tissue Engineering. As the basic biology became much better under-

stood, cell culture techniques were refined and taken up by Bioengineers, and the

thrust became to design and build replacement tissues. Starting with skin, but soon in-

cluding blood vessels, neural tissue, and endocrine functions such as pancreatic beta

cells, the nature of the expertise needed by a Biomedical Engineer took a radical

change. Basic cellular level biology, including genomics and nanotechnology have all

nearly merged with biomedical engineering, and the engineers have taken on the prac-

tical goals of building (growing) something useful.

So in recent years, cell culture and other new techniques have become critical parts

of the curriculum for Bioengineering. This clearly promising development will have im-

portant medical applications. But we should not forget that there remain immediate

clinical needs to be met while the longer term solutions are developed. The tragedy of

medicine is that patients continue to become ill before we’ve learned how to cure them.

An eclectic approach to education still seems best.

As I try to extract from this story any message useful to others, the point that seems

to me most clear is that I’m a hybrid who does best working at interfaces. I’ve never

known as much about my colleagues’ fields as they do, but by working with colleagues

in different fields on a project that needs expertise in those fields, we’ve gotten much

further than any of us could have gone alone. I’ve often found that the most useful things

I know are things I wasn’t “supposed” to know. So in teaching Biomedical Engineering, I

always tried to teach a diversity of skills, and to teach students to be able to communicate

clearly with folks in other disciplines. That’s not a new message, but I hope to have given

it weight by example.
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