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Abstract

Background: It has been proposed that in the absence of a blood supply, the ocular
lens operates an internal microcirculation system. This system delivers nutrients,
removes waste products and maintains ionic homeostasis in the lens. The
microcirculation is generated by spatial differences in membrane transport
properties; and previously has been modelled by an equivalent electrical circuit and
solved analytically. While effective, this approach did not fully account for all the
anatomical and functional complexities of the lens. To encapsulate these
complexities we have created a 3D finite element computer model of the lens.

Methods: Initially, we created an anatomically-correct representative mesh of the
lens. We then implemented the Stokes and advective Nernst-Plank equations, in
order to model the water and ion fluxes respectively. Next we complemented the
model with experimentally-measured surface ionic concentrations as boundary
conditions and solved it.

Results: Our model calculated the standing ionic concentrations and electrical
potential gradients in the lens. Furthermore, it generated vector maps of intra- and
extracellular space ion and water fluxes that are proposed to circulate throughout
the lens. These fields have only been measured on the surface of the lens and our
calculations are the first 3D representation of their direction and magnitude in the
lens.

Conclusion: Values for steady state standing fields for concentration and electrical
potential plus ionic and fluid fluxes calculated by our model exhibited broad
agreement with observed experimental values. Our model of lens function
represents a platform to integrate new experimental data as they emerge and assist
us to understand how the integrated structure and function of the lens contributes
to the maintenance of its transparency.

Keywords: Computational modelling, Ocular lens, Microcirculation, Finite element,
Physiological optics
Background
Our sense of sight is critically dependant on the ability of the optical pathway, formed

by the cornea and lens, to focus light onto the retina. As an optical element in this

pathway, the lens needs to maintain its transparency and create sufficient optical

power. To generate its required optical properties, the lens has evolved a unique struc-

ture to minimise light scattering and enhance transparency [1] [see Figure 1]. However,

the lens is not a purely passive optical element and its structure and therefore optical
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Figure 1 Lens microcirculation system. A: Schematic diagram of an axial view of the lens showing a
single layer of anterior epithelial monolayer (EC), that at the equator (EQ) divide to produce the elongating
differentiating fibre cells (DF), that eventually lose their nuclei and cellular organelles to become mature
fibre cells in the lens nucleus (MF). Fiber cells from adjacent hemispheres meet at the anterior (AP) and
posterior (PP) poles to form the sutures. Arrows in the diagram represent the direction of ion and water
fluxes. These fluxes have been directly measured outside the lens [5,6] but their position and direction
inside the lens are to date purely theoretical [3]. B: An equatorial cross section of the lens showing a cellular
view of ion and water movement in the lens [7]. Current and solutes are proposed to flow into the lens via
the extracellular space, to cross fibre cell membranes, and to flow outward via an intracellular pathway
mediated by gap junction channels.
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properties need to be actively maintained. It has been proposed by Mathias et al. [2]

that in the absence of a blood supply, the lens operates an internal microcirculation

system. This system delivers nutrients, removes wastes and maintains the ionic homeo-

stasis of the lens [3,4]. Hence, this system is critical for maintaining the optical proper-

ties of the lens.

The microcirculation model was initially based on a combination of electrical imped-

ance measurements and theoretical modelling [8-11]. The observation that the mea-

sured ionic currents were directed inward at the poles and outward around the equator

[Figure 1A], led to the suggestion that these currents represent the external portion of

a circulating ionic current that drives the internal microcirculatory system within the
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lens. Briefly, the working model is that the current, carried primarily by Na+, enters at

all locations around the lens via the extracellular space between fibre cells. Na+ eventu-

ally crosses the fibre cell membranes, and then flows from cell-to-cell towards the sur-

face via an intracellular pathway mediated by gap junction channels [Figure 1B]. The

gap junction coupling conductance in the outer shell of differentiating fibres is concen-

trated at the equator [12,13]. Hence, the intracellular current is directed to the equator-

ial epithelial cells. Here, the highest densities of Na+/K+ pumps are located to actively

transport Na+ out of the lens [14]. Thus, the intracellular current effluxes are highly

concentrated at the equator causing the net current to be outward. At the poles, there

is very little intracellular current so the net current is predominantly inward, along the

extracellular spaces [Figure 1B]. The driving force for these fluxes is hypothesized to be

the difference in the electromotive potential of surface cells that contain Na+/K+ pumps

and K+-channels, and inner fiber cells that lack functional Na+/K+ pumps and K+-chan-

nels and whose permeability is dominated by non-selective cation and Cl- conductances

[15]. This electrical connection together with the different membrane properties of the

surface and inner cells causes the standing current to flow. In this model, the circulat-

ing current creates a net flux of solute that in turn generates fluid flow. The extracellu-

lar flow of water convects nutrients towards the deeper lying fiber cells, while the

intracellular flow removes wastes and creates a well-stirred intracellular compartment.

Thus in this model, it is the circulating Na+ current that generates a circulation of

fluid inside the lens. It is important to note that while the existence of the circulating

ionic currents are firmly based on existing experimental data, circulating fluid flows in

the lens have proven more difficult to measure. At present, these fluxes are only pre-

dicted to occur from indirect measurements and models of the measured electrical

properties of the lens. The current model of the lens fluid dynamics is based on an

equivalent circuit analysis of the microcirculation system [3,16]. This analytical model

inherently relied on approximate solutions and simplification of the underlying physics.

To improve our understanding of the circulation system, here we have adopted a finite

element modelling (FEM) approach. Using FEM, we have developed a 3D computer

model of the microcirculation system that encapsulates the complex interplay of its im-

portant features and can also be solved numerically. This computer-based modelling

approach allowed structural features such as fiber cell orientation, extracellular space

dimensions and gap junction distribution to be included in the model. It also included

functional information on the spatial differences in membrane permeability between

surface and inner cells, thought to drive the circulating currents.

In this paper we describe our expansion of the equations that govern ion and fluid

dynamics in the lens [2,3,10,15-18] to 3D, and their subsequent implementation into a

new FEM that encapsulates known structural and functional parameters of the mouse

lens. This model is based on our continuous imaging and modelling iterative investiga-

tion into the fluid dynamics of the lens [19-25]. To test the ability of this computer

model to reproduce the functional properties of the lens, we have used a series of ex-

perimentally derived boundary conditions [26-28] to allow it to be solved. We show

that our model is capable of predicting the experimentally measured steady state lens

properties and to generate circulating ion and water fluxes. Hence we believe that our

computer model is a useful tool to study how lens structure and function influence its

optical properties.
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Methods
In this section, we first present the derivation of the fundamental mathematical equa-

tions, originally formulated by Mathias et al. to describe the microcirculation system

[2,3,10,15-18]. We then develop a computer mesh to represent the structure of the

mouse lens to enable these equations to be implemented in 3D. Next we implement

the model using the C++ programming language and solve the model using experimen-

tally derived boundary conditions [26-28]. The resultant 3D model calculates ion con-

centration gradients, membrane potential gradients, and intra- and extracellular ion

and water fluxes in different regions of the lens.

