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Abstract

Background: The recent developments in microarray technology has allowed for the
simultaneous measurement of gene expression levels. The large amount of captured
data challenges conventional statistical tools for analysing and finding inherent
correlations between genes and samples. The unsupervised clustering approach is
often used, resulting in the development of a wide variety of algorithms. Typical
clustering algorithms require selecting certain parameters to operate, for instance the
number of expected clusters, as well as defining a similarity measure to quantify the
distance between data points. The diffraction-based clustering algorithm however is
designed to overcome this necessity for user-defined parameters, as it is able to
automatically search the data for any underlying structure.

Methods: The diffraction-based clustering algorithm presented in this paper is tested
using five well-known expression datasets pertaining to cancerous tissue samples. The
clustering results are then compared to those results obtained from conventional
algorithms such as the k-means, fuzzy c-means, self-organising map, hierarchical
clustering algorithm, Gaussian mixture model and density-based spatial clustering of
applications with noise (DBSCAN). The performance of each algorithm is measured
using an average external criterion and an average validity index.

Results: The diffraction-based clustering algorithm is shown to be independent of the
number of clusters as the algorithm searches the feature space and requires no form of
parameter selection. The results show that the diffraction-based clustering algorithm
performs significantly better on the real biological datasets compared to the other
existing algorithms.

Conclusion: The results of the diffraction-based clustering algorithm presented in this
paper suggest that the method can provide researchers with a new tool for
successfully analysing microarray data.
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Background
The rapid development in microarray or DNA chip technology has resulted in the field
of data analysis lagging behind the measurement technology [1]. The simultaneous mon-
itoring of a large number of gene expressions has led to noisy high-dimensional data
and unpredictable results from which no real analysis has yet been developed. The main
problem is due to the number of measured variables versus the number of samples, a
problem referred to by statisticians as “p-bigger than N”, for p features and N samples [1].
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A consequence of this is that if classical statistical tools are applied the results can be
spurious, as shown by Tibshirani in a review by [1].
Microarray technology is becoming a valuable diagnostic tool and has the poten-

tial to replace some conventional diagnostic modalities, which can be both expensive
in resources and time due to the vast amount of expertise required for an accurate
diagnosis [2]. The initial step therefore is to find patterns in the genome, assuming
they exist, and build classifiers from which more accurate and faster diagnostic times
can be achieved. The problem with supervised techniques is that they are vulnera-
ble to sources of bias, such as deciding which portion of data forms the training or
validation set.
The unsupervised field of clustering is the process of finding structure or groups in data,

such that points in a cluster are more similar compared to points located in different clus-
ters. Clustering has been shown to be a potential solution for discovering and analysing
information in gene expression measurements [3]. The similarity between points and
clusters is often ambiguous, a result which has led to a wide spectrum of algorithms
[4,5]. The two main categories of clustering algorithms are hierarchical and partitional.
In hierarchical clustering the data is grouped using a divisive or agglomerative procedure
[6], whereas in partitional clustering there are k groups into which the data points are
separated [7].
In the context of microarray experiments cluster analysis can be used to cluster genes,

samples or both, a process known as bi-clustering. Gene-based clustering can be used to
uncover genes that are co-regulated and share similar function. Sample-based clustering
is used to discover novel subtypes in cancer, an example being the discovery of five unique
subtypes found in a breast cancer study performed by [8]. It is generally accepted that the
same algorithm can be applied to cluster samples and genes, however for bi-clustering
further analysis is often required [4].
The performance of clustering algorithms, in general, degrades as the dimensionality

of the feature space increases [9]. A common solution to this problem involves reducing
the dimensionality of the data before cluster analysis using an appropriate mapping tech-
nique. The most recognised and used technique is principal component analysis (PCA),
which has been shown to perform inadequately for clustering gene expression data [10].
The idea of using non-linear reduction techniques on expression data, such as isometric
mapping (ISOMAP), has also been tested with surprising results that outperform linear
techniques like PCA [11].

Methodology
The diffraction-based clustering algorithm and resulting hierarchical agglomerative
scheme is derived. The partitioning of the clusters and corresponding lifetime is used to
determine the correct number of clusters. The data points are assigned to each cluster
using an exponential metric that includes both magnitude and direction.

