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Abstract

Background: Across the globe, breast cancer is one of the leading causes of death
among women and, currently, Fine Needle Aspirate (FNA) with visual interpretation
is the easiest and fastest biopsy technique for the diagnosis of this deadly disease.
Unfortunately, the ability of this method to diagnose cancer correctly when the
disease is present varies greatly, from 65% to 98%. This article introduces a method
to assist in the diagnosis and second opinion of breast cancer from the analysis of
descriptors extracted from smears of breast mass obtained by FNA, with the use of
computational intelligence resources - in this case, fuzzy logic.

Methods: For data acquisition of FNA, the Wisconsin Diagnostic Breast Cancer Data
(WDBC), from the University of California at Irvine (UCI) Machine Learning Repository,
available on the internet through the UCI domain was used. The knowledge acquisition
process was carried out by the extraction and analysis of numerical data of the WDBC
and by interviews and discussions with medical experts. The PDM-FNA-Fuzzy was
developed in four steps: 1) Fuzzification Stage; 2) Rules Base; 3) Inference Stage; and 4)
Defuzzification Stage. Performance cross-validation was used in the tests, with three
databases with gold pattern clinical cases randomly extracted from the WDBC. The final
validation was held by medical specialists in pathology, mastology and general practice,
and with gold pattern clinical cases, i.e. with known and clinically confirmed diagnosis.

Results: The Fuzzy Method developed provides breast cancer pre-diagnosis with 98.59%
sensitivity (correct pre-diagnosis of malignancies); and 85.43% specificity (correct
pre-diagnosis of benign cases). Due to the high sensitivity presented, these results are
considered satisfactory, both by the opinion of medical specialists in the aforementioned
areas and by comparison with other studies involving breast cancer diagnosis using FNA.

Conclusions: This paper presents an intelligent method to assist in the diagnosis and
second opinion of breast cancer, using a fuzzy method capable of processing and sorting
data extracted from smears of breast mass obtained by FNA, with satisfactory levels of
sensitivity and specificity. The main contribution of the proposed method is the
reduction of the variation hit of malignant cases when compared to visual interpretation
currently applied in the diagnosis by FNA. While the MPD-FNA-Fuzzy features stable
sensitivity at 98.59%, visual interpretation diagnosis provides a sensitivity variation from
65% to 98% (this track showing sensitivity levels below those considered satisfactory by
medical specialists). Note that this method will be used in an Intelligent Virtual
Environment to assist the decision-making (IVEMI), which amplifies its contribution.
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Background
Breast cancer is one of the leading causes of death among women worldwide and it is con-

firmed that early detection and accurate diagnosis of this disease can ensure long-term pa-

tient survival [1]. According to the World Health Organisation [2], about one third of the

costs of cancer treatment can be reduced if cases are detected and treated early.

On the other hand, aiming to provide greater security, reliability and robustness to

services and procedures, mainly when dealing with human lives, healthcare processes

are increasingly becoming computerized. A growing area of research relates to the use

of techniques from Computational Intelligence (CI) applied to the processing of infor-

mation necessary for the medical diagnosis. We can cite as examples, [3-15].

This paper presents a method to assist in breast cancer diagnosis from the analysis of

descriptors extracted from smears of breast mass obtained by FNA (Fine Needle Aspirate),

incorporating features of computational intelligence (in this case, fuzzy logic) and inserted

into a collaborative telediagnosis environment (called IVEMI - [16]).

Diagnosis of breast cancer and FNA

A carcinogen breast tumor is a breast mass that is growing abnormally and uncon-

trolled. There are three popular methods for breast cancer diagnosis: mammography;

FNA with visual interpretation; and surgical biopsy [17]. The ability of these methods

to diagnose cancer correctly when the disease is present is: mammogram - from 68% to

79%; FNA with visual-interpretation - from 65% to 98%; and surgical biopsy - 100%.

[18]. It is noted that: mammography lacks sensitivity; the sensitivity of FNA with visual

interpretation varies greatly (as a result of the visual interpretation); and although sur-

gical biopsy is accurate it is also a very intrusive, time-consuming and expensive

method [19].

FNA, which has been widely accepted in the approach to investigating mammary

lesions, is the easiest and fastest biopsy technique to be performed, being a percutan-

eous procedure (through the skin) in which the specialist physician uses a thin needle

(which varies from 0.6 to 0.8 mm) and a syringe to take samples of fluid from a breast

cyst or remove clusters of cells in a solid mass. The needle is inserted into the skin to-

ward the lesion, with the objective of collecting cells for further evaluation of their

morphology, quantity and distribution through cytological examination.

The genetic material extracted from the breast by FNA is usually sent to a Pathology

laboratory for examination by pathologists (doctors specialized in disease diagnosis

through lab testing), who perform the analysis identifying the cells’ characteristics from

observing, under a microscope, smears made with this material on sheets of glass and

stained using special techniques.

Computational intelligence and fuzzy logic

Computational Intelligence (CI) enables, through intelligent techniques some of them

inspired by nature, the development of intelligent systems that imitate aspects of

human behaviour, such as: learning, perception, reasoning, evolution and adaptation

[20]. Some examples of Computational Intelligence techniques are: Artificial Neural

Networks, biological neuron-inspired technique [14,15]; Evolutionary Computation,

inspired by biological evolution [12]; Expert Systems, inspired by inference process

[11]; and Fuzzy Logic, inspired by language processing.
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The fuzzy systems theory is a formal approach that aims to address the modelling,

representation, reasoning and the inaccurate information procedure as a troubleshoot-

ing strategy [21].