Derivations of general equations

The microcirculation model has been based on a distinct yet mutually dependent

movement of water and ions [3,4,15,16,29]. Simplified derivations of the Navier–Stokes

equations and the advective Nernst-Plank equations [30,31] where used to represent

water and ion fluxes, respectively. All symbols used in these and the resultant equations

are listed in [Table 1].

Fluid fluxes

The Navier–Stokes equations are derived from the conservation of mass, momentum,

and energy. The nonlinearity of these equations made them challenging to be solved

directly. However, this set of equations can be simplified with the right assumptions for

a given system. We assumed the lens’s water to be an incompressible Newtonian fluid

with a spatially constant viscosity at steady state. Also, we assumed that the lens fluid

flow can be described as a “creeping” low-Reynolds number flow with ignorable turbu-

lence [32-34]. Considering these assumptions, we used the simplified form of the gen-

eral Navier–Stokes equations, called the Stokes equations [Eq. 1, Eq. 2].

r:u ¼ 0 ð1Þ
�rpþ μr2uþ pf ¼ 0 ð2Þ

The parameters and their units are listed in [Table 1]. We used these equations to
model the movement of water in the lens. All the fluid flow related constants utilized

in this model are listed in [Table 2]. Most of the parameters are similar to the para-

meters used in the analytic model [2,3,10,15-18]. The most significant change between

the analytic and numerical models is the intercellular, surface and fibre cell hydraulic

permeabilities, where more recent values, which were measured by [35], are used.

Ion fluxes

The solute fluxes in a fluid are generally governed by diffusion, electro-diffusion (if the

solute is charged) and advection [30,31,37]. Hence, we modelled the ionic fluxes in the

lens using the Nernst-Plank equation with an added advection term [Eq. 3]

[18,30,31,37].

jα ¼ �DαrCα � Zαe
Dα

kBT
rφ:Cα þ u:Cα ð3Þ

The parameters and their units are listed in [Table 1]. All the ionic flow related con-
stants utilized in this model are listed in [Table 3]. The intracellular diffusion



Table 1 Glossary of symbols used in this manuscript

Symbol Description Units

C concentration mol/ m3

D diffusion coefficient m2/s

R gas constant J/ (mol.K)

e electron charge C

E Nernst potential V

F Faraday constant C/mol

h extracellular cleft width m

Imax maximum Na/K ATPase pump current density A/cm2

Ip Na/K ATPase pump current density A/cm2

jm transmembrane flux mol/ (m2s)

g conductivity per membrane area S/m2

kB Boltzmann constant J/K

K0.5 half-maximal concentrations mol/ m3

Ls surface hydraulic permeability m3/(N.s)

Lp intercellular hydraulic permeability m3/(N.s)

Os osmolarity Osm/L

p pressure Pas

Pm membrane solute permeability m/s

r equatorial radius of the model m

a posterior radius of the model m

b anterior radius of the model m

sα solute source mol/(m3s)

s fluid mass source 1/m

T temperature K

Vm transmembrane potential V

f body force N/Kg

z valence -

α solute species -

E0 permittivity of vacuum F/m

Er dielectric constant S/m

ζ zeta potential (cell membrane potential) V

λD Debye length m

Λ volume fraction -

μ dynamic viscosity N.s/m2

ρ mass density Kg/m3

ρm membrane density 1/m

σ membrane reflectance -

φ potential V

u velocity m/s
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coefficients for Na+, K+ and Cl- (Di,c) in the radial direction are estimated to be 1% of

the diffusion coefficients in the cytoplasm [38]. The diffusion coefficient for small ions

in the cytoplasm is assumed to be the same as in free solution. This assumption is valid

if there is no significant interaction between the ions and the cell membrane or large



Table 2 Fluid flow parameters

Symbol Description Value Units

R Gas-constant 8.314× 103 pJ/(nmol.K)

E0 Permittivity-of-vacuum5 8.854 pF/m

Er Dielectric-constant-(water)5 80.4

~h Extracellular-cleft-width2 40 nm

μ Fluid-viscosity 700 mPa.ms

ζ Zeta-potential1 −15 mV

λD Debye-length2 1 nm

Lp Intercellular-hydraulic-permeability3 4.0 × 10−8 m/(Pa.s)

Lf Fibre-cell-membrane-hydraulic-permeability3 4.0 × 10−8 m/(Pa.s)

Ls Surface-hydraulic-permeability3 2.7 × 10−7 m/(Pa.s)

σ Intercellular-membrane-reflectance1 1

~Ke Extracellular-hydraulic-conductivity 3.05 × 10−14 m2/(Pa.s)

~ke Extracellular-electro-osmotic-coefficient 1.45 × 10−8 m2/(Vs)

References: 1. Mathias (1985) [2]; 2. McLaughlin & Mathias (1985) [36]; 3. Varadaraj et al. (2005) [35]; 4. Mathias et al.
(1997) [3]; 5. www.wikipedia.org
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molecules. Similarly, the extracellular diffusion coefficients for Na+, K+ and Cl- (De,c)

are assumed to be the same as in free solution. These values are scaled by the τc
[Table 3] to account for the tortuosity of the extracellular cleft. The conductivities for

the Na+, K+ and Cl- channels are the same as those used in the analytic model and are

assumed to be spatially uniform.