Derivation of clustering algorithm

The properties of diffraction closely resemble the properties of clustering when examined
in detail. The dispersion and overlapping of two light sources can be viewed as a similarity
measure. The data points can be treated as point light sources that diffract and interact
with one another to form a cluster. The idea can be generalised for data points in the real
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d dimensional space Rd by firstly examining the Fresnel-Kirchoff diffraction equation as
follows [12]:

U (μ, ν) =
∫ ∫

a (x, y)ei(μx+νy)dxdy, (1)

where a(x, y) is the aperture function. The equation states an important fact about diffrac-
tion, namely that the diffraction pattern U(X,Y ) can be found by performing a Fourier
transform over the aperture function. The diffraction patternU(μ, ν) can be altered using
a spatial filter G(μ, ν) to obtain the new aperture function, given by

a′(x, y) =
∫ +∞

−∞

∫ +∞

−∞
G (μ, ν)U (μ, ν) e−i(μx+νy)dμdν. (2)

The next step is to define the aperture function for a given dataset {p1,p2, . . . ,pn}. The
aperture function a(x) for x ∈ R

d is defined as

a(x) =
n∑

i=1
δ(x − pi). (3)

The aperture function is therefore a collection of impulses located at each datum pi.
The initial clusters are defined at each data point. The aperture function is then filtered
using the properties of Fourier functions and applying a spatial filter G(ξ), as shown by

Y (ξ) = A(ξ)G(ξ), (4)

=
n∑

i=1
e−2π i(ξ ·pi)G(ξ). (5)

Using the inverse Fourier properties for a shifted function, the filtered aperture function
is obtained

y(x) =
n∑

i=1
g (x − pi) . (6)

The result is a set of filter functions g(x), each centred at a separate data point pi. The
choice of the filter is somewhat arbitrary, however satisfying the constraints set by [13], a
Gaussian function is used

G(ξ) = e−σ‖ξ‖22 . (7)

The inverse Fourier transform of the Gaussian filter function is itself, as shown by

g(x, σ) = 1

(4πσ)
d
2
e

−‖x‖22
4σ , (8)
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with the width of the Gaussian determined by the free parameter σ . The final result is an
aperture function specified by

y(x, σ) = 1

(4πσ)
d
2

n∑
i=1

e
−‖x−pi‖22

4σ . (9)

The spectral width of the Gaussian filter decreases as σ increases, resulting in the
removal of higher frequencies in the measured data. The result is a family of aperture
functions defining a hierarchical agglomerative scheme in which the data points merge as
σ increases. Information pertaining to the aperture function, such as the slope, can then
be used to determine which data points belong to a cluster.
The derivative of the aperture function is used to locate the centres of the clusters

which, under the condition for local maxima, satisfy

∂y
∂x

= 1

2σ (4πσ)
d
2

n∑
i=1

(pi − x)e
−‖x−pi‖22

4σ = 0. (10)

The centre points that satisfy (10) can be found using data points together with the
dynamic gradient system equation

dx
dt

= ∇xy(x, σ) = 1

2σ (4πσ)
d
2

n∑
i=1

(pi − x)e
−‖x−pi‖22

4σ . (11)

This equation can then be approximated using the Euler difference method

x [ n + 1]= x[ n]+ h∇xy (x [ n] , σ), (12)

which is suitable for software implementation and solving for the maxima of the aperture
function. The solutions to (12) provide the cluster centres for the dataset. A data point
is considered to be cluster centre if it satisfies ‖x[ n + 1]−x[ n] ‖ < ε for an arbitrarily
chosen small number ε. Cluster centres that satisfy ‖x1 − x2‖ < ε are considered to have
merged to form a single cluster centre.