Introduced in 1965 [22], the fuzzy set theory is a tool to model the imprecision and

ambiguity that arises in complex systems [22,23], and it was created from the combin-

ation of the concepts of classical logic and groupings of Łukasiewicz [24] defining

degrees of relevance.

A fuzzy set differs from a classic set to assign to each element a value in the unit interval

[0, 1]. Specifically, a fuzzy set is defined as a function A of a set x, called universe of dis-

course, to [0, 1]. The function A is referred to as a membership function, and the value A

(x) represents the degree of relevance – or compatibility – of the element x with the con-

cept represented by all the fuzzy set. Thus, the fuzzy logic proposed by Zadeh [22,23] pro-

vides a mathematical model for the processing of inaccurate or vague information and

concepts, intending to make computers carry out inferences as people.

The fuzzy processing is generally composed of: Rules Base (provided by specialists or

extracted from numerical data); Fuzzification Stage (it activates the rules from a set of

precise entries); Inference Stage (determines how rules are enabled); Defuzzification Stage

(it provides precise output, generating a fuzzy set of output), as illustrated in Figure 1.

Methods
This fuzzy method that assists in the diagnosis and second opinion of breast cancer,

called Pre-Diagnosis Module FNA-Fuzzy (PDM-FNA-Fuzzy), was developed through
Figure 1 Structure of a Fuzzy System Process.
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the analysis of extracted smears from breast mass obtained by FNA. The PDM-FNA-

Fuzzy is inserted into the Intelligent Virtual Environment of Medical Interaction

(IVEMI), which is a virtual environment (architecture shown in Figure 2) from which

the doctor responsible can trigger, requesting pre-diagnosis or second opinion on clin-

ical cases with suspected breast cancer and whose patient has undergone the examin-

ation of FNA.

Data acquisition

For FNA data acquisition, the Wisconsin Diagnostic Breast Cancer Data (WDBC), of

UCI Machine Learning Repository, available on the internet by the domain of Univer-

sity of California Irvine [25] was used. The WDBC is a public database, consisting of a

gold pattern data set1, i.e. with confirmation of malignant and benign diagnosis.

The selected database, WDBC, was created in 1993, and presents 569 records of

patients with known diagnosis (357 cases being benign and 212 cases malignant) and

uses material (smears) collected by FNA, transformed into a digital image from which

the main parameters (descriptors) were extracted.

For viewing and manipulating data from WDBC we used MATLAB (MathWorks –

student version).

Pre-processing of data

Samples (small droplets of viscous liquid) were collected from aspiration of breast mass

with thin needle, spread on glass blades slides, stained (aiming to highlight the cell nu-

clei) and digitized [26]. Examples of captured images are presented in Figure 3. Then,

in the process of digital evaluation performed by Street et al. [26], the exact location of
Figure 2 Architecture of IVEMI.



Figure 3 Captured images of layers of glass with smears of breast mass obtained by FNA (the parts
stained correspond to cell nuclei).
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each cell nucleus was specified, and the morphometric analysis of the cell nuclei,

extracting characteristics such as size, shape and texture was complete.

In addition to the code for the identification and diagnosis (gold pattern)1, each rec-

ord of WDBC presents 10 descriptors (related to the cell nucleus and modelled such

that the highest values are associated with malignancy): radius; texture; perimeter; area;

smoothness; compactness; concavity; concave points; symmetry; and fractal dimension.

We must point out that the mean value, the extreme value and the standard error of

each descriptor were calculated for each image, resulting in a total of 30 (thirty)

resources for each case in the study.

The knowledge acquisition process was accomplished in two ways: (i) extraction and

analysis of numerical data of WDBC, considering the same as gold pattern (i.e. with diag-

nosis confirmed)1, and (ii) interviews and discussions with medical experts2 (of pathology,

general practitioner and mastology areas) who provided technical support and followed the

development of this Pre-Diagnosis Intelligent Method.

To reduce the dimensionality of the problem and optimize the processing tests, the

PCA3 technique in WDBC was applied (average values), once having verified that the

descriptors with higher energy rates are, in decreasing order: area, perimeter, texture,

and radius. The experiment was repeated for the extreme values, obtaining the same

result, and the analyses carried out were confirmed with medical specialists (of path-

ology, general practitioner and mastology areas).

Aimed at the collation and visualization of high-dimensional data, after normalization of

descriptors, the SOM4 algorithm was applied with: linear initialization; hexagonal topology;

gaussian neighborhood function; neighborhood radius equal to 1; in a 10-dimensional

space of characteristics (descriptors); and with variations in the size of the grid and the

amount of iterations of the algorithm batch type. The results of the application of

SOM were viewed using the Unified distance Matrix (U-Matrix) [27], a technique that

presents weight-distance relationships between neighboring neurons of output space

(distance between the units of the grid), showing a separation between the groups

(classes of patterns). In the U-Matrix, relations between the neighboring neurons are

seen on the surface U (x, y) as "valleys" and "mountains". Valleys - the topographic re-

lief - correspond to the regions of neurons that are similar, while mountains, i.e. rela-

tively high values in the U-matrix, reflect the dissimilarity between neighboring
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neurons and may be associated with borders of groups of neurons [28]. The topological

order property of the SOM, as shown in the right side scale in Figure 4, in the U-Matrix is

as folows: a dark blue color represents that the distance between the nodes (units) is small

("valleys") and thus classes of patterns exist; the light blue, green and yellow indicate an

average distance between the nodes (beginning of the “mountains”); the orange and red

represent that there is a great distance between the nodes ("mountains"), i.e. they are gaps

that serve to separate the classes. The application of the SOM for visualization of high-
Figure 4 SOM applied to visualization pattern matches to high-dimensional data of WDBC.
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dimensional data (Figure 4) showed that it is not possible to obtain distinct groups (classes

of patterns), indicating the existence of nebulous data groupings in the WDBC, which justi-

fies the use of Fuzzy logic in the method developed.