We solved these equations [Eq. 1 to Eq. 3] for the movement of ions and water in the

extracellular and intracellular spaces of the lens. These two domains were linked by cell

membranes which could be crossed by ions and water from one space to another
Table 3 Solute transport properties

Symbol Description Value Units

kB Boltzmann constant 1.380 × 10−11 pJ/K

e Electron charge 1.6 × 10−10 nC

F Faraday constant 9.648 × 104 nC/nmol

DNa Free solution/cytoplasm Na+ diffusion1 1.39 × 10−6 mm2/s

DK Free solution/cytoplasm K+ diffusion1 2.04 × 10−6 mm2/s

DCl Free solution/cytoplasm Cl- diffusion1 2.12 × 10−6 mm2/s

DNai,c Intracellular Na+ diffusion 1.39 × 10−8 mm2/s

DKi,c Intracellular K+ diffusion 2.04 × 10−8 mm2/s

DCli,c Intracellular Cl- diffusion 2.12 × 10−8 mm2/s

DNae,c Extracellular Na+ diffusion 1.39 × 10−6 mm2/s

DKe,c Extracellular K+ diffusion 2.04 × 10−6 mm2/s

DCle,c Extracellular Cl- diffusion 2.12 × 10−6 mm2/s

gNa Na+ fibre cell membrane conductivity2 2.2 mS/m2

gCl Cl- fibre cell membrane conductivity2 2.2 mS/m2

gK K+ surface membrane conductivity2 2.1 S/m2

Imax Na+/K+ pump max. pump rate 0.478 A/m2

K1/2Na Na+/K+ pump 1/2 max Na+ concentration 9 mM

K1/2K Na+/K+ pump 1/2 max K+ concentration 3.9 mM

References: 1. Benedek & Villas (2000) [32]; 2) Mathias (1985) [2].

http://www.wikipedia.org
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[Figure 1B]. Since the water and ions enter the lens from the extracellular space, we

started with these equations.

Extracellular flux equations

The fluid flow in the extracellular clefts can be partially described by the Stokes flow

equations [Eq. 1 & Eq. 2]. Another part of the extracellular fluid fluxes has been shown to

be due to electro-osmosis [39]. Electro-osmosis is due to the osmotic gradient created by

uneven charge distribution in a fluid affected by an electric field. It has been shown that

this osmosis is essential to the modelling of extracellular fluxes in the ocular lens [39].

Extracellular fluid flows in the lens were modelled by the Stokes equations [Eq. 1 &

Eq. 2] with an added electro-osmosis term. We treated electro-osmosis as a body force

term and formulated it as below for our lens model [Eq. 4] [18].

ueo ¼ ErEoζ
μ

coth
h

2λD

� �
� 2λD

h

� �
rφe ð4Þ

The parameters and their units are listed in [Table 1]. We then combined this velocity
(ueo) and the Stokes equation [Eq. 2] to drive the equation for the extracellular water

velocity [Eq. 5].

u ¼ � h2

8μ
dp
dx

þ ErEoζ
μ

coth
h

2λD

� �
� 2λD

h

� �
rφe ð5Þ

The parameters and their units are listed in [Table 1]. We didn’t consider electro-
osmosis in the intracellular space portion of our model [18]. This was since the electric

field gradient across cell cytoplasm was considered negligible. We then coupled the

extracellular water fluxes with the ionic fluxes in this domain.

Extracellular ion fluxes

We computationally solved the advective Nernst-Plank equation [Eq. 3] for the lenticu-

lar extracellular ion fluxes. We modelled the coupled water and ion extracellular fluxes

throughout the 3D model. These fluxes could then become trans-membranous flows at

any point of the model, crossing the modelled cell membranes.

Trans-membrane flux equations

The extracellular and intracellular spaces of this model are connected by cell mem-

branes with specific water and ionic permeabilites. Hence the water could flow cross

fibre cell membrane between the extracellular and the intracellular spaces. To repre-

sent these transmembrane fluxes in our model, we treated the fibre cell membrane as

a semi-permeable membrane [2,7,10,16] through which fluid passes due to a combin-

ation of hydrostatic and osmotic pressure gradients [19,40,41]. The velocity of the

water flowing through the membrane was then governed by the following equation

[Eq. 6] [18].

um ¼ �LPΔp� σ LP RTΔ Os ð6Þ

The parameters and their units are listed in [Table 1]. We calculated the hydraulic
and osmotic pressure gradients, Δp and ΔOs, from the pressure differences on two
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sides of the membrane. We estimated the general osmolarity, Os, of the intracellular or

extracellular spaces from the local sum of all the modelled ions (i.e. Na+, K+ and Cl-).

Os ¼
X
α

Cα ð7Þ

As mentioned previously, we modelled the ion and water fluxes to go hand-in-hand

throughout our computational platform. Hence, the modelled ions (i.e. Na+, K+ and Cl-)

accompanied the trans-membrane water fluxes into the cells, utilizing the membrane

ionic channels. The lenticular membrane conductivity for each modelled ion had been cal-

culated based on experimental data [8,11,42,43]. We used similar values for membrane

conductivities for various modelled trans-membrane ion fluxes. We implemented these

trans-membranous ionic flows using the following equations [Eq. 8 to Eq. 10] [18].

jα ¼ ga
F

Vm � Eαð Þ ð8Þ

Eα ¼ � kBT
Zαe

ln
Cα2

Cα1

� �
ð9Þ

Vm ¼ φi�φe ð10Þ

The parameters and their units are listed in [Table 1]. In the above equations, E is
the Nernst potential. At the Nernst potential, there is no net flow of ions across the cell

membrane through the channels. Hence, in our model we linked the trans-membrane

water and ion fluxes by ionic concentrations (i.e. osmosis) and membrane potential

(i.e. Nernst potential). After crossing the membrane, we treated the water and ion fluxes

as intracellular fluxes.

Intracellular flux equations

We modelled the fluxes in the intracellular space to pass through a mixture of cells

cytoplasm and membranes [44]. This was due to the large size of each element in our

model compared to the lens cell volumes. It was impractical to discretely model the

intracellular flow through each cell cytoplasm and membrane in a given element. Instead,

we homogenized the flow equations to obtain one formula, describing the net cytoplasmic

and membranous fluxes through every element.

To homogenize the flow equations, we assumed the intracellular fluid fluxes are pri-

marily restricted by the cell membranes. We made this assumption since it was shown

that diffusivity between cells is about on hundred times lower than in the cytoplasm

[44]. We also assumed negligible hydraulic and osmotic pressure gradients across the

cytoplasm of a single cell. We considered these fields to vary only among neighbouring

elements, across the modelled membranes. Hence we assumed the pressure fields as

step-function changes across the cell membranes. We therefore implemented the intra-

cellular fluid flow to be driven by the pressure and concentration step-changes across

the cell membranes. We calculated the intracellular fluid velocities using the following

equation [Eq. 11].

ui ¼ Lp �Δpi � σ iRT ΔOsið Þ ð11Þ

The parameters and their units are listed in [Table 1]. Since the implemented intra-
cellular water fluxes were accompanied by the ionic fluxes in our model, we assumed



Vaghefi et al. BioMedical Engineering OnLine 2012, 11:69 Page 9 of 26
http://www.biomedical-engineering-online.com/content/11/1/69
the intracellular ionic fluxes to be governed by the advective-Nernst-Plank equation

