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Abstract

Background: Compared with static imaging, dynamic emission computed
tomographic imaging with compartment modeling can quantify in vivo physiologic
processes, providing useful information about molecular disease processes. Dynamic
imaging involves estimation of kinetic rate parameters. For multi-compartment
models, kinetic parameter estimation can be computationally demanding and
problematic with local minima.

Methods: This paper offers a new perspective to the compartment model fitting
problem where Fourier linear system theory is applied to derive closed-form
formulas for estimating kinetic parameters for the two-compartment model. The
proposed Fourier domain estimation method provides a unique solution, and offers
very different noise response as compared to traditional non-linear chi-squared
minimization techniques.

Results: The unique feature of the proposed Fourier domain method is that only
low frequency components are used for kinetic parameter estimation, where the DC
(i.e., the zero frequency) component in the data is treated as the most important
information, and high frequency components that tend to be corrupted by statistical
noise are discarded. Computer simulations show that the proposed method is robust
without having to specify the initial condition. The resultant solution can be fine
tuned using the traditional iterative method.

Conclusions: The proposed Fourier-domain estimation method has closed-form
formulas. The proposed Fourier-domain curve-fitting method does not require an
initial condition, it minimizes a quadratic objective function and a closed-form
solution can be obtained. The noise is easier to control, simply by discarding the
high frequency components, and emphasizing the DC component.

Keywords: Kinetic parameter estimation, Dynamic imaging, Least-squares estimation,
Nuclear medicine imaging, Compartment modeling, Fourier transform
Introduction
Dynamic emission computed tomographic imaging can measure the kinetics of the tra-

cer’s distribution and exchange with body tissues. Using quantitative analysis techni-

ques such as compartment modeling [1-4], dynamic imaging can quantify in vivo

physiologic and metabolic processes, providing more information regarding underlying

molecular disease processes than can be obtained from static imaging. However, the
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fitting of compartment models to dynamic imaging data can be computationally

demanding and can have problems with local minima.

A number of techniques for kinetic parameter estimation have been studied and are

in use today, generally offering a tradeoff between computation time, robustness of fit,

and flexibility with differing sets of assumptions. Perhaps the most robust—but also

most computationally demanding—approach for estimating individual rate parameters

for multi-compartment models is classic nonlinear least-squares estimation [5]. Here, a

least-squares or weighted least-squares objective function is iteratively minimized to

obtain best-fit kinetic parameter estimates. Numerous curve-fitting algorithms have

been investigated for this application, including derivative-based or downhill simplex

methods [5], ridge-regression [6-11], simulated annealing [12], and even discretized ex-

haustive search paradigms. The best results are obtained when accurate weighting is

applied, though determination of the best weights is itself a challenging problem that

depends on many variables including the reconstruction algorithm used [13]. Unfortu-

nately, the least-squares objective function for multi-compartment models with noisy

data is ill-formed, containing broad shallow valleys and (potentially) local minima. As

such, careful implementation of the curve-fitting algorithm with extensive iteration and

handling of local minima is required to confidently find the global minimum. This

results in computational-demands that, while reasonable for fitting individual time-

activity curves, may become impractical for voxelwise parametric imaging where mil-

lions of fits need to be performed.

The conventional least-squares curve-fitting method is to match the measured time-

activity-curve with the calculated solution of the ordinary differential equations. The solu-

tion is in the form of a non-linear function of time and the kinetic parameters. It is neither

in the ODE form or the integral form. Much of the difficulty in the curve-fitting

approaches is due to the presence of nonlinear terms in the solution to the compartment

modeling equations. Significant efforts have been made to “linearize” the problem, with

milestones including the weighted integration method [14-16], linear least-squares (LLS)

and generalized linear least-squares (GLLS) methods [17-20]. Such methods are based on

integrating the compartment modeling equations to obtain linear systems of equations re-

lating the rate parameters (or combinations thereof) to integrals of the time-activity

curves and blood input functions. Though the image noise is not correlated between

timeframes, integrating the time-activity curves in time gives equation errors that are not

statistically independent, and that can bias the results (e.g. LLS); this correlation-induced

bias can be reduced or eliminated by the iterative auto-regressive filtering technique of

GLLS. More recently, approaches employing temporal basis functions to reduce noise and

improve parameter estimation have also been studied [21-26]. Performance comparisons

of these methods have been performed by Feng et al. [27] and more recently by Dai et al.