Parallel to the application of PCA and SOM and, mainly, through preliminary ana-

lysis of the WDBC descriptors and related images performed along with medical spe-

cialists (in pathology, general practice and mastology), were: a) the extracted (selected)

descriptors that was more relevant to the diagnosis of breast cancer from the analysis

of cell nuclei of smears obtained by FNA, the most relevant being, the "area", the "per-

imeter" and the "texture"; b) the discarded descriptors, "fractal dimension", "compact-

ness" and "concavity", because they are not actually used in medical practice for

pathological analysis; and c) newly generated descriptors, in order to translate the

method evaluations normally carried out by pathologists and that were not directly pre-

sented in WDBC.

Among the newly generated descriptors, those that presented a significant influence

on the results “improvement” were the descriptors: “uniformity”, difference between

the radius extreme value and the radius mean value, representing whether the cellular

nuclei have similar or highly variable sizes; and “homogeneity”, difference between the

extreme value of symmetry and the mean value of symmetry, representing whether the

cellular nuclei have similar or highly variable symmetries.

Complementing the analysis of the numerical data, the minimum and maximum

parameters for each diagnosis known (benign and malignant) of each descriptor used

in the development of PDM-FNA-Fuzzy (as shown in Table 1) were detected, excluding

the descriptors discarded by medical specialists. Results showed the existence of fuzzy

intervals for all descriptors (benign GPD values are within the range of the malignant

GPD and vice versa), not being linearly possible to diagnose breast mass as benign or

malignant.

Processing and classification of data – Fuzzy Method

Before the proposed problem involving various fuzzy situations and considering the lit-

erature studied, it was found that the strategy of applying fuzzy logic could bring

greater benefits (like expert knowledge acquisition, rules base generation, process
Table 1 Minimum and maximum parameters for each diagnosis (benign and malignant)
of each descriptor

DESCRIPTOR UNIT** GPD* BENIGN GPD* MALIGNANT

Minimum Value Maximum Value Minimum Value Maximum Value

Area μm2 143.5 992.1 361.6 2501

Perimeter μm 43.79 114.6 71.9 188.5

Texture dimensionless 9.71 33.81 10.38 39.28

Radius μm 6.981 17.85 10.95 28.11

Smoothness μm 0.05263 0.1634 0.07371 0.1447

Concave Points quantity 0 0.08534 0.02031 0.2012

Simetry μm 0.106 0.2743 0.1308 0.304

Uniformity μm 0.248 3.09 0.65 11.76

Homogeneity μm 0.0184 0.2278 0.0295 0.4041

* GPD = Gold Pattern Diagnosis.
** μm (micrometer) = 1 x 10-6m.
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automation and pre diagnosis greater precision) and satisfactory results, in addition to

dealing with modelling, representation, the reasoning and the inaccurate information

procedure as a troubleshooting strategy.

Thus, the implementation of the intervention and control actions in the intelligent

method developed, uses fuzzy logic since it enables to capture the experts’ knowledge,

as well as the appropriate treatment to fuzzy situations inherent in the problem classi-

fying smears from breast mass obtained by FNA.

The algorithm developed to assist the creation of fuzzy system applied to the medical

field is presented below.

Algorithm: establishment of fuzzy system applied to the medical area

Step 1: Definition
� -> Identify the problem
Step 2: Medical knowledge acquisition
� -> Obtain technical information from one or more medical specialists
� -> Extract data and information from gold pattern databases (with

diagnosis confirmed)

� -> Obtain information in technical literature available
Step 3: Fuzzification stage
� -> Define entry membership functions and their fuzzy rules
Step 4: Rules base
� -> Define fuzzy rules covering all possibilities
Step 5: Inference Stage
� -> Reporting observations to fuzzy sets

� -> Evaluate each case for all fuzzy rules

� -> Combine the information from the defined fuzzy rules
Step 6: Defuzzification stage
� -> Define membership functions and output sets

� -> Define the defuzzification function
Step 7: Results verification
� -> Ask results are satisfactory?

� If answer = “No”
� -> Return to Step 2
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� If answer = “Yes”
� Finalize
This way, the definition of Fuzzy Method to assist in the diagnosis of breast cancer

and its stages (Fuzzification Stage, Rules Base, Inference Stage and Defuzzification

Stage) are listed below and instantiated through the system implemented.

PDM-FNA-Fuzzy Definition

Pre-Diagnosis Module FNA-Fuzzy performs the analysis of extracted descriptors of

smears from breast mass obtained by FNA, considering the parameters that indicate

malignant and benign diagnosis and the fuzzy rules base defined, responsible for infer-

ences in the set of entries, generating pre-diagnosis, malignant or benign, to assist the

diagnosis of breast cancer made by the doctor.

