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Abstract

Background: Tissue engineering represents a promising new method for treating
heart valve diseases. The aim of this study was evaluate the importance of
conditioning procedures of tissue engineered polyurethane heart valve prostheses
by the comparison of static and dynamic cultivation methods.

Methods: Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained
from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded
with FBs and subsequently with ECs, followed by different cultivation methods of cell
layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was
exposed to low flow conditions (t1= 3 days at 750 ml/min, t2= 2 days at 1100 ml/min)
in a newly developed conditioning bioreactor. Samples were taken after static and
dynamic cultivation and were analyzed by scanning electron microscopy (SEM),
immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR).

Results: SEM results showed a high density of adherent cells on the surface valves from
both groups. However, better cell distribution and cell behavior was detected in Group
B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups.
Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B.
RT- PCR demonstrated a higher expression of inflammatory Cytokines in Group B.

Conclusion: While conventional cultivation method can be used for the development
of tissue engineered heart valves. Better results can be obtained by performing a
conditioning step that may improve the tolerance of cells to shear stress. The novel
pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical
properties of tissue engineered cardiovascular prostheses.

Keywords: Tissue engineering, Heart valve, Polyurethane scaffold, Static cultivation,
Dynamic cultivation
Background
Valve replacement represents the most common surgical therapy for end staged valvular

diseases with an estimated number of 275.000 procedures performed annually worldwide

[1]. The commonly used artificial heart valves are mechanical or biological prostheses.

According to the American Heart Association, mechanical heart valves are recommended

for patient under 60 years of age [2]. However, the increased risk of postoperative

hemorrhage, thromboembolism, and drug-drug interactions affect patients’ quality of life
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[2]. Biological valves are accompanied by a low risk for thromboembolism and endocardi-

tis, and offer growth potential for pediatric patients [3,4]. However, biological valves are

associated with different major complications such as deterioration of valve structure,

graft calcification, limited durability, and affinity to immunological response [2]. Tissue

engineered heart valves (TEHVs) are a promising approach to overcome the limitations of

conventional heart valve prostheses. Tissue engineering generally aims for the in-vitro

creation of viable neo-tissue indistinguishable from native tissue [5]. Biological and

engineering challenges are focused on three principal components that comprise the

“cell–scaffold–bioreactor system” [6]. An adequate combination of these components

could be the ideal solution for heart valve grafting leading to biocompatibility, non-

thrombogenicity, non-teratogenicity, long-term durability and growth potential of TEHVs

[7]. The aim of this study was to compare static cultivation (SC) and dynamic cultivation

(DC) of endothelial cells (ECs) and fibroblasts (FBs) seeded onto polyurethane heart valve

scaffolds by evaluating cell confluency, extracellular matrix (ECM) formation and inflam-

matory response.
Methods
Cell isolation

Cells were isolated from human saphenous vein segments left over from cardiac surgery

interventions. Tissue samples were only taken with the patients’ informed consent and

were further used in an anonymous fashion with no individual-related data. Veins were

cannulated and rinsed with aliquots of 500 ml M199 (Biochrom AG, Berlin, Germany)

supplemented with 1 ml Heparin (5000 i.E.; Ratiopharm GmbH, Ulm, Germany) and 5 ml

Gentamycin (10 mg/ml; Invitrogen AG, Darmstadt, Germany). For EC isolation, segments

were incubated with trypsin/EDTA-solution (10x; Sigma-Aldrich GmbH, Taufkirchen,

Germany) for 25 min at 37°C / 5% CO2. For FBs isolation, veins were subsequently flushed

with 2 mg/ml collagenase type II (Worthington Biochemical Corporation / CellSystems

GmbH, St. Katharinen, Germany) in human serum albumin (200 g/l; Baxter GmbH,

Unterschleißheim, Germany) and incubated for 30 min. Cell suspensions were centrifuged

at 750 rpm for 10 min, and cultured in endothelial cell growth medium (Promocell GmbH,

Heidelberg, Germany) supplemented with 6% FCS (Lonza GmbH, Köln, Germany) and

0.2% Penicillin/Streptomycin (Sigma Aldrich GmbH, Hamburg, Germany) and fibroblast

growth medium (Promocell GmbH, Heidelberg, Germany) supplemented with 11% FCS

and 0.2% Penicillin/Streptomycin, respectively. Medium was changed every second day.