Cluster lifetime

The problem of determining the correct number of clusters is resolved by measuring the
cluster lifetime. The cluster lifetime is defined as follows: The σ -lifetime of a cluster is the
range of σ values over which a cluster remains the same and does not merge i.e. it is the
difference in σ values between the point of cluster formation and cluster merging.
It was found in an empirical study performed by [14] that for uniformly distribute data

the lifetime curve decays exponentially as π(σ) = π(0)e−βσ , where π(σ) is the number of
clusters that are found using (10). The parameter β is dependent on the dimensionality of
the problem and is usually unknown [14]. The logarithmic scale can be used to eliminate
the unknown parameter and obtain a linear function of σ [14].
The cluster lifetime does not decay exponentially, or linearly depending on scale used,

when there exists structure in the data. The information about the data structure is then
observed from the lifetime plot for the corresponding σ value, which is used in the final
cluster solution. The σ value at the beginning of the longest lifetime interval is often used
[14]. The major steps in selecting the valid cluster structure in a dataset are summarised
in the following five steps:
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1. Observe the lifetime plot of π(σ) and if it is constant over a wide range of σ values
then structure exists in the dataset, otherwise the dataset is uniformly distributed.

2. If the data has an inherent structure then the lifetime can determine the correct
number of clusters and the corresponding clustering.

3. The validity of the cluster can be determined by its lifetime and other defined
validity indices.

4. If required the measure of outlierness can be used to detect any spurious points in
the dataset.

Classification

The assignment of the iterated data points xi to each partition π(σ ∗) for a chosen σ ∗ is
achieved, using a similar metric as [13], by

P(xi|Ck) = 1
2

(
1 +

〈 ∇xy(xi)
‖∇xy(xi)‖ ,

di,k
‖di,k‖

〉)
× e

−‖di,k‖2
2

4(σ∗) , (13)

where di,k = x̄k − xi.
Here, the exponential metric is used to classify each iterated data point xi to cluster

Ck as it has been shown, by [15], to perform superior to the commonly used Euclidean
metric. The exponential metric is maximised when each datum point is closest to a cluster
centre and in the same direction, with the latter calculated using the inner product 〈·, ·〉.

Results
Algorithm properties and illustration

The properties of the diffraction-based clustering algorithm are illustrated using the [16]
dataset. The data was normalised using the range as the scale measure and the minimum
as the location measure [17]. Figure 1 shows the a priori classification of the samples,
with the circle-markers indicating the acute lymphoblastic leukaemia (ALL) subtypes and
the cross-markers indicating the acute myeloid leukaemia (AML) subtypes. The first two
dimensions of the dataset are labelled using X and Y as seen in Figure 1.
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Figure 1 Scatter plot of the a priori classification for the Golub dataset. The two distinct classes of acute
lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML) are shown.
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The diffraction-based clustering algorithm was applied to the filtered two dimensional
Golub dataset for optimal results. The lifetime curve for the clustering algorithm in
Figure 2 illustrates that the inherent number of clusters matches the expected amount.
The value of σ was selected to be the minimum value of the range where the cluster
number remains constant for the longest time, in this case the value of σ is 9.2 × 10−3.
The evolution of the aperture function is shown in Figure 3 for increasing σ values. The

data points initially are point sources that slowly diffuse andmerge to form larger clusters,
which is depicted by the intensity change in Figure 3. The final result is that all the data
points form a single cluster, a theme common to hierarchical clustering.
The cluster centres shown in Figure 4 are tracked as σ increases. The centres of the

clusters move andmerge to form new cluster centres, eventually leading to a single cluster
centre. The route of the centre points is determined by the gradient and maxima of the
aperture function which evolves as the parameter σ changes.
The final aperture function in Figure 5 has a σ value determined from the cluster life-

time plot and is used to classify the points into clusters. The aperture function has two
peaks, one that is relatively higher than the other, which is a result of the higher density
ALL data points. The number of clusters of dataset therefore correspond with the number
of aperture peaks, which in this case is two.

Dimensionality reduction

Clustering algorithms often perform poorly in a high-dimensional space due to the rel-
ative contrast between data points, x ∈ R

d, as expressed in the following equation

lim
d→∞

max(‖x‖p) − min(‖x‖p)
min(‖x‖p) → 0, (14)
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Figure 2 Cluster lifetime plot for the two dimensional Golub dataset. The lifetime plot illustrates how
long a certain cluster size exists under evolution of the σ parameter.
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Figure 3 Sigma evolution of the aperture function on the Golub dataset. The analysis of the Golub
dataset was performed using a final selected σ = 9.2 × 10−3.
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Figure 4 Sigma evolution on the Golub dataset. The two dimensions of the Golub dataset are split into
two separate graphs. The illustrations show that as σ increases the cluster centres merge and eventually
become a single cluster.
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Figure 5 Aperture function of the Golub dataset at σ = 9.2 × 10−3. The aperture function with its shape
is used to classify the data points into two clusters.