Experiments were carried out with all possible combinations of descriptors listed in

Table 1, i.e. in addition to fuzzy methods for each descriptor, models have been devel-

oped for all groups of two, three, four, and so on up to the limit of nine descriptors,

taking into account that the descriptors correspond to the input variables of fuzzy

method. Within the set AREA, PERIMETER, UNIFORMITY and HOMOGENEITY

produced the best results, the PDM-FNA-Fuzzy in question uses these four descriptors,

with fuzzy method as described below.

Fuzzification Stage

At this stage the input variables have been defined, identifying to which fuzzy sets

they belong, assigning the respective degree to each relevance. The fuzzy sets, repre-

sented by the membership functions, were adjusted by heuristics, on the universe of

discourse in order to improve the results achieved. Thus, before the creation of the

fuzzy system, it was necessary to define the membership functions (fuzzy sets) used

both at the fuzzification and defuzzification stages. The entries of PDM-FNA-Fuzzy

in question are the descriptors AREA, PERIMETER, UNIFORMITY and HOMOGE

NENEITY that have been defined through the membership functions described

below:

a. Area membership function (AREA): considering a domain of [185 – 4255], this

membership function is composed of "Smaller AREA" and "Larger AREA", in linguistic

terms SMAREA and LAAREA, respectively, representing the tracks, according to the

fuzzy set below and illustrated in Figure 5.

AREA fuzzy set:

Smaller AREA SMAREAð Þ≤100→SMAREA ¼ 184:5; 0ð Þ; 185; 1ð Þ; 748:8; 1ð Þ; 100; 0ð Þf g;
Lager AREA LAAREAð Þ≥508:1→LAAREA ¼ 508:1; 0ð Þ; 219; 1ð Þ; 4255; 1ð Þ; 4256; 0ð Þf g:
b. Perimeter membership function (PERI): considering a domain of [50 – 252], this

membership function is composed of "Smaller PERI" and "Larger PERI", in linguistic

terms SMPERI and LAPERI, respectively, representing the tracks, according to the fuzzy

set below and illustrated in Figure 6.



Figure 5 AREA Membership Function.
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PERIMETER fuzzy set:

Smaller PERI SMPERIð Þ≤ 103→SMPERI ¼ 49:5; 0ð Þ; 50; 1ð Þ; 92:58; 1ð Þ; 103; 0ð Þf g;
Larger PERI LAPERIð Þ≥ 85:1→LAPERI ¼ 85:1; 0ð Þ; 159:8; 1ð Þ; 252; 1ð Þ; 252:5; 0ð Þf g:

c. Uniformity membership function (UNIF): considering a domain of [0 – 12], this

membership function is composed of "More UNIF" and "Less UNIF", linguistically

represented as MOUNIF and LEUNIF, respectively, representing the tracks, according

to the fuzzy set below and illustrated in Figure 7. It is important to note that, for

this descriptor, more UNIF is associated with lower values (i.e. smaller values in

this descriptor indicate there is more uniformity among the cellular nuclei and

indicate a benign diagnosis) and less UNIF is associated to larger values (i.e. the

larger values in this descriptor indicate there is less uniformity and indicate

malignant diagnosis).
Figure 6 PERIMETER Membership Function.



Figure 7 UNIFORMITY Membership Function.
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UNIFORMITY fuzzy set:

More UNIF MOUNIFð Þ≤ 2:6→MOUNIF ¼ �0:5; 0ð Þ; 0; 1ð Þ; 1:669; 1ð Þ; 2:6; 0ð Þf g;
Less UNIF LEUNIFð Þ≥0:65→LEUNIF ¼ 0:65; 0ð Þ; 6:205; 1ð Þ; 12; 1ð Þ; 12:5; 0ð Þf g:
d. Homogeneity membership function (HOM): considering a domain of [0.01 – 0.45],

this membership function is composed of "More HOM" and "Less HOM", in linguistic

terms MOHOM and LEHOM, respectively, representing the tracks, according to the

fuzzy set below and illustrated in Figure 8. It is important to note that, for this

descriptor, more HOM is associated with lower values (i.e. smaller values in this

descriptor indicate there is more homogeneity among the cellular nuclei and

indicate a benign diagnosis) and less HOM is linked to larger values (i.e. larger

values in this descriptor indicate there is less homogeneity and indicate a

diagnosis of malignancy).
Figure 8 HOMOGENEITY Membership Function.
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HOMOGENEITY fuzzy set:

More HOM MOHOMð Þ≤0:19→MOHOM ¼ 0; 0ð Þ; 0:01; 1ð Þ; 0:1232; 1ð Þ; 0:19; 0ð Þf g;
Less HOM LEHOMð Þ≥0:0295→LEHOM ¼ 0:0295; 0ð Þ; 0:2168; 1ð Þ; 0:45; 1ð Þ; 0:5; 0ð Þf g:

The membership functions were built using the direct method, having been con-

firmed by the medical experts (in pathology, mastology and general practice) the para-

meters extracted from WDBC, covering all data of the membership functions (values

that represent each function and the degree of relevance, within the function, of each

one of them) in order to set them explicitly. There are several membership functions

that can be used at this fuzzification stage. All functions available in Matlab were ap-

plied (trials and tests) on the fuzzy system concerned, noting that the trapezoidal func-

tion was the one that presented the best results in PDM-FNA-Fuzzy, by best

representing the functions according to the context.