[28]. Overall, nonlinear least-squares was found to provide the most robust parameter

estimates, though this approach is also the most computationally intensive and initial con-

dition dependent. Of the fast approaches, GLLS performed well for lower noise data, but

may exhibit large bias and poor precisions when the noise level is high. Certain basis func-

tion approaches appear promising, though they are currently slower than GLLS and less

thoroughly investigated.

This work offers a new perspective to the compartment model fitting problem where

Fourier linear system theory is applied to derive closed-form formulas for estimating
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kinetic parameters for the two-tissue compartment model. This paper is an extension

of our conference presentation at 2011 IEEE Medical Imaging Conference [29]. It

builds on our related work developing closed-form solutions in the time domain [30],

where the continuous-time differential equation is transformed into a discrete-time dif-

ference equation by using the exact continuous-time expression of the compartment

activity. This time-domain approach is fundamentally different from time-domain

curve-fitting approaches, and thus will likely have very different characteristics in terms

of accuracy, speed, noise propagation and precision.

This paper introduces Fourier-domain closed-form solutions for the estimation of

kinetic parameters for the two-tissue compartment model with 4 rate parameters. The

similarity of the time-domain method and this Fourier-domain method are in the

closed-form strategy to find the optimal solution of an objective function. Implementa-

tion procedures of the approach are discussed, and initial computer simulations are

performed demonstrating application of the technique. The unique feature of the pro-

posed method is that the formulation is in the Fourier domain, where the high-

frequency noisy components can be readily discarded, and exponential functions never

appear.

Methods and results
This section presents the standard method of non-linear fitting to estimate the kinetic

parameters, points out its potential deficiencies of the dependency on the initial condi-

tions, and develops a closed-form Fourier domain method that is independent of the

initial conditions. The result of the proposed Fourier domain estimation method is

close to the true solution and can be used as the initial condition for the standard itera-

tive method for refining.

The standard iterative curve-fitting method

Figure 1 shows a generic two-tissue compartment model with four rate constants: K1,

k2, k3 and k4. The model can be described by two first-order differential equations:

dC1 tð Þ
dt

¼ �k2 � k3ð ÞC1 tð Þ þ k4C2 tð Þ þ K1B tð Þ; ð1Þ

dC2 tð Þ
dt

¼ k3C1 tð Þ � k4C2 tð Þ: ð2Þ

The above two equations are referred to as the state equations in system theory. The
time-activity curve for the blood input is B(t). There are two tissue compartments C1(t)
K1

k2

C2(t) 
B(t) 

k4

k3

C1(t) 

Figure 1 A general two-compartment-model.
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and C2(t); these two compartments are not individually accessible and their time-

activity curves cannot be individually measured; however, the sum of them, C(t) defined

as

C tð Þ ¼ C1 tð Þ þ C2 tð Þ ð3Þ

can be measured. Equation (15) is called the output equation in system theory. Com-

bining (1), (2) and (3) yields a second order differential equation:

d2C tð Þ
dt2

¼ x1
dB tð Þ
dt

þ x2B tð Þ þ x3
dC tð Þ
dt

þ x4C tð Þ ð4Þ

with

x1 ¼ K1

x2 ¼ K1 k3 þ k4ð Þ
x3 ¼ � k2 þ k3 þ k4ð Þ
x4 ¼ �k2k4

:

8>><
>>: ð5Þ

The solution of (4) can be expressed as two convolution terms:

C tð Þ ¼ α1

Z t

0

es1 t�τð ÞB τð Þdτ þ α2

Z t

0

es2 t�τð ÞB τð Þdτ for t≥0; ð6Þ

where

s1 ¼ x3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 þ 4x4

p
2

¼
� k2 þ k3 þ k4ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k3 þ k4ð Þ2 � 4k2k4

q
2

; ð7Þ

s2 ¼ x3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23 þ 4x4

p
2

¼
� k2 þ k3 þ k4ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k3 þ k4ð Þ2 � 4k2k4

q
2

; ð8Þ

α1 ¼ x1 � s1 þ x2=x1
s1 � s2

¼ K1 � s1 þ k3 þ k4ð Þ
s1 � s2

; ð9Þ

α2 ¼ x1 � s2 þ x2=x1
s2 � s1

¼ K1 � s2 þ k3 þ k4ð Þ
s2 � s1

; ð10Þ

The standard iterative parameter estimation method is to minimize the objective
function:

F ¼ Cmeasured tð Þ � Cmodel tð Þk k2; ð11Þ

which measures the discrepancy between the measured tissue time-activity-curve

Cmeasured(t) and the estimated time-activity-curve Cmodel(t) evaluated by (6).