where ‖x‖p is the Lp norm [9]. The stated equation shows that the relative contrast
between data points is degraded and has no meaning in a high-dimensional space.
The high-dimensional feature space therefore needs to be reduced using an appropriate
reduction technique.
Principal component analysis (PCA), as well as singular value decomposition (SVD), are

both commonly used linear methods for reducing the dimensionality of the feature space.
The linear methods construct a lower dimensional space using a linear function of the
original higher dimensional space. A recent article written by Shi and Luo explored the
use of a non-linear dimensionality technique on cancer tissue samples called isometric
mapping (ISOMAP) [11]. ISOMAP replaces the usual Euclidean distance with a geodesic
distance, which has the ability to capture and characterise the global geometric structure
of the data [11]. The ISOMAP technique is also able to deal with non-linear relationships
between data points as it is based on manifold theory [11].
The ISOMAP algorithm is applied to the cancer datasets to reduce their dimensionality.

The dimension selected for each dataset is based on a paper by Tenenbaum which shows
that the intrinsic dimensionality of the dataset can be estimated by the point of inflection,
or “elbow” point, of the generated ISOMAP residual variance curve [18]. It should also be
noted that Shi and Luo used a wide range of dimensions for the k-means and hierarchical
clustering algorithm on the same cancer datasets used in this paper [11]. Their results
show that the performance of the clustering algorithms for most of the cancer datasets
remain relatively constant as the dimension changes [11].

Leukaemia dataset

The Golub et al. dataset is a well known and established set for testing classifiers and class
discovery algorithms. The dataset is comprised of acute lymphoblastic leukaemia (ALL)
samples and acute myeloid leukaemia (AML) samples. Patient samples are currently clas-
sified using techniques such as histochemistry, immunophenotyping and cytogenetic
analysis [16]. The Golub dataset was classified using the conventional techniques of
nuclear morphology, enzyme-based histochemical analysis and antibody-attachment to
either a lymphoid or myeloid cell.
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The dataset is divided into two types one for training and one for testing the classifier.
The initial training set contains 38 samples of which 27 are ALL and 11 are AML samples.
The independent testing set contains 34 samples of which 20 are ALL and 14 are AML
samples. The RNA was prepared from bone marrow mononuclear cells with the samples
hybridised to a high-density oligonucleotide Affymetrix array containing 6 817 probes.
The expression profile for each sample was then recorded and quantified using quality
control standards [16].
The Golub data was first filtered using the call markers to find genes that were present

more than 1% out of all the samples. The dimensionality of the data was then reduced
using the ISOMAP algorithm to a suitable dimension. The residual variance plot of the
dataset, shown in Figure 6, reveals that the correct dimension is in fact two, as this is the
dimension where the curve begins to approximate linear decay.
The performance of the clustering algorithms are evaluated using three main mea-

sures: average external criterion (AEC), average validity index (AVI) and accuracy (ACC).
The average external criterion is the average of the three main external criteria [17], and
defined as

Average External Criterion = J + R + F
3

, (15)

where

J = Jaccard Coefficient,

R = Rand Score,

F = Folkes and Mallows Index.
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Figure 6 Residual variance of the ISOMAP algorithm for the Golub dataset. The residual variance decays
approximately linearly at 2, which indicates that 2 is the correct dimension to use for the dataset.
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The average validity index is the average of four commonly used indices, analysed by
[19], and is given by

Average Validity Index =
1
IB + ID + IC + I

4
, (16)

where

IB = Davies-Bouldin Index,

ID = Dunn’s Index,

IC = Calinski Harabasz Index,

I = I Index.