[Eq. 3]. As mentioned above, every element of the intracellular space in our model was

treated as a homogenised mixture of cytoplasm and membranes. In reality a network of

gap junctions forms cell-to-cell channels that connect the cytoplasms of adjacent cells

[40,45]. We derived the ionic flux equation for a single gap junction channel [Eq. 3]

and then integrated this equation over a network of pores in a given cell membrane

[18]. We used [Eq. 3] for ionic fluxes, assuming free movement of ions through each

pore. In this case we could assume the diffusion coefficient (D) in the pore to be

equivalent to the cell’s interior diffusion coefficient. We also assumed the ion concen-

trations (C) and electric potentials (φ) to vary linearly between the opposite openings

of each pore. Therefore, we could approximate these variables over the length of the

pore (x), by the following equations [Eq. 12 & Eq. 13].

dCα

dx
¼ Cα;2 � Cα;1

Δx
¼ ΔCα

Δx
ð12Þ

dφα

dx
¼ φ2 � φ1

Δx
¼ Δφ

Δx
ð13Þ

Here, the subscripts 1 and 2 referred to the inlet and outlet of the modelled pore. We
approximated the ion concentration in the pore (Cα) by the mean concentration

[Eq. 14].

Cα ¼ Cα;1 þ Cα;2

2
ð14Þ

By substituting the above equations [Eq. 12 - Eq. 14] in the advective-Nernst-Plank

formula [Eq. 3], we derived the following form [Eq. 15].

jα ¼ �DαrCα � zαe
Dα

kBT
rφ:Cα þ u:Cα ð15Þ

The subscript α indicated the solute species and the rest of the variables are listed in

[Table 1]. The diffusion coefficient (D) in the above equation is mainly set by the direc-

tional conductivity of the gap junctions [Eq. 16].

Dα ¼ R:T :Gα

F2:Cα
ð16Þ

The parameters and their units are listed in [Table 1]. In this implementation, the dif-
fusivity of a gap junction pore (Dα) is related to its conductivity (Gα). Based on experi-

mental observations, the measured conductivities of the mouse lens have been assorted

into two main regions. The inner 85% of the lens is anucleated [1] and has an approxi-

mately spatially uniform distribution of gap junctions. For this inner part of the lens a

homogeneous value of conductivity (G= 0.17mS/cm) has been used [7]. The outer 15%

of the lens on the other hand is nucleated [1]. The radial conductivity, Gr has been

assumed to vary depending on the angular location (ϕ) and the conductivity of the gap

junctions [Eq. 17] [7].

Gr ¼ Gmax:cos
2ϕ ð17Þ

Here ϕ is the angular degree from the equator (i.e. ϕ= 0° at equator, ϕ= 90° at anter-
ior pole and ϕ=−90° at posterior pole). It has been determined that Gmax= 0.6mS/cm
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in the radial orientation, and in the other directions G= 0.23mS/cm [7]. We modelled

the intracellular ionic fluxes to be directed by the above equations and the regional dis-

tribution of gap junctions [Eq. 15 - Eq. 17]. According to the microcirculation theory,

these ionic fluxes then moved towards the periphery of the lens accompanied by water

flows until they reach the boundary of the model.

Surface flux equations

Once intracellular fluxes reach the boundary of our 3D computational mesh they are

treated as surface fluxes. We modelled the periphery of the lens to be similar to previously

implemented cell membranes. The only difference was that at this point we had to

consider the surrounding boundary conditions that are determined by the ionic com-

position of the bathing media in the system of equations. At the surface of the lens,

fluid is transported between the intracellular space and the outside. We modelled

these surface fluid flows as simple trans-membrane fluxes and calculated their veloci-

ties using the equation [Eq. 18].

us ¼ �Ls po � pið Þ � σ sRT Ls Oso � Osið Þ ð18Þ

The parameters and their units are listed in [Table 1] and the subscript “o” points to the

outside (i.e. boundary) conditions. We considered the surface fluxes as the output of the

system, while the extracellular fluxes were its input. For an incompressible stable system,

like the current lens model, the input and output levels should equate at all times and this

conservation of mass was controlled for as part of the Stokes equations [Eq. 1].

At the surface of the lens, we modelled the intracellular space to be coupled to the out-

side media. We created this coupling by a network of K+ channels and Na+/K+-pumps in

the surface membranes [39,44]. To model ionic fluxes through the K+ channel, equations

[Eq. 8 to Eq. 10] were used. To implement the Na+/K+-pumps at the surface of the lens

we used a previously published approach [39] that utilised the following set of equations

[Eq. 19 to Eq. 21] to model these pump rate.

Ip ¼ Imax
CNai

CNai þ KNa

� �3

:
CKo

CKo þ KK

� �2

ð19Þ

KNa ¼
ffiffiffi
23

p
� 1

� �
K0:5Na ð20Þ

KK ¼
ffiffiffi
2

p
� 1

� �
K0:5K ð21Þ

Here, Imax was the maximum current rates through the pumps. The parameters and
their units are listed in [Table 1]. The K0.5Na and K0.5K were the concentrations of Na+

and K+ when the pump’s current was half the maximum current [39]. We also imple-

mented the known circumferentially-varying distribution of ionic pumps around the

lens [7]. The ionic pumps of the lens are more abundant around its equatorial area and

scarce around the polar regions [7,39]. It has been suggested that the currents pro-

duced by Na+/K+ ATPase pumps around the ocular lens are governed by [Eq. 22] [7].

Ip ¼ Ip�min þ Ip�max � Ip�min
� �

:cos2ϕ ð22Þ

Here ϕ is the angular degree from the equator (i.e. ϕ= 0° at equator, ϕ= 90° at anter-
ior pole and ϕ=−90° at posterior pole). Experiments have shown that Ip-min = 4 μA/cm2
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[39] around the poles and Ip-max= 26 μA/cm2 near the equator [41]. Hence, at this

point the model included the regional distribution of the ionic pumps. We then calcu-

lated the surface Na+ and K+ fluxes by using the pump rate (Ip) estimated above. We

estimated these pump-generated molar fluxes at every point on the surface of the 3D

mesh [Eq. 23 & Eq. 24].

jNa;p ¼ 3
Ip
F

ð23Þ

jK ;p ¼ �2
Ip
F

ð24Þ

We modelled the total surface ionic fluxes by combining the pump-generated and
channel-based flows [Eq. 8, Eq. 23 & Eq. 24].

Electro-neutrality equation

Being a closed system, the model operates in the condition that at every point of time

electro-neutrality is preserved. In this model we used a weak form of electro-neutrality

[Eq. 25] to enforce this constraint.