More precisely, F ¼
X

i
wi Cmeasured tið Þ � Cmodel tið Þ½ �2 , where Cmeasured(ti) is the mea-

sured activity count at time ti and wi is the associated reciprocal variance. Also note

Cmodel(ti) need not be in the form of a convolution integral. We can alternately use an

ODE-solver in conjunction with curve-fitting to compute Cmodel(ti) directly from the

(1), (2), and (3) as needed in each curve-fitting iteration.

Since the gradient of the objective function F in (11) is non-linear with respect to the

unknown parameters: K1, k2, k3 and k4, the result of the iterative algorithm will in gen-

eral depend on the initial conditions. This phenomenon will be illustrated by two
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examples in the next section. After the examples, we will present a Fourier domain esti-

mation method to solve the problem of dependency on the initial condition. The Fou-

rier domain estimation method is the main contribution of this paper.

Numerical examples of the standard iterative curve-fitting method

In the following computer simulations, the blood input functions were in the form of

[31]:

B̂ tð Þ ¼ A1t � A2 � A3ð Þe�λ1t þ A2e
�λ2t þ A3e

�λ3t ; t≥0; ð12Þ

where A1 = 22.24, A2 = 8.36, A3 = 0.10, λ1 = 21.28 min-1, λ2 = 7.71 min-1, and

λ3 = 0.37 min-1. The blood and tissue time activity curves were non-uniformly sampled

as 30×5.sec., 20×10 sec., 10×30 sec., 10×60 sec., 10×150 sec., and 3×300 sec. At each

sampling time, the activity was integrated over a 60-second time window. The total

scanning time was about one hour (i.e., 3650 seconds).

Measurements as “30×5 sec” means that 30 samples are taken and the samples are

5 sec apart between adjacent samples. Each sample is a continuous time integral of the

time-activity-curve, and the integration time interval is 60 sec. The upper limit of the

time interval is the sampling time instant. Therefore, the sampled signal is a collection

of overlapped time integrals of the actual time-activity-curve. Even when the gap

between adjacent samples is 300 sec, the integration time interval is still 60 sec, and in

this case there is no overlap for time integral intervals for the samples.

The purpose of time integration is to reduce noise. Modern nuclear medicine scan-

ners can acquire data in list-mode, in which data are acquired continuously with a non-

discretized time stamp for each event. After the list-mode data are acquired, the

discrete samples are formed for image reconstruction. When the discrete samples are

formed, the time integral (i.e., count summation) is performed.

In the numerical examples, we chose K1 = 0.4 min-1, k2 = 0.3 min-1, k3 = 0.2 min-1 and

k4 = 0.1 min-1. The k values used in the computer simulations were tailored from [27]

and [32], where a wide range of the k values are reported for different patient studies.

For example, K1 can be anywhere from 0.1 to1.2, and k2 can be from 0.1 to 0.8, and so

on. The values of k3 and k4 are smaller. Scaled Gaussian noise, N(0,1) (mean = 0, stand-

ard deviation = 1), was added to the noiseless data C(t). The noise scaling factor was

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C tð Þ2�t=T1=2

T secondð Þ

s
; ð13Þ

where T1/2 (=110 min) was the half-life of the isotope, and the proportional constant

α= 0 corresponds to the noiseless case. This noise model is suggested in [31]. Typical

noisy time activity curves C(t) are shown in Figure 2 for these three α values. In reality,

the images are reconstructed at the pre-selected non-uniformly distributed time

instances, and the non-uniformly distributed blood and tissue time-activity-curves are

obtained.

The solution of (1)-(3) corresponding to B̂ tð Þ is denoted as Ĉ(t). Let B(t) and C(t)

denote the corresponding curves after time integration over the 60 sec interval. {B̂ tð Þ,
Ĉ(t)} and {B(t), C(t)} satisfy the second order differential equation (4) based on the the-

ory to be discussed in Data integration effects section.



Figure 2 Time-integrated time-activity curves C(t) with 3 different noise levels. The total integration
interval is one minute.
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The standard least-squares fitting method was applied to the model (6) using

MATLABW and used the built-in function “nlinfit.” The MATLAB’s built-in function

nlinfit allows negative outcomes. MATLAB also has another built-in function lsqnonlin

that enforces the non-negativity constraint on the outcomes and is widely used for

non-negative parameter fits.