It is noted in (16) that the Davies-Bouldin index is inverted, since the index is minimised
when there is a suitable clustering result. The average validity index should therefore be
maximised for a good clustering result. It should be noted that other validation techniques
exist which have been tested on numerous gene datasets [20,21].
The accuracy of the clustering results are determined using a simple misclassification

ratio as shown by

Accuracy = Ns − Nm
Ns

× 100%, (17)

where Ns is total number of samples and Nm is the total number of misclassified samples
produced by the algorithm.
The results of the diffraction-based clustering algorithm were compared to the other

main clustering schemes as shown in Table 1. The k-means algorithm was used with the
number of expected clusters equated to 2, similarly for the fuzzy c-means algorithm. The
fuzzy c-means exponent was set to 2, the most commonly used value, however there are
critiques about choosing this exponent value [22]. The hierarchical clustering algorithm
used the standard Euclidean distance with single linkage and centroid linkage as themerg-
ingmeasurement. The topology of the self-organisingmap was 2×1, such that two cluster
centroids could be found [16]. The number of clusters in the Gaussian mixture model and
DBSCAN algorithm were set to 2.
The results in Table 1 demonstrate that the diffraction-based algorithm outperforms the

other algorithms in terms of accuracy and validity. An accuracy of 94.4% for diffraction-
based clustering implies that only 4 samples were misclassified, whereas in fuzzy c-means

Table 1 Comparison of the clustering results for the Golub dataset

Algorithm AEC AVI ACC (%)

Diffractive clustering 87.5 73.5 94.4

k-means 76.1 62.6 88.9

Fuzzy c-means 76.1 57.3 88.9

Hierarchical clustering (single) 59.3 63.7 63.9

Hierarchical clustering (centroid) 53.4 99.7 61.1

Self-organising map 60.5 12.6 65.3

Gaussian Mixture Model 76.1 60.6 88.9

DBSCAN 53.1 75.7 68.1

The clustering algorithms perform well as the two classes in the dataset are clearly separated, however the diffractive
clustering algorithm outperforms the other algorithms in terms of accuracy.
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and k-means 8 samples were misclassified which is double that of the diffraction-based
clustering algorithm.
The SOM and hierarchical clustering algorithms both perform relatively poorly com-

pared to the other algorithms. The reason being that perhaps the incorrect choice of
neurons and topology for the SOM was used, or the cut-off level for the hierarchical den-
drogram was not optimal. The main problem with these algorithms is the choice for the
parameters and determining the cluster number a priori. The diffraction-based clustering
algorithm bypasses these problems by finding the lifetime for the cluster numbers, which
gives the optimal parameter choice for clustering the selected dataset.

MILEs dataset

The Microarray Innovations in LEukaemia (MILE) study is a collection of analyses from
an international standardisation programme that was conducted in 11 countries [23]. The
subtypes of acute lymphoblastic leukaemia (ALL) which are analysed follow those from
the study by Li et al. and include: t(4;11) MLL-rearrangement, t(9;22) BCR-ABL, T-ALL,
t(12;21) TEL-AML1, t(1;19) E2A-PBX1 and Hyperdiploid > 50 [24]. The lymphoblastic
leukaemias result from the failed differentiation of the haematopoietic cells, specifically
the lymphoid stem cells [23]. The number of samples were evenly distributed as much as
possible resulting in 276 samples with a total of 54 675 genes.
The dimensionality of the MILEs dataset was reduced to three using the ISOMAP algo-

rithm and the information provided by the residual variance curve shown in Figure 7. The
figure reveals that the inherent dimensionality is three as the curve begins to approximate
linear decay at that point.
The data was background corrected and normalised using the robust multiarrary aver-

age (RMA) technique. The data was then normalised again using the range such that the
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Figure 7 Residual variance of the ISOMAP algorithm for the MILEs dataset. The residual variance decays
approximately linearly at 3, which indicates that 3 is the correct dimension to use for the dataset.
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gene expression values were between [ 0, 1]. The a priori classification of the dataset in
Figure 8 shows each of the six subtypes designated by their own specific marker.
The lifetime curve for the Miles dataset is shown in Figure 9. The curve shows that

the cluster number stays constant at six for a large range of σ . The graph is not com-
plete since the cluster number stays fixed at six for more than one order of magnitude
in σ , and is therefore assumed to be the correct cluster number. The chosen value of σ

is the minimum value at which the cluster number stays constant, which in this case is
17.3 × 10−3.
The results of the diffraction-based clustering algorithm were compared to the other