X
α

Zα
dCα
dt

¼ 0 ð25Þ

We assumed the initial condition of the system to be electrically neutral. Hence, the
equation above ensures the electro-neutrality of the model at any point of time. We ap-

plied this equation over all the ion species modelled here. This was based on the as-

sumption that the ion species not modelled (e.g. calcium) had no significant influence

on electro-neutrality of the model.

Solving the model

We implemented all of the mentioned water and ion flux equations in our model. This

was in order to create an interlinked system of fluid dynamics of the ocular lens. The

implemented system of equations is summarized in the following figure [Figure 1B]. To

solve this system of equations we used an adaptive Euler method, used to achieve a

converged steady state solution [18]. Each iteration of the adaptive Euler method

involved several steps to solve the coupled transport equations, followed by a solution

update step [Figure 2]. The model began with a representative mesh of the lens, the ini-

tial conditions (C0, φ0) and boundary conditions (Cαo, φo, po). Ideally, one would start

with initial concentration fields that are close to the expected final concentration fields.

Finite Element Mesh Creation

Since a wealth of experimental data exists on the mouse lens we chose it to create an

anatomically accurate scaffold to implement our modelling approach. The mouse lens

has an equatorial radius of 0.125 cm, posterior thickness of 0.1 cm and anterior thick-

ness of 0.085 cm [42]. We used a cylindrical polar coordinate system (r, θ, z) and the

Cubic Hermite basis function to create a smooth 3D computational mesh of the mouse

lens [Figure 3 and Table 4]. When a biological tissue is modelled as a macroscopic con-

tinuum, elements in the representing mesh are much larger than the cells. In our

model, the intra- and extracellular spaces of the lens therefore could not be represented



Figure 2 Steps of the iteration solution of the model reviewed in the text. The first step solved the
Stokes equations, using the initial conditions (C0, φ0) and boundary conditions (Cαo, φo, po), to calculate the
fluid velocity (un+1) and pressure fields (pn+1). The second step used electro-neutrality to calculate new
potential fields (φn+1). Step three calculated new solute fluxes (jn+1) using current concentration fields (Cn),
new potential field (φn+1) and new velocity field (un+1). The forth step used current concentration fields (Cn)
and new potential field (φn+1) to calculate the new trans-membrane or surface solute sources (sn+1). Step
five involved using the newly calculated solute sources (sn+1) to calculate new concentration fields (Cn+1).
The model then checked for the convergence criterion automatically and updated the initial fields and
repeated these steps if the criterion was not met.
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disjointedly. Hence, we modelled that these spaces, while mathematically distinct, coexist

in the same mesh element and the cell membranes are evenly spread all through. Every

element in our model thus represented a cluster of many fibre cells and enclosed



Figure 3 Comparison of lens fibre cell geometry and its finite element mesh representation. A: A
scanning electron microscope image of a mouse lens reproduced from [46]. B: 2D projection of half of the
finite element mesh generated used to model the mouse lens. The outer surface of the lens, coloured in
red, is where the computational boundary conditions are applied to the mesh. C: Example of a quarter
section of the 3D model, used in the Figure 4 and Figure 5 to view standing electrochemical fields
predicted by model. The anterior pole (AP), posterior pole (PP) and equator (EQ) are labelled as points of
reference.
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extracellular space. This method of “bidomain” modelling has been well-explained previ-

ously [43].

Boundary conditions

Since our model is solved using an iterative method, it was important to choose ap-

propriate initial boundary conditions. In previous microcirculation models, the

boundary conditions have been chosen to be ionic concentration at the surface of the

lens (CNa-io, CK-io, CCl-io, CNa-eo, CK-eo, CCl-eo) [3,10]. Here subscript “o” denotes the

surface of the lens. We adopted the same approach to solve our 3D model. Boundary

conditions were taken from the measurements of ionic concentrations from the sur-

face of ocular lenses in different species [26-28,47] and are listed in [Table 5]. Using

these initial conditions we solved the model and assumed the initial extracellular

electric-potential and hydraulic pressures to be zero. These fields were then calcu-

lated during the first iteration round and substituted in the model for the following it-

eration cycle with this iteration being repeated until convergence was reached.

Convergence criterion

We defined the maximum change of concentrations between two consecutive iterations

(Cn+1 - Cn) in all the elements as the convergence parameter. We observed that using

the above boundary and initial conditions, this error was decreased with each iteration

cycle. We set the model’s convergence criterion to be less than 5 mM. We believed that
Table 4 Finite element mesh specifications for the current model

Modelling property Property value

Coordinate system Cylindrical Polar

Basis function Cubic Hermit

Number of nodes 5281

Number of elements 2130



Table 5 Initial conditions at outer lens boundary for the present model

Species Description Quantity

Nae (mM) Extracellular Na+ concentration 110

Ke (mM) Extracellular K+ concentration 8

Cle (mM) Extracellular Cl- concentration 115

Nai (mM) Intracellular Na+ concentration 7

Ki (mM) Intracellular K+ concentration 100

Cli (mM) Intracellular Cl- concentration 10

T (K) Temperature 310
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level of iteration error was adequate, since most of the solution fluctuations were

caused by [K+]i and [Na+]e fields and the enforced iteration error threshold was less

than 5% of the initial field value.

We solved the 3D model on our high performance computer (HPC) at the Auckland

Bioengineering Institute (ABI). Our mainframe was comprised of an IBM server with

64 processors of 1.9 GHz calculation speed, peak performance of 306.21Gfps and

256 GB of physical memory.

Displaying the data

Text formatted file of the model’s computed fields were linked via JAVA programming

language format to CMGUI (www.cmgui.org) [48,49], an advanced 3D visualisation

software package with modelling capabilities. CMGUI was used for model visualisation

and manipulation and allowed for automated the scaling and false colouring of the

data. The following presentations were all created using this method.

Results
Using the boundary conditions listed in [Table 5], we solved the model and generated

3D maps of standing fields of intracellular and extracellular ion concentrations, elec-

trical potentials and pressure, plus circulating ionic and water fluxes. In this section we

first use quarter section views of the 3D model [Figure 3C] to represent regional differ-

ences in standing electrochemical and pressure fields, allowing these predicted proper-

ties to be compared to experimentally derived values. Then we use the full model view

to generate 3D vector maps that visualize the predicted ion and water fluxes in the lens

for the first time.