Some numerical examples are shown in Tables 1, 2, and indicate the importance and

sensitivity of the iterative parameter estimation algorithm in selection of a proper initial

condition. In Table 1, only one noise realization was used for each case, while in Table 2,

250 noise realizations were used for each case. If a bad initial condition is chosen, the

results could be totally wrong even under the ideal noiseless situation. In order to over-

come this problem, a closed-form Fourier domain estimation is developed in the next

section. In Table 1, the true k parameters are not the same as the k parameters
Table 1 The results of a standard iterative curve-fitting method with a good and a bad
initial condition (using 1 noise realization for each case)

Case Bad initial condition Good initial condition

K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1) K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1)

Initial 0.70 0.70 0.70 0.70 0.45 0.35 0.25 0.15

α= 0 0.14 −1.62 −5.10 −2.10 0.40 0.30 0.20 0.10

α= 0.1 0.13 −1.65 −5.14 −2.090 0.4 0.28 0.18 0.10

α= 0.4 0.12 −1.64 −5.03 −2.038 0.391 0.26 0.15 0.09

True 0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10



Table 2 The results of a standard iterative curve-fitting method with a good and a bad
initial condition (using 250 noise realizations for each case)

Case Bad initial condition Good initial condition

K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1) K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1)

Initial 0.70 0.70 0.70 0.70 0.45 0.35 0.25 0.15

α= 0 0.14 −1.62 −5.10 −2.10 0.40 0.30 0.20 0.10

α= 0.1 0.15 ± 0.01 −1.61 ± 0.07 −5.08 ± 0.16 −2.10 ± 0.05 040 ± 0.00 0.30 ± 0.01 0.20 ± 0.02 0.10 ± 0.00

α= 0.4 0.14 ± 0.05 −1.62 ± 0.34 −5.11 ± 0.78 −2.10 ± 0.27 040 ± 0.02 0.31 ± 0.07 0.21 ± 0.06 0.10 ± 0.01

True 0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10
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estimated with noiseless (α= 0) data. In the noiseless (α= 0) case, both B(t) and C(t) are

error free. If the initial conditions are not properly provided, the estimated k para-

meters from the noiseless data are still far away from the true parameters.

The Fourier domain estimation method

By taking the Fourier transform of (4), we have

�ω2 ~C iωð Þ ¼ x1iω~B iωð Þ þ x2~B iωð Þ þ x3iω~C iωð Þ þ x4 ~C iωð Þ; ð14Þ

where ~C iωð Þand ~B iωð Þare the Fourier transform of C(t) and B(t), respectively, and ω is

the frequency variable. Let ω= 0, (14) immediately gives a DC (direct current) gain rela-

tionship:

k2k4 ~C 0ð Þ ¼ K1 k3 þ k4ð Þ~B 0ð Þ: ð15Þ

In the time domain, (15) is expressed as
k2k4

Z1
0

C tð Þdt ¼ K1 k3 þ k4ð Þ
Z1
0

B tð Þdt: ð16Þ

If the noise in B(t) and C(t) has a zero mean value over time, (16) is not affected by

noise.

We now introduce some short-hand notations:

~B ¼ ~B iωð Þ
~C ¼ ~C iωð Þ
~D ¼ iω~C iωð Þ
~E ¼ iω~B iωð Þ
~F ¼ �ω2 ~C iωð Þ

8>>>><
>>>>:

ð17Þ

Using these short-hand notations, Eq. (14) becomes
x1~E þ x2~Bþ x3 ~Dþ x4 ~C ¼ ~F : ð18Þ

Substituting (15), namely, x4 ~C 0ð Þ ¼ �x2~B 0ð Þ, into (18) eliminates x , and an objective
4

function H can be formulated as:

H ¼ jjx1~E þ x2~Bþ x3 ~Dr þ x4 ~C � ~F j 2 ¼�� ��jx1~E þ x2 ~G þ x3 ~D� ~F j 2;
�� ð19Þ

where

~G ¼ ~B� ~C~B 0ð Þ=~C 0ð Þ: ð20Þ
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In order to find the minimum of the objective function H, we set the partial deriva-

tives of H to 0 and obtain a set of linear equations as follows.