Rules Base – Fuzzy Rules definition

The rules base was assembled with the following structure: IF <premises>THEN <con-

clusion>. For the definition of rules of PDM-FNA-Fuzzy to assist in the diagnosis of

breast cancer in question, it is possible to standardize the following structure:

R : R1;R2;R3; . . . ;Rnf g→Set of rules;
DESC : DESC1;DESC2;DESC3; . . . ;DESCn;f g→Set of descriptors

representing the set of entriesð Þ;
P : B ↓ð Þ; Undef ↓↑ð Þ; M ↑ð Þf g→Parameterization of the descriptor’s situation

Benign;Undefined and Malignantð Þ;
D : D1;D2;D3; . . . ;Dnf g→Set of diagnosis possibilities:

Rules definition:

< R1;R2;R3; . . . ;Rn;ð Þ >: IF < DESC1;DESC2;DESC3; . . . ;DESCn;ð Þ >
< B ↓ð Þ;Undef ↓↑ð Þ; M ↑ð Þf g > and=or < DESC1;DESC2;DESC3; . . . ;DESCn;ð Þ >
< B ↓ð Þ;Undef ↓↑ð Þ; M ↑ð Þf g > and=or . . .THEN < D1; D2; D3; . . . ; Dn >

Consequently, 16 (sixteen) rules were defined for PDM-FNA-Fuzzy object of this

study, using 4 (four) descriptors and with 3 (three) possibilities of pre-diagnosis

<results>. To exemplify, below some of the rules:

# Rule 1: If smaller AREA and smaller PERI and more UNIF (descriptor with lower

value) and more HOM (descriptor with smaller value) then benign diagnosis.

if AREA↓and PERI↓and UNIF↓and HOM↓then B

# Rule13: If larger AREA and larger PERI and more UNIF (descriptor with lower
value) and more HOM (descriptor with smaller value) then diagnosis undefined.

if AREA↑and PERI↑and UNIF↓and HOM↓then Undef

# Rule 16: If larger AREA and larger PERI and less UNIF (understand descriptor with
larger value) and less HOM (descriptor with larger value) then malignant diagnosis.

if AREA↑and PERI↑and UNIF↑and HOM↑then M
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We must point out that the rules defined (16 rules) cover all possible combinations

of inputs and outputs of the proposed issue and that the consistency of the rules was

examined in order to avoid contradictions. The rules base, presented in the Table 2,

was developed from the analysis of numerical data and multiple meetings, discussions

and interviews with medical experts from the fields of pathology, mastology, and gen-

eral practitioners.

It should be noted that, following the medical practice, the procedure taken for

undefined (Undef ) pre-diagnosis (results) are referred to as the situation of sus-

pected malignant tumour, which indicates a biopsy procedure(similar to the malig-

nant pre-diagnosis), i.e., if in doubt the patient is referred for a biopsy. Thus, from

the classification point of view for having a biopsy or not, the PDM-FNA-Fuzzy can

be seen as a binary classifier with the record of 2.1% of cases classified as undefined

and thus regarded as malignant.

Inference stage

In this stage, the entries were analysed to generate the fuzzy output set with its respect-

ive compatibility degree. The PDM-FNA-Fuzzy developed used the fuzzy model pro-

posed by Mamdani [29], in which the activation function of each rule is enabled and

the system of inference determines the degree of compatibility of the rules premise

contained in the rules base. After this, it determines which rules are enabled and ap-

plies them to the output membership function, remaining just linking all output nebu-

lous sets activated (and their respective degrees of compatibility) into a single Output

Set (OS). This OS represents all results (diagnosis) that are acceptable for the input set,

each with its compatibility level. Each case was also assessed, at this stage, for all fuzzy

rules and the combination of information was carried out from the rules already

defined in the Rules Base.
Table 2 Rules base

Rule number Rule specification

1 if AREA ↓ and PERI ↓ and UNIF ↓ and HOM ↓ then B

2 if AREA ↓ and PERI ↓ and UNIF ↓ and HOM ↑ then Undef

3 if AREA ↓ and PERI ↓ and UNIF ↑ and HOM ↓ then Undef

4 if AREA ↓ and PERI ↓ and UNIF ↑ and HOM ↑ then Undef

5 if AREA ↓ and PERI ↑ and UNIF ↓ and HOM ↓ then Undef

6 if AREA ↓ and PERI ↑ and UNIF ↓ and HOM ↑ then Undef

7 if AREA ↓ and PERI ↑ and UNIF ↑ and HOM ↓ then Undef

8 if AREA ↓ and PERI ↑ and UNIF ↑ and HOM ↑ then Undef

9 if AREA ↑ and PERI ↓ and UNIF ↓ and HOM ↓ then Undef

10 if AREA ↑ and PERI ↓ and UNIF ↓ and HOM ↑ then Undef

11 if AREA ↑ and PERI ↓ and UNIF ↑ and HOM ↓ then Undef

12 if AREA ↑ and PERI ↓ and UNIF ↑ and HOM ↑ then Undef

13 if AREA ↑ and PERI ↑ and UNIF ↓ and HOM ↓ then Undef

14 if AREA ↑ and PERI ↑ and UNIF ↓ and HOM ↑ then Undef

15 if AREA ↑ and PERI ↑ and UNIF ↑ and HOM ↓ then Undef

16 if AREA ↑ and PERI ↑ and UNIF ↑ and HOM ↑ then M
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Defuzzification stage

This stage was used to generate a single numeric value, from all possible values contained

in the fuzzy set obtained in the inference stage, to generate the diagnosis. As a diagnosis

resulting from the relations and variability of the descriptors AREA, PERIMETER,

UNIFORMITY and HOMOGENEITY, the function centroid (which presented the best

results) and the domain [0 – 1] was adopted for defuzzification.