Standing electrochemical and pressure fields

The operation of the microcirculation system will at steady state create standing

fields in ion concentrations and membrane potentials in both the extracellular and

intracellular compartments. The 3D representations of the ion concentration fields

for Na+, K+ and Cl- in both compartments are illustrated in Figure 4. The values for

these concentrations were then extracted and presented in Table 6. To assess the ac-

curacy of the standing ionic gradients produced by the model, we wanted to compare

them to existing experimental data. Unfortunately no data on the concentration of

ions in the extracellular space of the lens is available. However, ion concentrations in

the intracellular space have been measured using a variety of techniques. Wang et al.

[50] have used ion selective micro-electrodes to show a Na+ concentration gradient

http://www.cmgui.org


Figure 4 Standing ionic concentration fields modelled in the mouse lens. 3D quarter section views of
the standing concentration fields calculated from the model for the intracellular (A, C, E) and extracellular
(B, D, F) space for Na+ (A, B), Cl- (C, D) and K+ (E, F). Note that in the extracellular space, a diffusive-
conductive gradient was created by the decreasing concentration of Na+ from the periphery towards the
centre. In the intracellular space, however, the concentration field for Na+ was reversed. The small extra-
and intracellular Cl- concentration field in the radial direction is close to its predicted steady state [3]. K+ is
transported into cells mostly close to the periphery of the ocular lens [16] and so its high concentration at
the intracellular space of the surface and accumulation in the core of the extracellular space. The values on
the colour-bars are in Molar units.
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exists in the mouse lens, the magnitude of which is predicted by our model [Table 6].

Average concentrations of Na+, K+ and Cl- in the lens have also been measured using

chemical analysis in a number of species [26-28,47]. To facilitate comparison between

these previous measurements of total lens ion concentrations and the values



Table 6 Comparison of modelled standing electrochemical gradients outcomes and the
existing empirical data

Standing
fields

3D model
radial
range

Experimental
radial
range

3D
model
averaged

Experimental
averaged*

[Na+]i
(mMol)

6.9 to 16 5 to 16 1 12.5 13.8 3, 21.5 4

[K+]i (mMol) 91 to 100 Not Measured 95 91.2 5

[Cl-]i (mMol) 10 to 12 Not Measured 11.35 16.8 5, 12.3 5

φi (mV) −57 to −64 −50 to −70 2 −61.5 −70 6

φe (mV) 0.0 to −27 0 to −36 2 −13.5 −30 6

Pi (kPa) 0.0 to 10 0.0 to 48 7 4.8 Not Measured

References: 1- (Wang et al. 2004) [50]; 2- (Mathias and Rae 1985) [16]; 3- (Delamere and Duncan 1977) [27];
4- (Duncan 1970) [47]; 5- (Guerschanik et al. 1977) [28]; 6- (Delamere and Paterson 1979) [51]; 7- (Gao et al. 2011) [29].
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predicted by our model, we extracted the mean concentration from our calculated

ion fields [Table 6]. Here we observed a good compatibility between the modelled and

measured values.

The trans-membrane ionic concentration fields determined by the model were then

used to calculate the intra- and extracellular and trans-membrane potential fields

[Figure 5]. These calculated values agreed with lens potentials measured experimen-

tally [9,51], [Table 6]. The model predicted a decrease in extracellular space electrical

potential from the periphery to the core. This is thought to be indicative of an in-

crease of extracellular space resistance with depth into the lens [8]. In contrast, a

smaller change in the intracellular electric potential field was predicted by the model.

This small change has been observed previously [2,10] and has been attributed to a high

level of gap junction coupling between inner-cells and surface cells containing K+ channel

and pumps that dominate the lens potential [15]. This meant that the potential between

the extracellular and intracellular spaces depolarized from -63 mV at the surface to -33 mV

in the centre of the model [Figure 5C]. These changes in potential fields with distance into

the lens were consistent with the movement of a positively-charged ion like Na+, into the

lens via the extracellular space, down its electrochemical gradient across the cell mem-

brane and outwards in the intracellular space.

The Stokes equations [Eq. 1 & Eq. 2] used to model the fluid dynamics of the lens

has an inherent pressure term, which allows us to calculate the standing fields of

hydrostatic pressure within the intra and extracellular compartments [Figure 6]. The

model calculated an extracellular pressure gradient that was highest at the periphery

and lowest in the core [Figure 6A] and an intracellular hydrostatic pressure gradient

that was lowest in the periphery and highest in the core [Figure 6B]. Recently the exist-

ence of an intracellular pressure gradient has been confirmed experimentally [29]. A

comparison of the calculated and measured intracellular pressure fields indicated that

the orientations of the gradients are similar but the magnitudes differ by a factor of

~4.5 [Table 6]. This disagreement is discussed further in the Discussion.

The results obtained from our 3D model of the calculated electrochemical and pres-

sure fields can be simplified to facilitate comparison between parameters, by extracting

values from a defined equatorial axis and plotting them against normalized distance

from the centre (r/a) [Figure 7]. In the lens, these fields give rise to the circulating

fluxes modelled below.



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Standing electrical fields modelled in the mouse lens. 3D quarter section views of the
standing electrical fields calculated from the model for the extracellular (A) and intracellular (B) space plus
the transmembrane potential field (C). Both the extracellular and intracellular electrical fields decrease in
value from surface to centre, but the magnitude of the observed change in the intracellular potential is
smaller due to the high level of gap junction coupling between inner-cells and surface cells. The trans-
membrane electrical potential was calculated as the difference between the intracellular and extracellular
potentials. This field appeared to be decreasing in magnitude from the surface towards the core of the
lens. The values on the colour-bars are in Volt units.
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Circulating fluxes

We calculated extracellular and intracellular ionic fluxes throughout the lens using the ad-

vective Nernst-Plank equation. Extracellular space fluxes of Na+ were directed into the lens

and had the highest magnitude at the poles [Figure 8A] [4]. In contrast, intracellular space

fluxes of Na+ were directed out of the lens and had their highest magnitude at the equator

[Figure 8B]. Extracellular [Figure 8C] and intracellular [Figure 8D] fluxes of Cl- appeared to

mirror the Na+ fluxes as would be expected to preserve electro-neutrality. Relative to extra-

cellular fluxes of Na+ and Cl-, the calculated extracellular K+ fluxes were of reduced magni-

tude [Figure 8E]. However the intracellular space K+ fluxes were of larger magnitude and

were concentrated at the equator [Figure 8F], consistent with the abundance of pumps and

K+ channels known to be localized in this region of the lens [3,10,16].

Although ionic fluxes within the lens have yet to be determined experimentally, mea-

surements of net current densities at the lens surface are available [5,41]. To facilitate a

comparison between these measurements and our model’s predictions, we calculated

net current densities using [Eq. 26 & Eq. 27].