AX ¼ P ð21Þ

where

A ¼
~E; ~E

� �
Re ~E; ~G

� �
Re ~E; ~D

� �
Re ~G; ~E

� �
~G; ~G

� �
Re ~G; ~D

� �
Re ~D; ~E

� �
Re ~D; ~G

� �
~D; ~D

� �
2
64

3
75; ð22Þ

X ¼
x1
x2
x3

2
4

3
5; ð23Þ

P ¼
Re ~E; ~F

� �
Re ~G; ~F

� �
Re ~D; ~F

� �
2
64

3
75: ð24Þ

In (22) and (24), “Re” denotes the operation of “taking the real part,” and the inner-
product is defined by

f ; gh i ¼
Zωc

0

f ωð Þg� ωð Þdω: ð25Þ

A closed-form solution can readily be obtained as

X ¼ A�1P: ð26Þ

Finally, the two-compartment model kinetic parameters are estimated as

K1 ¼ x1
k2 ¼ �x2=x1 � x3

k4 ¼ x2
k2

~B 0ð Þ
~C 0ð Þ

k3 ¼ �k2 � k4 � x3

8>>>><
>>>>:

ð27Þ

TAC extrapolation

If a prolonged data acquisition is not practical, the un-measured “tail” activity curve

must be estimated by using extrapolation methods. Since the tail decays monotonically

and does not contain any peaks, the tail estimation error is well controlled.

The proposed method depends heavily on the DC gain (or the VD value). If the

measurement of the TAC C(t) is terminated before it reaches zero, the VD value still

can be estimated [33]. An alternative approach is to estimate the unmeasured C(t)

decay trend as follows.

Here, we suggest one data extrapolation method that uses a summation of a family of

exponential functions with different decay constants to approximate the truncated

“tail,” under the constraint that the activity curves tend to zero when time approaches

infinity. The truncated TAC C(t) can be approximated by

C tendð Þ
10

X10
n¼1

e�λn t�tendð Þ ð28Þ
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where tend is the time when data acquisition stops and λn (n= 1, 2, . . ., 10) are a family

of decay constants and are 0.01, 0.02, . . ., 0.10 in our illustration examples. The motiv-

ation to use a family of exponential decays to approximate the unmeasured data is to

avoid any bias towards any particular decay rate which is unknown. In computer simu-

lations, C(tend) was the average value of the last 3 measurements.
Implementation

The computer procedure is discussed in this section. For the two-compartment model,

the steps are:

Step 1: Acquire the blood input function B(tn) and the compartment time-activity

curve C(tn), for n= 0, 1, 2, . . ., Nsample-1. Here the sampling interval can be non-

uniform and Nsample is the total number of samples.

Step 2: Extrapolate the time-activity-curve using the method described in TAC

extrapolation section. Linear interpolate the data so that the resultant data sets have a

constant sampling interval T. The total number of the new data points becomes a

much larger number N.

Step 3: Evaluate ~B 0ð Þ ¼
XN�1

n¼0

B nTð Þ and ~C 0ð Þ ¼
XN�1

n¼0

C nTð Þ.
Step 4: Use a DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform)

computer routine to calculate the DFT functions ~B and ~C.

Step 5: Calculate ~D ikΩð Þ ¼ ikΩ~C ikΩð Þ, ~E ikΩð Þ ¼ ikΩ~B ikΩð Þ, ~F ikΩð Þ ¼
� kΩð Þ2 ~C ikΩð Þ, and ~G ikΩð Þ ¼ ~B ikΩð Þ � ~C ikΩð Þ ~B 0ð Þ

~C 0ð Þ.
Step 6: Calculate the inner products that appear in (22) and (24) using the inner

product definition (25) and a user selected cutoff index kc , corresponding to the

continuous cutoff frequency ωc.

Step 7: Form the matrices A and P as shown in (22) and (24).

Step 8: Solve for X using (26).

Step 9: Finally, use (27) to obtain estimated kinetic parameters K1 ~ k4.

The proposed Fourier domain estimation method is in closed-form and does not

need an initial condition.

We now present the results of our algorithm applied to the same computer generated

data as in the standard iterative curve-fitting method, the outputs of the proposed Fou-

rier domain are shown in Table 3 as the “Stage 1”. In Table 3, only one noise realization

is used for each case, while in Table 4, 250 noise realizations are used for each case.

Ten low frequency components were used in the Fourier domain calculation, that is,
Table 3 The results of the combined method

Case Stage 1: Fourier method output Stage 2: Final iterative method output

K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1) K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1)

α= 0 0.39 0.27 0.17 0.09 0.40 0.30 0.20 0.10

α= 0.1 0.39 0.27 0.11 0.09 0.40 0.28 0.18 0.10

α= 0.4 0.38 0.23 0.14 0.09 0.42 0.35 0.28 0.12

True 0.40 0.30 0.20 0.10 0.40 0.30 0.20 0.10

The output of the proposed closed-form method is used as the initial condition of the iterative method. One noise
realization is used.