Cells were passaged at confluency.
Phenotypic characterization of isolated cells

Morphological and immunocytological analysis were performed to characterize isolated cell

types. ECs were identified by their typical cobblestone morphology. FBs were identified by a

characteristic elongated spindle-shaped appearance with several extensions. For immunocy-

tological verification of ECs and FBs, 35.000 cells/cm2 were cultured in an 8-well culture

slide (BD Bioscience, Bedford, USA) until confluency. Vascular cells were stained against

EC-specific CD31 (0.14 μg/ml; Dianova GmbH, Hamburg, Germany) and FB-specific TE-7

(0.67 μg/ml, Millipore Corporation BioScience Division, Temecula, CA, USA), respectively

according to manufacturer’s protocol using EnVision™ + Dual Link System-HRP (Dako
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Deutschland GmbH, Hamburg, Germany). Briefly, cells were fixed at – 80°C in 96% ethanol.

The staining procedure was performed at room temperature (RT). After rinsing with

phosphate buffered saline (PBS; Biochrom AG, Berlin, Germany) and blocking for

endogenous peroxidase using 30% H2O2, cells were incubated with the primary antibody

for 30 min. The procedure was completed by incubation with EnVision™ + Dual Link

System- HRP (Dako Deutschland GmbH, Hamburg, Germany) for 30 min; and

AEC- Peroxidase-Substrate (Vector Laboratories, Inc., Burlingame, CA, USA) incubation

for 10 min. Counterstaining was performed using 25% Mayer’s Haemalaun (Merck

KGaA, Darmstadt, Germany) in PBS for 3 min at RT. Controls for non-specific binding

of biotinylated link were performed by excluding the primary antibody. The stained cells

were analyzed using bright field microscopy (Leica DMR microscope, Leica Microsystems

GmbH, Wetzlar, Germany).
Fabrication of polyurethane heart valve prosthesis (PHVP)

PHVPs (h = 55 mm, d = 18 mm) were manufactured by ITV-Denkendorf (Denkendorf,

Germany) using a polyurethane spraying technique (patent DE 28 06 030 C2). Randomly

oriented PU fibres formed a sheet with a thickness of 0.3 mm. For seeding purpose, PHVP

was γ-sterilized at 10 kGy according to a certified sterilization procedure.
Seeding procedure

PHVPs were sutured to a TeflonW fixation unit (Figure 1a, manufactured in-house) and

were seeded as previously described [8]. Briefly, PHVPs were initially seeded with FBs

(1.5 × 106 cells/cm2) using a 3D- rotating seeding device (Figure 1b; manufactured in-

house) for 24 h (running phase: 2.5 min; holding phase: 30 min), at 37°C / 5% CO2 followed

by a stationary cultivation phase of 6 d (SC group) and 1 d (DC group), respectively at

37°C / 5% CO2 in a glass container (Figure 1c). Cell medium was changed every two days.

Colonization of ECs was analogously performed.
Cultivation procedures

For SC, seeded PHVPs (n = 5) were cultured for 6 d at 37°C / 5% CO2 in a glass container.

This procedure is analog the stationary cultivation phase of the seeding procedure shown

in Figure 1c.
Figure 1 Seeding of PHVPs. PHVPs were sutured to a TeflonW fixation unit (a) and were consecutively
seeded with FBs and ECs using a 3D-rotating bioreactor (b) for 24 h at 37°C / 5% CO2. After the dynamic
seeding procedure, PHVPs were statically cultivated for 6 d (SC group) and 1 d (DC group), respectively at
37°C / 5% CO2 in a glass container (c). Scale bars: a = 10 mm, b = 20 mm, c = 40 mm.
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For DC, PHVPs (n = 5) were conditioned in a novel pulsatile bioreactor with an

endoscopic monitoring unit (Figure 2; EU-Patent pending EP10166094; manufactured

in-house, [9]) for 3 d at 750 ml/min and 2 d at 1100 ml/min medium flow, after FB seed-

ing and after EC seeding. For the conditioning of FB seeded PHVP, fibroblast growth

medium supplemented with 11% FCS and 0.2% Penicillin/Streptomycin were used. FB

+EC seeded PHVP were conditioned using endothelial cell growth supplemented with 6%