J ¼ jNa þ jK � jClð Þ:F ð26Þ

j ¼ ji:Ai þ je:Ae

Ai þ Ae
ð27Þ
Figure 6 Hydrostatic pressure fields calculated by the mouse lens model. 3D quarter section views of
the standing hydrostatic pressure fields calculated for the intracellular (A) and extracellular (B) spaces. The
inwardly gradient of extracellular pressure field indicated the direction of the fluid flow towards the centre
of the lens model. On the other hand, the gradient of the estimated intracellular pressure field indicates
outward fluid flow in this compartment of the lens. The values on the colour-bars are in kPa units.



Figure 7 Comparison of the calculated standing fields generated by the model. To facilitate the
comparison of the calculated standing fields, parameters are extracted from the equatorial radius of the
model and plotted against the normalized distance from the centre (r/a). (A) Plot of the extracellular Na+(■),
Cl- (●) and K+ (▼) concentrations (Molar units) versus relative distance from the lens core (r/a). (B) Plot of
the intracellular Na+(□), Cl- (○) and K+ (r) concentrations (Molar units) versus relative distance from the
lens core (r/a). (C) Plot of the intracellular (Δ), extracellular (▲) and the trans-membrane (*) electrical
potential fields (Volts units) versus relative distance from the lens core (r/a). (D) Plot of the intracellular (◊)
and extracellular (♦) hydrostatic pressure fields (kPa units) versus relative distance from the lens core (r/a).
The electrochemical and pressure gradients are oriented to direct the extracellular solute and fluid fluxes
towards the core of the lens, while fields in the intracellular space appear to favour an outward flow.
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The parameters and their units are listed in [Table 1]. The resultant 3D map of the

current densities throughout the lens are shown in Figure 9A, and the values extracted

for the surface densities located at both poles and the equator are listed in Table 7. Our

model clearly shows a net current influx at the poles and a net efflux at the equator

[Figure 9B], a pattern in agreement both in direction and magnitude with previous elec-

trophysiological measurements conducted on a variety of lenses [Table 7], [5,41]. What

our model also showed for the first time was the pattern in magnitude of net current

fluxes within the lens.

The calculated ionic current densities however, are only one leg of the microcircula-

tion system. To study the water fluxes generated by ion flow, we used the Stokes equa-

tions to calculate water velocities in the intracellular and extracellular spaces of our

model [Figure 10]. We observed that the extracellular fluid velocities were inward and

maximal at the poles [Figure 10A]. Conversely, the intracellular fluid velocities were out-

ward and maximal at the equator [Figure 10B]. Thus our model generates the theoretical

water fluxes first proposed by Mathias et al. [16], but unfortunately no experimental data

currently exists to verify the accuracy of the calculated magnitudes [Table 7].



Figure 8 Circulating ionic currents modelled in the mouse lens. 3D vector maps of circulating ionic
currents calculated from the model for the extracellular (A, C, E) and intracellular (B, D, F) space for Na+

(A, B), Cl- (C, D) and K+ (E, F). Extracellular Na+ fluxes seemed to be largest of the ionic fluxes with a
maximum located around the polar regions of the model. The intracellular fluxes on the hand were
outwardly and equatorially oriented. Extra and intracellular Cl- fluxes appeared to follow the same path into
the lens with close magnitudes to Na+ fluxes in the same compartment. The K+ extracellular fluxes seemed
to be negligible compared to other ions, while intracellular values were the largest and highly concentrated
around the equatorial region of the model. The numbers on the colour-bar are in (mMol/cm2.s) units.

Vaghefi et al. BioMedical Engineering OnLine 2012, 11:69 Page 20 of 26
http://www.biomedical-engineering-online.com/content/11/1/69



Figure 9 Net current densities in the lens. A: 3D vector map of net current densities calculated by the
model. The net current densities were clearly inwardly around the anterior and posterior poles and outward
around the equatorial plane of the model. B: Surface net current densities measured (upper panel) using
the vibrating probe technique around the lens [5], compared to surface values extracted from the 3D
model and plotted (lower panel). These panel show the agreement of modelled the surface currents with
the experimentally measured values. The numbers on the colour-bar are in A/cm2 units.
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Discussion
It has been proposed that the circulating currents observed experimentally in lenses from

a variety of species [5,14,41,52] drive an internal microcirculation system. In the absence

of a blood supply the microcirculation delivers nutrients and removes metabolic waste

products from inner fibre cells, while maintaining ionic homeostasis [7]. The circulating

fluxes are thought to be the net result of spatial differences in the location of ion channels

and transporters that determine local membrane permeability, and the density of gap

junction channels that direct intercellular fluxes within the lens [3]. We first created a 3D

mesh of the lens structure. We then implemented a series of equations that describe the

local transport properties of cells in different regions in the lens. Finally we solved these

equations using a FEM approach at each location of the model. In summary, we have pro-

duced a computer model of the lens that not only accurately predicts standing ionic con-

centrations [Figure 4] and electrical [Figure 5] gradients and the existence of a pressure

gradient [Figure 6], but also produces the first 3D vector maps of predicted current
Table 7 Comparison of modelled circulating currents and the existing experimental
mouse data

Parameter Model prediction Experimental data

Net current density (μA/cm2)

Jequator 17, outward 22 1, 20 ± 2.6 2, outward

Janterior pole 12, inward 26 1, 32 2, inward

Jposterior pole 10, inward 7 1, 42 2, inward

Fluid velocity (nm/s)

Vequator – intracellular 2.1, outward Not Measured

Vanterior pole – extracellular 190, inward Not Measured

Vposterior pole – extracellular 250, inward Not Measured

References: 1- (Robinson and Patterson 1982) [5]; 2- (Parmelee 1986) [41].



Figure 10 Circulating fluid velocity fields modelled in the mouse lens. 3D vector maps of circulating
fluid velocities calculated from the model for the extracellular (A) and intracellular (B) space. The maximum
fluid velocity in the extracellular space was inward at the anterior and posterior poles and the magnitude of
the extracellular fluid velocity dropped towards the equatorial region. Conversely, the intracellular fluid
velocity fields were predicted to be outward, suggesting the exit of the fluid via intracellular space
throughout the lens; with the peak of intracellular velocity calculated to occur in the equatorial region of
the lens. The numbers on the colour-bar are in cm/s units.
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[Figure 8] and fluid [Figure 10] fluxes inside the lens. The observed agreement between

experimentally measured values and those calculated by our model [Table 6 & Table 7],

suggest that our computer model is mimicking lens physiology and generates a microcir-

culation. However, the underestimation of the magnitude of the intracellular pressure gra-

dient highlights the fact that the model is only as robust as its underlying assumptions

and will require additional refinement and revision as new experimental data on lens

structure and function becomes available. In the following sections we discuss the

assumptions and limitations of our current model with the view to highlight areas where

further refinements of the model are required.