Table 4 The results of the combined method

Case K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1) K1(k3+ k4) /(k2k4) K1k3/(k2k4) k3/k4

α= 0 0.40 0.30 0.20 0.10 4.00 2.67 2.00

α= 0.1 0.40 ± 0.00 0.30 ± 0.01 0.20 ± 0.01 0.10 ± 0.00 4.00 ± 0.02 2.67 ± 0.05 2.01 ± 0.11

α= 0.4 0.40 ± 0.02 0.31 ± 0.07 0.21 ± 0.06 0.10 ± 0.01 4.01 ± 0.08 2.68 ± 0.19 2.07 ± 0.46

True 0.40 0.30 0.20 0.10 4.00 2.67 2.00

The output of the proposed closed-form method is used as the initial condition of the iterative method. The number of
noise realization is 250.
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the cutoff index kc was chosen to be 10. The non-uniformly sampled, one-hour time-

activity-curves were extrapolated into two-hour curves, and then linearly interpolated

with a constant re-sampling interval of 5 seconds.

Some macro-parameters have special clinical significance. For example, VD indicates

volume-of-distribution, (K1k3)/(k2 + k3) reflects the net uptake, and (K1k3)/( k2k4) or k3/

k4 are related to the binding potential. Therefore, the estimation of some macro-

parameters is also reported in the results in Table 4.

It is noticed from Stage 1 of Table 3 that the results are slightly biased even in the

noiseless situation. This is because the data are discretely sampled and the continuous

Fourier integration must be approximated by a discrete Fourier transform. Another

source of error comes from data extrapolation which is required in this Fourier-domain

closed-form method. The requirement is that the Fourier integration interval must con-

tain all non-zero activities. Therefore, it is expected that the traditional iterative non-

linear fitting method should have less bias, because neither data extrapolation nor

interpolation are necessary.

We have mentioned that when a proper initial condition is provided, the standard

least-squares fitting usually gives satisfactory results. However, if an inappropriate initial

condition is provided, the algorithm may converge to a wrong solution. When the

closed-form method was used to obtain a rough estimation and the iterative method

was used to fine tune the solution, much better results were obtained as shown in

Table 3.

Discussion
Some issues related to the proposed closed-form formula are discussed below.

Data integration effects

Averaging of the time-activity curve (TAC) over a time frame does not affect the accur-

acy of the equations. Because the TAC C(t) and the input function B(t) are related by a

linear differential equation, for example (4), C(t) can be expressed as a convolution with

B(t):

C tð Þ ¼ B tð Þ∗H tð Þ; ð29Þ

where the kernel H(t) is determined by the system of differential equation. Averaging C

(t) over a time frame is to convolve C(t) with a box-car window function or unit-step

window function W(t):

Cavg tð Þ ¼ C tð Þ∗W tð Þ: ð30Þ
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Combining the above two convolution expressions yields

Cavg tð Þ ¼ B tð Þ∗H tð Þ½ �∗W tð Þ ¼ B tð Þ∗W tð Þ½ �∗H tð Þ ¼ Bavg tð Þ∗H tð Þ: ð31Þ

which implies that if we integrate the TAC C(t) and the input function B(t) over the

same time interval, the integrated functions still satisfy the same differential equations.

Selection of the cut-off frequency

The selection of the cut-off frequency is based on trial-and-error, and is dependent on

noise level. Ideally speaking, the cut-off frequency should be chosen as high as possible

to include as much information. However, the high frequency components contain

more noise than the low frequency components. If the cut-off frequency is selected too

high, the estimation will be affected by the noise fluctuation, resulting in different solu-

tions with different noise realizations. If the cut-off frequency is selected too low, even

though the estimation is not sensitive to noise, it may contain large bias because the

system is not adequately represented. The effect of the cut-off frequency selection is

illustrated by the examples in Table 5, where a two-compartment model is considered

with noise level α= 0.4.