FCS and 0.2% Penicillin/Streptomycin. The viscosity of the media was 0.738 mPas ± 0.078

mPas. Cell medium was partially changed every two days. For further analysis, samples

were taken from native as well as from seeded PHVPs after SC and after DC. Samples

were taken from the supravalvular, valvular and subvalvular region of the aortic wall as

well as from the valvular leaflets.
Immunohistochemistry (IHC)

Immunohistochemical stainings were performed to differentiate between FB and EC

layers on seeded PHVPs (n = 10). Samples were fixed in 4% formalin (Microcos GmbH,

Garching, Germany) for 10 d, embedded in paraffin and sectioned at 10 μm. Specimen

were deparaffinized in Xylene (Carl Roth GmbH + Co. KG, Karlsruhe, Germany), rehy-

drated by an descending ethanol (Merck KGaA, Darmstadt, Germany) series and permea-

bilized with 0.5% Triton-X (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) in PBS

for 10 min at RT. Samples for staining against VE-Cadherin, Connexin-43, Fibronectin

and Collagen IV were exposed to 10% Protease (Dako Deutschland GmbH, Hamburg,

Germany) in distilled water (Ampuwa, Fresenius Kabi Deutschland GmbH, Bad Homburg

v.d. H., Germany) for 10 min at RT. For proteolysis of Fibronectin, Collagen IV, and

SMC-Myosin, specimens were boiled in 0.1 mM EDTA buffer (pH = 8.0, Sigma Aldrich

Chemie GmbH, Taufkirchen, Germany) or in Target Retrieval solution (pH = 6.0, Dako

Deutschland GmbH, Hamburg, Germany) for 15 min. For demasking of α- Actin, samples

were boiled in 10 mM Tris/1 mM EDTA solution (pH = 9.0, Sigma Aldrich Chemie
Figure 2 DC of seeded PHVPs. Seeded PHVPs in the group DC were conditioned in a pulsatile bioreactor
with an endoscopic monitoring unit [9] for 3 d at 750 ml/min and 2 d at 1100 ml/min. Scale bar = 50 mm.



Aleksieva et al. BioMedical Engineering OnLine 2012, 11:92 Page 5 of 11
http://www.biomedical-engineering-online.com/content/11/1/92
GmbH, Taufkirchen, Germany) for 15 min. After blocking for endogenous peroxidase

using 0.4% H2O2 in PBS, samples were incubated overnight at 4°C with primary antibodies

against VCAM (200 μg/ml), ICAM, SMC-Myosin (0.954 mg/ml; Dako Deutschland

GmbH, Hamburg, Germany), Fibronectin (0.6 mg/ml; Sigma Aldrich Chemie GmbH,

Taufkirchen, Germany), TE-7 (0.1 mg/ml; Millipore GmbH, Schwalbach / Ts.,Germany),

Connexin- 43 (1 μg/ml; Millipore GmbH, Schwalbach/Ts., Germany), VE- Cadherin

(0.2 mg/ml; Beckmann Coulter Inc., Marseille, France), Collagen IV (5.4 mg/ml; Sigma

Aldrich Chemie GmbH, Taufkirchen, Germany), CD31 (0.2 mg/ml; Dako Deutschland

GmbH, Hamburg, Germany) and α- Actin (44 μg/ml; Dako Deutschland GmbH,

Hamburg, Germany). Specimens were incubated with EnVision™ + Dual Link System-HRP

(Dako Deutschland GmbH, Hamburg, Germany), for 10 min, followed by AEC labelling

using AEC-Peroxidase-Substrate Kit (Vector Laboratories, Inc., Burlingame, CA, USA) for

10 min at RT. Counterstaining was performed for 3 min at RT using Mayer’s Hemalaun

(Merck KgaA, Darmstadt, Germany). Controls for non-specific binding of biotinylated link

were performed by excluding primary antibodies. Sections in duplicates of each region

were qualitative observed using bright field microscopy (Leica DMR microscope, Leica

Microsystems GmbH, Wetzlar, Germany) in four fields of vision. The intensity of IHC

staining was analyzed by a minimum of two experts without being blinded to intervention

and were classified as high (+++), medium (++), low (+) and absent (0).
Scanning electron microscopy (SEM)

Samples were fixed in 456 ml aqua bidest supplemented with 0.75 ml 1 N hydrochloric

acid (Titrisol, Merck KGaA, Darmstadt, Germany), 43.5 ml glutaraldehyd (Sigma-Aldrich

Chemie GmbH, Steinheim, Germany) and 5.65 g sodium cocodylate trihydrate

(Sigma-Aldrich Chemie GmbH, Steinheim, Germany) at 4°C for 48 h. Dehydration of

fixed specimens was performed by an ascending ethanol series (30%, 50%, 70%, 96%) and

after which the samples were place in 100% acetone (Merck KGaA, Darmstadt, Germany).