The Pre-Diagnosis (PD) membership function, Defuzzification, is composed of "Benign",

"Undefined" and "Malignant", represented linguistically as BPD, UndefPD and MPD, respect-

ively, representing the tracks [≤ 0.5; 0.5 – 0.6; and ≥ 0.6], as output set below and illustrated

in Figure 9.

Output Set (OS):

PD benign BPDð Þ≤0:5→BPD ¼ �0:5; 0ð Þ; 0; 1ð Þ; 0:4; 1ð Þ; 0:5; 0ð Þf g;
PD undefined UndefPDð Þ≥0:5 e ≤0:6→UndefPD ¼ 0:5; 0ð Þ; 0:55; 1ð Þ; 0:6; 0ð Þf g;
PD malignant MPDð Þ≥0:6→MPD ¼ 0:6; 0ð Þ; 0:7; 1ð Þ; 1; 1ð Þ; 1:5; 0ð Þf g:

Post-processing

In post-processing, the result, in the form of malignant or benign pre-diagnosis, is

stored on the server and made available on the screen by means of IVEMI (on the

desktop discussion of clinical case), both for the doctor who requested the pre-

diagnosis or second opinion, as to the other users with access permission to the re-

spective clinical case.
Validation

Testing of the PDM-FNA-Fuzzy, the object of this study, was carried out using the

MATLAB R2010a (student version), due to the tools available in this application to the de-

velopment of models and the rapid visualization of the results obtained in the fuzzy system.

The PDM-FNA-Fuzzy developed to assist in the diagnosis of breast cancer performs

the interaction between the descriptors AREA, PERIMETER, UNIFORMITY and

HOMOGENEITY (extracted from smears obtained by FNA), operated by inference
Figure 9 Defuzzification Membership Function.
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rules of the system expert in fuzzy logic, triggering classification and assistance in med-

ical diagnosis actions.

All the tests were initially carried out using the WDBC, even the identification of the

main characteristics of the fuzzy system, such as:

� the identification of the set of descriptors that provide the best results, called "best

input set" (BIS);

� identification of the best set of rules (BSR); and
� the definition of what membership functions, which parameters and what

defuzzification functions are most suitable for use with the BIS and the BSR.

The membership functions and their respective fuzzy final sets of each descriptor

used, AREA, PERIMETER, UNIFORMITY and HOMOGENEITY, are presented, re-

spectively, in Figures 5, 6, 7 and 8.

The validation of the rules base was held in conjunction with medical professionals

(in pathology, general practice and mastology), considering the fuzzy set indicators of

both malignant and benign diagnosis. As a consequent action of the descriptors’ rela-

tions and variability the domain [0 –1], representing the tracks [< 0.5; 0.5 – 0.6; > 0.6],

was adopted to defuzzification, which is represented in linguistic terms as “Benign”,

“Undefined” and “Malignant”, respectively, as presented in Figure 9.

After this phase, cross-validation was used for testing, in order to fine-tune the para-

meters of the membership functions of PDM-FNA-Fuzzy. Therefore, three databases

were generated, each of them with 150 (one hundred and fifty) gold pattern clinical

cases randomly extracted from WDBC.

The validation of PDM-FNA-Fuzzy was performed using a database with 100 (one

hundred) gold pattern clinical cases (i.e. diagnosis known and confirmed), randomly

extracted from WDBC.

We must point out that the validations of both the knowledge gained and the results

achieved were performed during the development of PDM-FNA-Fuzzy and also, in the final

instance, by medical specialists in the areas of pathology, mastology and general practice.

Results
By means of the experiments performed, it was found that the input set that featured

the best results has the following characteristics:

a) fuzzy system: Mamdani;

b) membership functions of the entry set: trapezoidal;

c) input set composed of 4 variables (descriptors), with the following fuzzy sets:

c.1)

AREA com SMAREA ¼ 184:5; 0ð Þ; 185; 1ð Þ; 748:8; 1ð Þ; 1000; 0ð Þf g
and LAAREA ¼ 508:1; 0ð Þ; 2194; 1ð Þ; 4255; 1ð Þ; 4256; 0ð Þf g;

c.2.)
PERIMETER withLPERI ¼ 49:5; 0ð Þ; 50; 1ð Þ; 92:58; 1ð Þ; 103; 0ð Þf g
and LAPERI ¼ 85:1; 0ð Þ; 159:8; 1ð Þ; 252; 1ð Þ; 252:5; 0ð Þf g;
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c.3.)