Extension to one-compartment or multi-compartment models

In general, if we have N, where N can be 1, compartments for the tissue model, we have

a system of N first-order differential equations (which are called state equations) to de-

scribe the kinetics [34]. Let C be a vector that contains all N compartments, A be an

N×N matrix, D be an N×1 matrix and E be a 1×N matrix. The system of differential

equations can be expressed in a matrix form

dC tð Þ
dt

¼ AC tð Þ þ DB tð Þ: ð32Þ

The measurable activity is described by the output equation:

C tð Þ ¼ EC tð Þ; ð33Þ
where the C(t) on the left-hand-side is a scalar. Using the Fourier transform, the sys-

tem’s transfer function can be obtained as [35]

~H iωð Þ ¼
~C iωð Þ
~B iωð Þ ¼ E iωI � Að Þ�1D ¼ xNþ1 þ xNþ2 iωð Þ þ . . .þ xNþN iωð ÞN�1

iωð ÞN � x1 iωð ÞN�1 � . . .� xN�1 Vð Þ � xN
;

ð34Þ
Table 5 Estimation results for the two-compartment model parameters K1, k2 , k3, and k4
with noise level α=0.4, using different cut-off frequencies and 250 noise realizations

Cut-off frequency
index kc

K1 (min-1) k2 (min-1) k3 (min-1) k4 (min-1) K1(k3+ k4)
/(k2k4)

K1k3/
(k2k4)

k3/k4

8 0.36 ± 0.05 0.22 ± 0.10 0.11 ± 0.09 0.07 ± 0.03 4.08 ± 0.07 2.24 ± 0.55 1.43 ± 0.77

10 0.37 ± 0.05 0.24 ± 0.11 0.13 ± 0.08 0.08 ± 0.03 4.07 ± 0.07 2.35 ± 0.49 1.58 ± 0.77

15 0.37 ± 0.04 0.23 ± 0.09 0.11 ± 0.08 0.07 ± 0.03 4.07 ± 0.07 2.27 ± 0.51 1.45 ± 0.71

20 0.37 ± 0.03 0.22 ± 0.08 0.10 ± 0.08 0.06 ± 0.03 4.08 ± 0.07 2.24 ± 0.51 1.39 ± 0.65

True 0.40 0.30 0.20 0.10 4.00 2.67 2.00
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namely,

iωð ÞN ~C iωð Þ � x1 iωð ÞN�1 ~C iωð Þ �⋯� xN ~C iωð Þ
¼ xNþ1~B iωð Þ þ xNþ2 iωð Þ~B iωð Þ þ⋯þ xNþN iωð ÞN�1~B iωð Þ: ð35Þ

Let ω= 0, (35) immediately gives a DC gain relation:
�xN ~C 0ð Þ ¼ xNþ1~B 0ð Þ: ð36Þ

Similar to the case in the Methods and Results section, the coefficients x1 . . . xN+N
are related to the kinetic parameters. The parameter estimation problem can be

achieved by minimizing an objective function similar to (19). By using the DC gain

expressed in (36), the total number of unknowns is 2N-1. The unknown coefficients

are obtained by solving a least-squares problem to approximate (35). Finally the kinetic

parameters are estimated using relations between the coefficients x1 . . . xN+N and the

kinetic parameters. The proposed method becomes less effective as N increases, par-

tially due to the non-linear relationship between the k parameters and x parameters.

For a large N, there may not be a closed-form expressions for the k parameter for a set

of x’s.

Consideration of the input function contamination effect

In the above discussion, we assume that the quantity C(t) can be measured. In reality,

the measured C(t) may be contaminated by the input function B(t). The contamination

of the tissue by the blood input function is considered in this section. The contamin-

ation of the blood by the tissue is more problematic because it may result in a non-

identifiable problem. The system’s transfer function or the impulse response function

should be revised to reflect this effect. The revised impulse response function becomes

hrevised tð Þ ¼ 1� fvð Þh tð Þ þ fvδ tð Þ; for t≥0; ð37Þ

where δ(t) is the Dirac delta function, and fv is the fraction of the contamination. Using

the two-compartment model as an example, the revised transfer function is

~Hrevised iωð Þ ¼ 1� fvð Þ ~H iωð Þ þ fv ¼ 1� fvð ÞK1 � iωþ k3 þ k4ð Þ
iωð Þ2 þ k2 þ k3 þ k4ð Þ iωð Þ þ k2k4

þ fv

¼ �fvω2 þ K1 þ fv k2 þ k3 þ k4 � K1ð Þ½ �iωþ k3 þ k4ð Þ 1� fvð ÞK1 þ fvk2k4½ �
�ω2 þ k2 þ k3 þ k4ð Þiωþ k2k4

:

ð38Þ

If we follow the same steps as outlined in Methods and Results section and treat fv as

another unknown parameter, closed-form formulas for the kinetic parameters as well

as fv can be obtained.