After sample drying at the critical point, specimens were coated with gold for 180 s at

10-5 and examined under a scanning electron microscope (Carl Zeiss MikroImaging

GmbH, Göttingen, Germany). Unseeded PHVP specimen served as negative controls.
Real time PCR (RT- PCR)

For detection of cytokine expression after SC and DC, RT-PCR was performed according

to manufacturer’s protocols. Briefly, RNA was isolated from samples stored in liquid nitro-

gen using RNAeasy Plus Mini Kit (Qiagen, GmbH, Hilden, Germany). RNA purity and

quantity was photometrically (BioPhotometer, Eppendorf AG, Hamburg, Germany)

assessed. QuantiTect Reverse Transcription Kit (Qiagen, GmbH, Hilden, Germany) was

applied for reverse transcription. Rotor-Gene Q 2plex System (35 cycles; Qiagen GmbH,

Hilden, Germany) and QuantiFast SYBR Green PCR Kit (Qiagen GmbH, Hilden,

Germany) were used to determine IL-1a, IL-6, IL-8, MCP-1, VCAM and GAPDH (Quanti-

Tect Primer Assay, Qiagen GmbH, Hilden, Germany) expression. A standard curve was

generated to determine the primer-dilution. Negative controls without sample material

were included for all PCR measurements. Resulting Ct-values were normalized to the

housekeeping gene GAPDH. PCR-product specificity was verified by melt curve analysis

and gel electrophoresis (FlashGel System, Lonza GmbH, Basel, Switzerland).
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Statistical analysis

All values are expressed as mean ± standard deviation. Student’s t-test was performed

for comparison of data of unpaired samples. All tests are one-tailed; the probability

value p < 0.05 was considered significant.
Results
Cell confluence

Seeding and cultivation of PHVPs were performed as described in materials and methods

section. SEM analysis (Figure 3) of native samples (a) showed randomly orientated fibres.

FB seeded PHVPs revealed a rough confluent cellular coverage after SC (b) and a

smoothed cellular surface after DC (c). FB and EC seeded PHVPs showed a confluent cell

layer after SC (d) and DC (e). In addition, the typical cobblestone morphology indicates

an endothelial layer after SC and DC. Moreover, flow conditions (t1= 3 d at 750 ml/min,

t2= 2 d at 1100 ml/min) influence cell alignment; ECs of the internal side of the PHVPs

were orientated in flow direction (e).
Protein expression

IHC examination was performed to compare cellular coverage and ECM formation after

SC and DC. Cell nuclei were stained with haemalaun (purple). As shown in Figure 4,

staining against CD31 (brown; arrows) revealed a positive reaction at both culture condi-

tions (a: SC, b: DC), indicating EC presence. Fibroblasts were detected after SC (c) and

DC (d) in a continuous multilayer by staining against TE-7 (brown, arrows). Comparison

of cellular adhesion molecules demonstrated a lower expression of ICAM after SC

(e; brown, arrows) than after DC (f; brown, arrows). VCAM was also expressed less after
Figure 3 SEM analysis of PUHVs in different processing states. Native PHVPs demonstrate disordered
fibers (a). FB seeded PHVPs revealed a rough confluent cellular coverage after SC (b) and a smoothed
cellular surface after DC (c). FB and EC seeded PUHVs reveal a confluent cell layer with an EC-typical
cobblestone morphology after SC (d). DC results in cell alignment following flow direction (e). These are
representatives of ten independent experiments. Scale bars = 100 μm.