UNIFORMITY with MOUNIF ¼ �0:5; 0ð Þ; 0; 1ð Þ; 1:669; 1ð Þ; 2:6; 0ð Þf g
and LEUNIF ¼ 0:65; 0ð Þ; 6:205; 1ð Þ; 12; 1ð Þ; 12:5; 0ð Þf g; and

c:4:Þ

HOMOGENEITY with MOHOM ¼ 0; 0ð Þ; 0:01; 1ð Þ; 0:1232; 1ð Þ; 0:19; 0ð Þf g
and LEHOM ¼ 0:0295; 0ð Þ; 0:2168; 1ð Þ; 0:45; 1ð Þ; 0:5; 0ð Þf g;

d) rules base: 16 rules;
e) membership functions of the output set:

e.1)

trapezoidal for classificationBenign; being BPD

¼ �0:5; 0ð Þ; 0; 1ð Þ; 0:4; 1ð Þ; 0:5; 0ð Þf g;

e.2)
trapezoidal for classificationMalignant; being MPD

¼ 0:6; 0ð Þ; 0:7; 1ð Þ; 1; 1ð Þ; 1:5; 0ð Þf g; and

e.3)
triangular for classificationUndefined; being UndefPD
¼ 0:5; 0ð Þ; 0:55; 1ð Þ; 0:6; 0ð Þf g;

f ) defuzzification: Centroid function;

g) output variable: 1 (result = pre-diagnosis).

The best result achieved is shown in the Diagnostic Test Assessment Matrix pre-

sented in Table 3, as well as in the Matrix of Confusion presented in Table 4.

It is noted in the diagnostic test assessment matrix (Table 3), that the PDM-FNA-

Fuzzy developed presents: 98.59% sensitivity, which is the ability of a diagnostic test to

identify the real positive in individuals truly ill, meaning a satisfactory percentage of

hits in the pre-diagnosis of malignancies; and 85.43% specificity, which is the ability of

a diagnostic test to identify the real negative in individuals truly healthy, corresponding

to the correct pre-diagnosis of benign cases.

We must point out that, in the laboratory examination (biopsy) of smears obtained by

FNA for identification of breast cancer, it is more important to get good results in sensitiv-

ity than in specificity ([30-32]). Subsequently, among the tests performed during the devel-

opment of PDM-FNA-Fuzzy to assist in the diagnosis of breast cancer, there were several
ble 3 Diagnostic test of assessment matrix of PDM-FNA-Fuzzy developed to assist in
e diagnosis of breast cancer

iagnostic test Assessment

GOLD PATTERN DIAGNOSIS

ZZY-FNA Malignant (%) Benign (%) TOTAL

alignant (%) 36.73 9.14 45.87

nign (%) 0.53 53.60 54.13

TAL 37.26 62.74 100.00

nsitivity = 98.59% Specificity = 85.43%



Table 4 Confusion matrix of the diagnostic test of PDM-FNA-Fuzzy developed to assist
the diagnosis of breast cancer

Confusion matrix

GOLD PATTERN

FUZZY-FNA Malignant Benign

Malignant 0.99 0.15

Benign 0.01 0.85
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with satisfactory results as well, but they were not selected as the best solution, having been

discarded, as, for example, the test sets A, B and C, presented below.

The tests of set A were conducted from the best input set, with changes in

nebulous sets (parameters) of the membership functions. In Table 5, the results

of sensitivity and specificity of the same are presented. Notably test A.1 presents

99.06% sensitivity, however the medical experts found the specificity of 64.15%

unsatisfactory. The tests A.8 and A.10 presented the same sensitivity of PDM-

FNA-Fuzzy developed (98.59%), but lower specificity (84.31% and 84.87%, respect-

ively). The other tests presented sensitivity less than 98.59% and thus were

discarded.

The tests of set B were conducted from the best input set, with changes in the types

of membership function of the input set and, consequently, in their nebulous set
Table 5 Comparison of the tests presented in “TEST SET A" (changes were realized in the
fuzzy sets of membership functions)

Tests Sensitivity (%) Specificity (%)

PDM-FNA-Fuzzy developed 98.59 85.43

Test A.1 (1) 99.06 64.15

Test A.2 (2) 92.92 90.48

Test A.3 (3) 98.11 70.87

Test A.4 (4) 93.87 89.92

Test A.5 (5) 96.23 88.80

Test A.6 (6) 97.17 87.39

Test A.7 (7) 97.64 86.83

Test A.8 (8) 98.59 84.31

Test A.9 (9) 98.11 86.55

Test A.10 (10) 98.59 84.87

(1) changes in Test A.1: SMAREA = {(184.5; 0), (185; 1), (749; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.6; 1), (95; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.67; 1), (1.87; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.123; 1), (0.143; 0)}.
(2) changes in Test A.2: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (127.1; 0)}
e MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (3.09; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.2278; 0)}.
(3) changes in Test A.3: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (95; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (3.09; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.2278; 0)}.
(4) changes in Test A.4: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (110; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (3.09; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.2278; 0)}.
(5) changes in Test A.5: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (106; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (3.09; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.2278; 0)}.
(6) changes in Test A.6: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (106; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (3.09; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.18; 0)}.
(7) changes in Test A.7: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (106; 0)} e
MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (2.5; 0)} e MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.18; 0)}.
(8) changes in Test A.8: SMAREA = {(184.5; 0), (185; 1), (748.8; 1), (800; 0)} e MOUNIF = {(-0.5; 0), (0; 1), (1.669; 1), (2.5; 0)} e
MOHOM = {(0; 0), (0.01; 1), (0.1232; 1), (0.18; 0)}.
(9) changes in Test A.9: SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (103.5; 0)}.
(10) changes in Test A.10: SMPERI = {(49.5; 0), (50; 1), (92.58; 1), (102.3; 0)}.