The solute flux in a fluid is governed by diffusion, electro-diffusion (if the solute is

charged) and advection. Diffusion is the random walk of particles due to Brownian mo-

tion. Electro-diffusion is the flux of a charged particle due to the force applied by an

electric field. Advection is the transport of a solute by a fluid that is moving. The phys-

ical origins of these transport processes and the derivations of the equations have been

discussed previously in the literature [31,32]. The implementation of these equations in

a computational platform is very well explained elsewhere. In this study, we implemen-

ted the driven equations and solved for a set of converged-upon 3D fields. This method

produced the calculated standing ionic concentration gradients in the lens predicted by

our model [Figure 4].These gradients in turn gave rise to a trans-membrane electric-

potential gradient field [Figure 5], based on the Hodgkin–Huxley model. Consider a

cell membrane that is not equally permeable to all the present ionic species on either

side of it. Here, the permeable ions will tend to move down their concentration gradient

taking their electrical charge with them as they go. Therefore, an electrical potential will

be generated, which will drive them in the reverse direction. An electrochemical equilib-

rium will be reached when the diffusive force equals the electromotive force.
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Our model has calculated a hydrostatic pressure gradient [Figure 6], the existence of

which has recently been confirmed experimentally [29]. While the orientations of the

calculated and measured pressure gradients are similar, they differ in magnitude (48kPa

compared to 10kPa). It has been proposed that this pressure gradient is generated by

the restricted flow of water from the centre to the periphery of the lens by a pathway

mediated by gap junction channels; since genetic manipulations to increase or decrease

gap junction numbers produces inverse changes in the pressure gradient. This illus-

trates that structural components of the lens can influence the magnitude of the pres-

sure gradient. This suggests that the difference between calculated and measured

pressure fields may reflect the absence of a structural feature not currently captured in

our model. In this regard we have recently identified a zone in the inner cortex of the

lens that exhibits a reduction in the penetration of solutes and water [19,22] that could

influence the magnitude of the calculated pressure gradient. Future updates of the

model will include such newly discovered structural elements, allowing their effect on

the calculated pressure fields to be assessed.

The electrochemical fields, combined with the hydrostatic pressure gradients [Figure 6]

in our model generate the circulating ionic currents throughout the lens [Figure 8 &

Figure 9]. The ionic fluxes are accompanied by water flows in the microcirculation sys-

tem. The water fluxes are generally described by the Navier–Stokes equations, which

are derived from the conservation of mass, momentum, and energy principals. Also,

the fluid flow in the lens can be described as slow or low-Reynolds number flow. It is

also reasonable to assume that the fluid flow in a normal lens is near or at steady-state

at all times [18]. These simplifications reduce the Navier–Stokes equations to the

Stokes equations. The derivation and implementation of these equations into a computa-

tional framework is discussed elsewhere [16,18]. In our model, solving this set of equa-

tions results in the calculation of the water flow velocity fields [Figure 10]. Although the

current model appears to accurately mimic the physiological homeostasis of the lens

[Table 6 & Table 7], there are still some aspects that need future improvement.

Our model presently has been implemented with a line suture structure which runs

from the anterior to the posterior of the lens, through its core [Figure 3A&B]. However

the mouse has a Y-shaped suture that rotates 180 °C from the anterior to the posterior

pole [42]. Hence, we are planning to improve the current model with an anatomically

accurate asymmetrical 3D structure of the sutures. In our current model, the 3D extra-

cellular solute diffusion coefficients are constant throughout. However, we [21,53] and

others [54-56] have recently identified a barrier to the movement of solutes in the lens,

using variety of techniques. We strongly believe that the existence of this barrier is very

important in shaping the fluid dynamics of the lens and in general its microcirculation.

Hence, we will implement the imaged barrier as a part of continuous improvement of

our computational model.

Another important structural feature of the ocular lens is the presence of a Gradient

of Refractive Index (GRIN), which acts to correct for inherent spherical aberration to

improve the optical properties of the lens [57]. This GRIN profile of the lens is directly

dependant on the local water/protein concentration makeup of the lens [58,59]. Re-

cently, we have experimentally showed that the water/protein gradient of the lens is ac-

tively upheld by the microcirculation system [19]. Hence, another step in the

improvement of the current model is to add equations to estimate the concentration
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gradient of water in the lens. Using that calculated field, we will be able to estimate the

3D GRIN maps of the lens. We would then use these 3D GRIN maps and optical ray-

tracing software to produce a model that links lens physiology to the optical properties

of the lens.

Our first generation 3D finite element model of lens structure and function describes

ion and fluid dynamics in the mouse lens. We chose to model the mouse lens as ion

and fluid dynamics have been extensively studied in this species [3,4,15,16]. We also be-

lieve the model is an essential first step towards creating a comprehensive model of the

human lens. Any model of the human lens model would need to include its more com-

plex structural features and would need to be created so that its dimensions could be

altered to study the effects of lens growth and ageing on the circulation system [60].

This future model would enable us to study the changes in lens physiology thought to

underlie the initiation of age related nuclear cataract.
Conclusion
During this project, a 3D model of the flux movements inside the mouse ocular lens

was designed and executed using our high performance computer (HPC). Reviewing

the results of the current model, it appears that solute fluxes, accompanied by water,

enter the lens via the extracellular space all around it but with larger magnitudes

around the polar regions. Among these inwardly extracellular solute fluxes, the Na+

fluxes were seemed to be dominant followed closely by Cl- fluxes. Conversely, the sol-

ute effluxes appear to be via the intracellular space and seemed to be more pronounced

around the equatorial region of the lens. The K+ fluxes were found to be the primary

intracellular fluxes, caused mainly by exterior Na+/K+ ATPase pumps. The net effect of

these influx and effluxes were thought to be best explained by the calculated net

current densities. The pattern of these net current densities at the surface of the lens

was similar to previous experimental findings [5,6,52]. Same fields modelled inside the

lens found to be in agreement with the microcirculation theory of the lens [3,9,16,61].

This study brings together all the available experimental and theoretical data on the

fluid dynamics of the ocular lens in order to create a comprehensive 3D model of this

tissue. Previous studies have investigated the links between the steady state fluxes in

the lens and its physiological homeostasis [62-65]. Using our computational model, we

would be able to study the connections between the biodynamic natures of these per-

turbations and their functional consequences.
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