Figure 4 IHC analysis of PUHVs in different processing states. Seeded PUHVs reveal an EC presence
(brown; arrows) after SC (a) and DC (b) SC (c) and DC (d) also result in the formation of fibroblast multilayer
(brown; arrows). A lower expression of ICAM was detected after SC (e; brown, arrows) than after DC
(f; brown, arrows). VCAM was also expressed less after SC (g; brown, arrows) than after DC
(h; brown, arrows). A lower expression of Collagen IV was observed after SC (i; brown, arrows) compared to
DC (j; brown, arrows); VE- Cadherin was also expressed less after SC (k; brown, arrows) than after DC
(l; brown, arrows). Cell nuclei were stained with haemalaun (purple). These are representatives of ten
independent experiments. Scale bars: a, c, e-l = 150 μm, b, d = 50 μm.
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SC (g; brown, arrows) than after DC (h; brown, arrows). A lower expression of Collagen

IV was observed after SC (i; brown, arrows) compared to DC (j; brown, arrows);

VE- Cadherin was also expressed less after SC (k; brown, arrows) than after DC

(l; brown, arrows). Controls for non-specific chromogen binding displayed negligible

staining for antigens (data not shown).
Gene expression

Figure 5 illustrates the mean values of gene expression in the aortic wall and cusps after

SC and DC. Gene expression was normalized to the expression of the housekeeping gene

GAPDH. The analysis of the aortic wall segments and the cusps of the heart valves pro-

portionately showed equivalent gene expressions after SC and DC for all cytokines. The

analysis of IL-1a and VCAM revealed a negligible expression after SC and DC. In both

cultivation procedures seeding of EC results in a decrease of IL-6 (SC: -66%, DC: -95%)

and MCP-1 (SC: -71%, DC: -56%) expression while IL-8 (SC: + 868%, DC: + 123%) was

expressed to a higher level. The comparison of the SC and DC of FB+EC seeded aortic

wall showed a lower expression of IL-6 (− 59%) and an increase of IL-8 (+ 29%) and

MCP-1 (+ 51%) expression after DC. FB+EC seeded cusps showed a lower expression of

IL-6 (− 72%), an increase of IL-8 (+ 37%) expression and a comparable MCP-1 expression

(+ 10%) after DC compared to SC.



Figure 5 Overview of the PCR results. The bar chart shows the expression of several
cytokines / chemokines in various stages of valve colonization. Gene expression was normalized to the
expression of the housekeeping gene GAPDH. Results are given as the mean values of three independent
experiments ± standard deviation.
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Discussion
Tissue engineering is an emerging field focused on the development of bioartificial substi-

tues to restore, maintain, or improve tissue function. These applications are the key for the

future treatment of many diseases [10]. Currently, in tissue engineering are several scaffolds

materials under investigation. Synthetic, non-degradable polymers like polyurethane are

mainly characterized by their structural resistance, a three dimensional form with defined

pore sizes, non-immunogenic and anti-thrombotic properties [11]. Within the monomeric

unit, moieties could be substituted by different groups, resulting in versatile properties.

Fabrication of hydrolytic stable PU already led to the development of different implants like

vascular grafts, artificial heart valves and catheters [11,12]. Cells needed for the development

of the tissue engineered heart valves can be obtained from a saphenous vein - vascular cells,

be taken by a bone marrow biopsy - bone marrow stromal cells, from newborn patients,

umbilical cord-derived cells or blood derived endothelial progenitor cells and chorionic

villi-derived cells [13]. In our study, we obtained FBs and ECs from saphenous vein

segments which were no longer required in coronary bypass operations. According to

Schmidt et al., neither the proliferation in a monolayer nor the three-dimensional growth as

tissue engineered constructs is influenced by the age of the cell donor [13], indicating that

adult saphenous vein segments are an adequate cell source for tissue engineering applica-

tions. During the development of a cardiovascular tissue-engineered construct, a large chal-

lenge is the creation of a confluent and stable endothelial cell layer. Complications after the

implantation of artificial grafts are caused in part by the lack of an intact endothelium [14].

The endothelial cell function has been described several times [15,16]. Consigny et al.

showed a better adhesion and shear stress resistance of ECs on prosthetic vessels or heart

valves pre-coated with different ECM proteins [16]. Although this coating improves cell

adhesion, the integrity of the coating is compromised at high flow rates [17]. Another
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strategy to enhance the adhesion of ECs is the pre-seeding of prosthesis with vascular FBs,

mimicking conditions in vivo [8]. In addition, the fibrillar structure of PHVPs is similar to

collagen, the main component of native ECM, and may support cell adhesion. Moreover,

In vivo, cellular phenotype, morphology, and proliferation are affected by mechanical, elec-

trical and chemical signals [18]. If these signals are inappropriate or absent, cells lose their

ability to develop an ECM and to form organized tissues [19]. Thus, the simulation of

physiological conditions, such as shear stress, plays an important role in the development of

tissue engineered constructs [20,21]. For the fabrication of vascular grafts, Syedain et al. and

Tschoeke et al. demonstrated the expression of ECM components by human dermal fibro-

blast and ovine arterial myofibroblasts in fibrin gel under dynamic culture conditions gener-

ated by a pulsed flow-stretch bioreactor and a pulsatile bioreactor, respectively [22,23].