Table 6 Comparison of the tests presented in "TEST SET B" (changes were realized in the
membership functions of the entry set and its fuzzy sets)

Tests Type of membership function
(after adjustments in fuzzy sets)

Sensitivity (%) Specificity (%)

PDM-FNA-Fuzzy developed trapezoidal(1) 98.59 85.43

Test B.1 triangular(2) 98.59 83.47

Test B.2 gaussian2(3) 98.11 84.31

Test B.3 dsigmoidal(4) 98.11 84.59

Test B.4 polinomial zero(5) 98.59 82.91

(1) trapezoidal - function with straight lines with a flat top, resembling a truncated triangle.
(2) triangular - function with straight lines, in the form of a triangle.
(3) gaussiana2 - composed of two different gaussian curves.
(4) dsigmoidal - created from the difference between two sigmoidais functions.
(5) polinomial zero – asymmetric polynomial function, being zero at both ends, with an increase in the middle.
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(parameters). In Table 6, the results of sensitivity and specificity of the same are pre-

sented. Notably the tests B.1 and B.4 showed the same sensitivity that the PDM-FNA-

Fuzzy developed (98.59%), but lower specificity (84.47% and 82.91%, respectively).

The other tests showed sensitivity less than 98.59%, having been discarded.

The C set were performed from the best input set, with changes only in the

defuzzification function. Presented in Table 7, are the results of sensitivity and

specificity of the same. It is worthy to note that all of the tests presented the

same sensitivity that the PDM-FNA-Fuzzy developed (98.59%), but lower

specificity.

Thus, the results achieved by the PDM-FNA-Fuzzy, the object of this study,

were considered satisfactory by medical specialists (in pathology, general practice

and mastology), mainly for their high sensitivity (malignant cases hit) presented,

as can be seen in Table 3.

The sensitivity of 98.59% presented by MPD-FNA-Fuzzy is at the same level of

prominence of other works using the same dataset with other techniques such as,

for example, [11] and [14], using Probabilistic Neural Network-PNN with 31-568-

2 topology. Although other works, for example, [11], [12] [14], [15], are more ac-

curate than MPD-FNA-Fuzzy, they use ten descriptors, while the MPD-FNA-

Fuzzy uses only four descriptors, two of which are extracted indirectly from

WDBC, which simplifies the model and streamlines processing.
Table 7 Comparison of tests presented in "TEST SET C" (changes were realized in the
defuzzification functions)

Tests Defuzzification function Sensitivity (%) Specificity (%)

PDM-FNA-Fuzzy developed centroid(1) 98.59 85.43

Test C.1 bisector(2) 98.59 83.47

Test C.2 mom(3) 98.59 77.59

Test C.3 lom(4) 98.59 73.67

Test C.4 som(5) 98.59 77.59

(1) centroid - calculates the output set (OS) area center generated in the inference stage and determines its projection
on the x-axis, that is the control output value.
(2) bisector - exact position that splits the output set into two equal areas.
(3) mom (Middle of Maximum) - it performs the arithmetic mean of all maximum values of the OS.
(4) lom (Largest of Maximum) - considers the greatest among all the maximum values of the OS.
(5) som (Smallest of Maximum) - considers the lowest among all the maximum values of the OS.
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Conclusions
This work presented an intelligent method to assist the diagnosis and second opinion

of breast cancer, using a fuzzy method capable of processing and sorting data (descrip-

tors) extracted from smears of breast mass obtained by FNA.

Processing, testing and validation using fuzzy method were carried out by medical

specialists using the gold pattern database, i.e. with real data and real and verified

diagnosis.

The main contributions of this paper are:

� specification and implementation of fuzzy method (MPD-FNA-Fuzzy) that meets

the requirements to assist breast cancer diagnosis, carried out using the analysis of real

data and contact with experts;

� reduction of malignant cases variation hit when compared to visual interpretation

currently applied in the diagnosis by FNA. While the MPD-FNA-Fuzzy features stable

sensitivity in 98.59%, visual interpretation diagnosis provides a sensitivity variation

from 65% to 98%, this track showing sensitivity levels below those considered

satisfactory by medical specialists;

� the use of intelligent systems techniques, more specifically, fuzzy logic, to assist the

diagnosis and second opinion of breast cancer from smears of FNA;

� development of a Pre-Diagnosis Method that can be embedded into a virtual

environment of medical interaction;

� detection of the main descriptors of WDBC to assist the diagnosis of breast cancer;

� creation, from the WDBC, of new important descriptors to assist the breast cancer

diagnosis: UNIFORMITY and HOMOGENEITY;

� definition of algorithm for fuzzy system development applied to the medical field.

Endnotes
1Gold pattern means that the true diagnosis is known and confirmed for each clinical

case. In the case of WDBC, malignant diagnoses were confirmed by surgical biopsy and

benign diagnosis by subsequent periodic medical examinations.
2Onofre Lopes Hospital (UFRN); Graduate Program in Health Sciences (UFRN); Pro-

mater Hospital; e Oncology and Mastology Clinic of Natal/RN.
3PCA (Principal Component Analysis) is a linear projection technique that performs

statistical analysis of correlation between parameters, reducing the dimensionality of

the problem [33].
4SOM (Self Organizing Map), also known as Kohonen self-organizing maps, that have

the ability to form mappings that preserve the topology between input and output

spaces [33].
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