Relation to other linear methods

Generally speaking, a frequency-domain method is equivalent to a time-domain

method. Using a cut-off in the frequency-domain is equivalent to performing smooth-

ing in the time-domain. However, the discretization can introduce some complications.

The time domain approximation of the derivative B’(t) by finite difference

B t þ Δtð Þ � B tð Þ½ �=ΔT is not quite equivalent to ikΩ~B ikΩð Þ in the Fourier domain. All

linear methods such as LLS and GLLS have their different ways to converting
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differential equations into algebraic equations. The goal is to remove the (continuous)

derivative operator, which cannot be implemented directly with sampled data. In the

LLS and GLLS method, the derivative operator is removed by integrating both sides of

the differential equation. In the proposed Fourier domain method, the derivative oper-

ator is indirectly implemented in the Fourier domain as a multiplication of ikΩ. These

two approaches may not be equivalent.
Special treatment of the DC component

We give the DC component special attention because of noise considerations. When

the noise is zero-mean, the DC-component is almost un-affected; however, all other

frequency components are affected. In a system of equations, we trust the DC relation-

ship the most and enforce it to be a constraint. We discard the noise-heavily-affected

components (i.e., the high frequency components). We then weigh the remaining fre-

quency components evenly, as an un-weighted least-square objective function. We con-

trol the noise by dividing the frequency components in three categories: Trustworthy

(i.e., the DC), somewhat trustworthy (i.e., the low-frequencies), and not-trustworthy

(i.e., the high frequencies). In cases where the initial estimate of VD is more problematic

than in our current simulations, it is possible to remove the VD constraint and use one

more unknown variable in the formulation of the closed-form solution.

We have made another version of the analytical method, in which we do not use the

DC gain as a constraint. The DC term is treated almost the same as other low-

frequency components but with 1000 times heavier weights. In our simulations, the re-

sultant algorithm was not as stable as the proposed algorithm, in which the DC gain is

used as a constraint.
Conclusions
Time-domain curve-fitting is the current state-of-the-art in nuclear medicine kinetic

estimation. Due to the non-linear exponential functions, this curve-fitting is sensitive

to initial conditions (i.e., the initial solutions) for multi-compartment model parameter

estimation problems. The initial condition may make the algorithm converge to a

wrong solution. In this paper, a Fourier-domain kinetic estimation method is proposed.

The proposed Fourier-domain curve-fitting method does not require an initial condi-

tion, it minimizes a quadratic objective function and a closed-form solution can be

obtained. The noise is easier to control, simply by discarding the high frequency com-

ponents, and emphasizing the DC component. The proposed Fourier-domain estima-

tion method has closed-form formulas.

The unique strategy in this paper is to formulate the objective function in the Fourier

domain. This strategy has two advantages: The model is linear in terms of transformed

variables (18) and it is easier to control noise by discarding high frequency components.

The Frequency domain objective function is a quadratic function. To minimize it, the

gradients are set to zero. This results in a system of linear equations with a small num-

ber of unknowns.

If the time signals are truncated during data acquisition when the signal values have

not reached a very small value, the unmeasured “tails” must be extrapolated and

appended to the measured signals before the Fourier transform is taken. However, data
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extrapolation and interpolation may introduce errors. For irreversible tracers, the activ-

ity curve does not decay to zero at all while the input function decays to zero. Our pro-

posed method does not apply and should be modified by using the derivatives of the

time-activity-curves to replace the time-activity-curves.

To compare the standard non-linear iterative curve-fitting technique and the closed-

form linear estimation methods, the iterative curve-fitting technique is more robust in

a noisy environment but is strongly dependent on the initial conditions. Large bias on

the estimated kinetic parameters (i.e., the k values) is common if the initial condition is

not close enough to the true solution.

Many linear estimation methods are available. The linear coefficients are formed by

the measured data and are thus influenced by noise. The linear estimation of the para-

meters is, in general, biased and noisy, even though no initial condition is needed.

For the two compartment model, the proposed method is sensitive to noise. Thus the

result is not very accurate. The advantage of the proposed method is that the user does

not need to specify the initial condition. On the other hand, the traditional curve-

fitting method strongly depends on the initial condition. Therefore, the proposed

method can be used to provide the initial condition that is close to the true solution,

and then the traditional curve-fitting method is used to fine-tune the parameter

estimation.
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