clustering algorithms, as shown in Table 2. The number of expected clusters in the k-
means algorithm was equated to 6, similarly for the fuzzy c-means algorithm. The fuzzy
c-means exponent was set to 2. The hierarchical clustering algorithm uses the Euclidean
distance with single linkage and centroid linkage as the merging metric at a maximum
cluster level of six. The topology of the self-organising map was set to 6 × 1 such that six
cluster centroids could be found. The number of clusters in the Gaussian mixture model
and DBSCAN algorithm were set to 6.
The results in Table 2 show that the diffraction-based clustering algorithm outper-

forms the other algorithms both in validity and accuracy. The fuzzy c-means algorithm
is the closest, in terms of accuracy, to the diffraction-based clustering algorithm with
a value of 71.4%. The accuracies in general are low when compared to the Golub
dataset, with the reason being attributable to the large number of different subtypes and
high-dimensionality of the feature space [9].

Other datasets

The cluster analysis of three other cancerous datasets was performed. The σ parameter
for the diffraction clustering algorithm was determined using the cluster lifetime curve.
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Figure 8 Scatter plot of the a priori classification for the MILEs dataset. The six relatively distinct classes
of the acute lymphoblastic leukaemias are shown. t(4;11) MLL-rearrangement, t(9;22) BCR-ABL, T-ALL, t(12;21)
TEL-AML1, t(1;19) E2A-PBX1 and Hyperdiploid > 50.
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Figure 9 Cluster lifetime plot for the three dimensional MILEs dataset. The lifetime plot illustrates how
long a certain cluster size exists under evolution of the σ parameter, and in this specific instance the cluster
lifetime persists at 6 for a large range of σ values. The persistence of the line therefore indicates the correct
cluster number is 6.

The parameters of the other clustering algorithms were adjusted to the correct number
of clusters for each dataset.

Khan dataset

The Khan dataset was obtained from a study performed on classifying small, round blue-
cell tumours (SRBCT) [25]. The tumours belong to four distinct diagnostic categories
which present challenges for clinical diagnostics [25]. The four classes are Neuroblas-
toma (NB), Rhabdomyosarcoma (RMS), Burkitt lymphomas (BL) and the Ewing family of
tumours (EWS). The correct class to which the tumour belongs is important since treat-
ment options, responses to therapy and prognoses vary significantly depending on the
diagnosis [25].
The Khan gene-expression data was obtained from cDNA microarrays that each con-

tained 6 567 genes, and a sample size of 83. The data was normalised to a range of [ 0, 1]

Table 2 Comparison of the clustering results for theMILEs dataset

Algorithm AEC AVI ACC (%)

Diffractive clustering 66.6 179.0 73.1

k-means 59.1 152.6 61.6

Fuzzy c-means 62.9 171.4 71.4

Hierarchical clustering (single) 47.7 64.2 47.1

Hierarchical clustering (centroid) 56.4 155.2 60.9

Self-organising map 46.1 10.6 47.1

Gaussian Mixture Model 58.6 96.4 61.2

DBSCAN 52.2 122.3 57.6

The diffractive clustering algorithm outperforms the other clustering algorithms in terms of accuracy, with the
hierarchical clustering algorithm performing better when there is centroid linkage.
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using the minimum as the location measure and the range as the scale measure. The
dimensionality for the Khan dataset was originally selected as ten using PCA to allow for
well-calibrated artificial neural network models [25]. The dataset however was reduced
to three using the ISOMAP algorithm which is it’s intrinsic dimensionality. The predeter-
mined classes of SRBCT tumours are shown in Figure 10. The sigma value was chosen to
be 0.0099, which was obtained using the longest cluster lifetime.
The diffractive clustering algorithm was compared to the clustering algorithms for the

Khan dataset, as shown in Table 3. The results show that the diffractive clustering algo-
rithm is able to accurately separate the data into four distinct classes. The average external
index of the diffractive clustering algorithm is also relatively higher indicating a suitable
clustering solution.
The diffractive clustering algorithm was able to correctly classify 58 out of the 83 sam-

ples as opposed to the fuzzy c-means algorithm which only correctly classified 54 out of
the 83 samples, probably due to the fuzzy c-means algorithm finding a local minimum for
its cost function as opposed to a global minimum.