In heart valve fabrication, bioreactors for tissue formation under dynamic culture condi-

tions have been reported several times [24,25]. Ramaswamy et al. described a large collagen

mass production after the use of simulated pulmonary artery conditions using an organ-

level heart valve bioreactor [26]. The stimulation of human dermal fibroblasts seeded onto a

decellularized porcine matrix by a pneumatic flow bioreactor, resulting in the synthesis of

ECM proteins was shown by Zeltinger et al. [27]. Mol et al. demonstrated that dynamically

strained leaflets reveal a more homogenous and denser cellular coverage than leaflets

exposed to pre-strain only [25]. This is in line with results, generated in our study: SC and

DC results in a confluent cell layer. In this context, numerous studies have reported the

behaviour of ECs to flow shear stress in-vitro. ECs are constantly subjected to hemodynamic

forces, including shear stresses that induce various functional changes in vascular endothe-

lium. Initially, it was found that exposure of ECs to elevated shear stresses in-vitro caused

them to align in the direction of flow [28]. In our study, after DC ECs were also orientated

into flow direction after DC, indicating the adaption to shear stress. The higher expression

of cellular adhesion molecules after DC illustrates the intensified formation of cell con-

necting molecules, due to the pulsatile conditioning process. Moreover, a higher expression

of Collagen IV, VE-Cadherin and Fibronectin was observed after DC indicating the forma-

tion of an ECM, essential for tissue and organ morphogenesis, maintenance, and recon-

struction following injury in association with constructive tissue remodeling [29]. However,

shear stress as a result of the DC provoked a higher cytokine expression compared to SC

[30]. EC are able to sense changes in the shear stress or flow forces and respond, for

instance, by expression of pro-inflammatory cytokines [31]. These cytokines and/or chemo-

kines play key roles in mediating inflammatory reactions [32]. Gerszten et al. already

concluded that cytokines are important modulators of monocyte-endothelial interactions

under flow conditions [33]. McGill et al. demonstrated that consecutive seeding of heart

valve scaffolds with FB and EC results in a less inflammatory response after DC than singly

seeding with EC [34]. Chiu et al. reported that a coculture of vascular ECs with vascular

smooth muscle cells induces the expression of ICAM-1, VCAM-1, and E-selectin genes in

ECs in the static condition, whereas the application of shear stress to ECs inhibits these

coculture-induced gene expressions [35]. Our analysis of IL-1a and VCAM expression

revealed a negligible expression after SC and DC of FB and EC seeded scaffolds. These

findings are also described by McHale et al. and Murui et al., indicate a lower risk of inflam-

matory response and arteriosclerosis [36,37]. While IL-1a and VCAM were expressed to a

lower level after DC, the expression of IL-8 increased after DC. Several studies have shown

a correlation between IL-8 expression, arteriosclerosis and coagulation which is thought to
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be caused by monocyte activation, adhesion and transmigration across the endothelial

barrier [34,38]. However, not only shear stress, but rather cell isolation from biopsies

provokes stress symptoms. For example, the process of human islet isolation triggers a

cascade of stressful events in the islets of Langerhans involving the production of

proinflammatory molecules. Two of the major pathways responsible for cellular responses

to stress, already occurs in pancreatic cells during the isolation procedure. The production

and release of IL-6, IL-8 and MCP-1, were observed days after the isolation procedure in

isolated purified islets [39]. Therefore, the next step will be long-term conditioning of our

TEHVs for a better adaption of cells to shear stress after isolation and cultivation proce-

dure and consequently to reduce inflammatory response.
Conclusions
In conclusion, we demonstrate that DC is more effective than SC in generating TEHVs.

DC supports ECM formation and homogeneity of the cellular coverage. The novel

pulsatile bioreactor provides a strong tool for dynamic pre-conditioning of TEHVs.
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