Shipp dataset

The Shipp dataset is a study performed on diffuse large B-cell lymphoma (DLBCL), which
is the most common malignancy in adults and is curable in less than 50% of cases [26].
The experiment performed by Shipp et al. identified tumours in a single B-cell lineage,
specifically the distinction of DLBCL from a related germinal centred B-cell follicular
lymphoma (FL) [26]. The clinical distinction between the two types of lymphomas is usu-
ally difficult as FLs acquire the morphology and clinical characteristics of DLBCLs over
time [26]. The microrarray transcription study of the lymphomas, containing 6 817 genes,
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Figure 10 Scatter plot of the a priori classification for the Khan dataset. The four classes of the small,
round blue-cell tumours are shown. Neuroblastoma (NB), Rhabdomyosarcoma (RMS), Burkitt lymphomas (BL)
and Ewing family of tumours (EWS).
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Table 3 Comparison of the clustering results for the Khan dataset

Algorithm AEC AVI ACC (%)

Diffractive clustering 53.3 98.4 70.0

k-means 49.1 105.7 63.0

Fuzzy c-means 50.9 113.7 65.1

Hierarchical clustering (single) 40.7 79.8 43.2

Hierarchical clustering (centroid) 51.0 106.3 57.8

Self-organising map 46.3 15.7 54.2

Gaussian Mixture Model 51.8 102.2 50.6

DBSCAN 46.8 100.7 55.4

The diffractive clustering algorithm outperforms the other clustering algorithms in terms of accuracy, with the fuzzy
c-means algorithm performing well in terms of the validity index.

was performed on 77 patients, of whom 58 were diagnosed with DLBCL and other 19
with FL.
The dimensionality of the Shipp dataset was reduced to two dimensions using the

ISOMAP algorithm. The a priori classification of the 77 samples in two dimensions is
shown in Figure 11. The similarity of the tumour lineage between DLBCLs and FLs is
evident by the amount of mixing of the different data points, as shown in Figure 11.
The sigma value was chosen to be 0.0073, which was obtained using the longest cluster
lifetime.
The diffractive clustering algorithm, applied to the Shipp dataset, was compared to the

other main types of clustering algorithms. The clustering results are shown in Table 4,
with the most accurate and valid results pertaining to the diffractive clustering algo-
rithm. The diffractive clustering algorithm correctly classifies 49 out of the 77 samples, as
opposed to the SOM and hierarchical clustering algorithm which correctly classify only
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Figure 11 Scatter plot of the a priori classification for the Shipp dataset. The single lineage, diffuse large
B-cell lymphoma (DLBCL), and germinal centred B-cell follicular lymphoma (FL) are shown.
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Table 4 Comparison of the clustering results for the Shipp dataset

Algorithm AEC AVI ACC (%)

Diffractive clustering 55.5 160.6 63.6

k-means 48.0 79.7 51.9

Fuzzy c-means 48.7 82.0 51.9

Hierarchical clustering (single) 51.1 112.2 53.3

Hierarchical clustering (centroid) 51.1 113.6 53.2

Self-organising map 47.7 14.7 53.3

Gaussian Mixture Model 49.8 66.8 51.9

DBSCAN 49.9 65.4 54.5

The diffractive clustering algorithm outperforms the others in terms of accuracy, however all the algorithms perform
relatively poorly due to the mixing between the two different classes.

41 out of the 77 samples. The accuracy however of the diffractive algorithm, although 10%
larger than the rest, is still relatively low.

Pomeroy dataset

The Pomeroy dataset is a study performed on embryonal tumours of the central ner-
vous system (CNS) [27]. Medulloblastomas, a highly malignant brain tumour that
originates in the cerebellum or posterior fossa, are most common in paediatrics with
very little known about their response to treatment and pathogenesis [27]. The study
performed by Pomeroy et al. analysed the transcription levels of 99 patients to iden-
tify any expression differences between medulloblastomas (MED), primitive neuroec-
todermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs), malignant
gliomas (MAL) and normal tissue [27].
The Pomeroy study analyses the DNA from 99 patients on oligonucleotide microarrays

with 6 817 genes. The data was also split into three datasets of varying sample size. The
dataset known as A2 is used in this clustering analysis and contains 90 samples, of which
60 are MED, 10 are MAL, 10 are AT/RTs, 6 are PNETs and 4 are normal [27]. The dimen-
sionality of the Pomeroy dataset was reduced to two using the ISOMAP algorithm. The a
priori classification of the samples using clinical methods is shown in Figure 12. The sigma
value was chosen to be 0.00281, which was obtained using the longest cluster lifetime.
A cluster analysis was performed on the Pomeroy dataset using the diffractive clustering

algorithm and compared to the other main types of clustering algorithms. The results are
shown in Table 5, with the most accurate and valid results pertaining to the diffractive
clustering algorithm. The diffractive clustering algorithm correctly classifies 61 out of the
90 samples as opposed to the hierarchical clustering algorithm which only classifies 51
out of the 90 samples correctly.
The validity of the clustering solution produced by the diffraction algorithm is also

remarkably high compared to the other algorithms. The main reason for the accuracy
of the diffraction algorithm being low, although still high relative to the other clustering
results, is the unbalanced distribution of samples, which is a result of the large number of
medulloblastoma samples in the dataset.

Discussion
The k-means and fuzzy c-means algorithms minimise intra-cluster variance and as a
result the global minimum is not always discovered. Also the other algorithms such as
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Figure 12 Scatter plot of the a priori classification for the Pomeroy dataset. The five embryonal tumours
of the central nervous system are shown. Medulloblastomas (MED), Primitive neuroectodermal tumours
(PNETs), Atypical teratoid/rhabdoid tumours (AT/RTs), Malignant gliomas (MAL) and Normal tissue.

the hierarchical clustering algorithm, self-organising map, Gaussian mixture model and
DBSCAN require initialisation of parameters and layouts which can often lead to poor
results.
Another difficulty associated with conventional clustering algorithms is deciding on

correct number of clusters to select. There are however techniques, such as the gap statis-
tic, which allows one to estimate the correct number of clusters [28]. The problem with
the gap statistic is the choice of the reference distribution, which if chosen to be uniform
produces ambiguous results for elongated clusters [28]. There are other more robust tech-
niques that can be combined with the algorithms, such as robustness analysis and cluster
ensembles, which can determine the correct number of clusters [29,30].
Resampling-based methods can also be used in conjunction with conventional cluster-

ing algorithms to improve their performance [31]. By contrast, the algorithm presented in

Table 5 Comparison of the clustering results for the Pomeroy dataset

Algorithm AEC AVI ACC (%)

Diffractive clustering 63.1 258.7 67.8

k-means 42.7 173.6 48.9

Fuzzy c-means 39.9 154.6 43.3

Hierarchical clustering (single) 49.8 256.2 56.7

Hierarchical clustering (centroid) 50.7 292.6 57.8

Self-organising map 41.2 13.7 44.4

Gaussian Mixture Model 42.2 79.2 37.7

DBSCAN 36.6 46.4 33.3

The diffractive clustering algorithm outperforms the others in terms of accuracy, with the density-based and
model-based clustering algorithms performing relatively poorly due to the excessive mixing between the five different
classes.
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this paper can inherently determine the correct cluster number using the cluster lifetime.
The merit of the diffractive clustering algorithm is therefore due first to the ability of the
algorithm to handle non-spherical or arbitrarily shaped clusters, and secondly due to the
optimisation of its single parameter, σ , using the cluster lifetime.

Conclusion
The recent development in microarray technology has given rise to a large amount of data
on the genetic expressions of cells. A solution to this problem of discovery and analysis in
gene expression data is the application of unsupervised techniques such as cluster anal-
ysis. The clustering of samples allows one to find the inherent structure in the genome
without filtering or representing the data with only a few selected genes.
The validation and performance of the clustering results, although poorly defined, can

be addressed successfully with relative and external criteria. The number of clustering
algorithms is large and as such the choice of the correct or preferred algorithm remains
ambiguous. The languid approach is usually to choose the fastest algorithm such as the
k-means algorithm. The classical algorithms although fast lack the insight to the cluster-
ing process, and rely on the predetermined, usually biased number of clusters to work.
The diffractive clustering algorithm is independent of the number of clusters as the algo-
rithm searches the feature space and requires no other form of feedback. The results also
show that the diffractive clustering algorithm, in terms of accuracy, outperforms the other
classical types of clustering algorithms.
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