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Abstract

Background: Approximately one-third of the human lifespan is spent sleeping. To
diagnose sleep problems, all-night polysomnographic (PSG) recordings including
electroencephalograms (EEGs), electrooculograms (EOGs) and electromyograms
(EMGs), are usually acquired from the patient and scored by a well-trained expert
according to Rechtschaffen & Kales (R&K) rules. Visual sleep scoring is a time-
consuming and subjective process. Therefore, the development of an automatic
sleep scoring method is desirable.

Method: The EEG, EOG and EMG signals from twenty subjects were measured. In
addition to selecting sleep characteristics based on the 1968 R&K rules, features
utilized in other research were collected. Thirteen features were utilized including
temporal and spectrum analyses of the EEG, EOG and EMG signals, and a total of
158 hours of sleep data were recorded. Ten subjects were used to train the Discrete
Hidden Markov Model (DHMM), and the remaining ten were tested by the trained
DHMM for recognition. Furthermore, the 2-fold cross validation was performed
during this experiment.

Results: Overall agreement between the expert and the results presented is 85.29%.
With the exception of S1, the sensitivities of each stage were more than 81%. The
most accurate stage was SWS (94.9%), and the least-accurately classified stage was S1
(<34%). In the majority of cases, S1 was classified as Wake (21%), S2 (33%) or REM
sleep (12%), consistent with previous studies. However, the total time of S1 in the 20
all-night sleep recordings was less than 4%.

Conclusion: The results of the experiments demonstrate that the proposed method
significantly enhances the recognition rate when compared with prior studies.

Keywords: Sleep Staging, Discrete Hidden Markov Model (DHMM),
Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG)
Introduction
On average, humans spend approximately seven to eight hours a day sleeping. This is

equivalent to one-third of the human lifetime, and demonstrates the importance of

sleep. At night, an eight hour sleep comprises four or five sleep cycles; each cycle lasts

approximately 90 minutes and comprises different stages including light sleep (Stages

1 & 2), deep sleep (Slow Wave Sleep) and rapid eye movement (REM) [1]. The deep

sleep stages become shorter as the sleep cycle progresses.

Sleep analysis is not only helpful in diseased conditions but aids several psycho-

physiological analyses. In human physiology, a good deep sleep (SWS) stage can aid
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physical recovery; in addition, a good rapid eye movement (REM) stage can improve

learning ability and memory. Sleep diseases including insomnia and obstructive sleep

apnea, seriously affect a patient’s quality of life. Without restrictive criteria, the preva-

lence of insomnia symptoms is approximately 33% in the general population. Obstruct-

ive sleep apnea affects over 2% of adult women and 4% of adult men [1]. These sleep

issues may cause daytime sleepiness, irritability, depression, anxiety or even death.

To diagnose sleep issues, all-night polysomnographic (PSG) recordings including

electroencephalograms (EEGs), electrooculograms (EOGs) and electromyograms

(EMGs), are usually acquired from patients, and the recordings are scored by a well-

trained expert according to the Rechtschaffen & Kales (R&K) rules presented in 1968.

According to the R&K rules, each epoch (i.e., 30 s of data) is classified into one of the

sleep stages including wakefulness (Wake), non-rapid eye movement (stages 1–4, from

light to deep sleep) and rapid eye movement (REM). Recently, stages 3 and 4 were

combined and are now known as the slow wave sleep stage (SWS) [2]. Visual sleep

scoring is a time-consuming and subjective process. Therefore, automatic sleep staging

methods including rule-based methods [3], artificial neural networks (ANN) [4] and

hidden Markov models (HMM) [5-7], have been developed. In [5], a GOHMM method

with five features calculated from the signals measured by two EEG channels (C3 and

C4) and an EMG channel was used for sleep staging. The authors used sleep data from

five subjects for training and four subjects for testing. Moreover, in [6] the GOHMM

was applied with the signals measured from one EEG channel (C3) for sleep staging.

The authors used the sleep data from twenty subjects for training and twenty subjects

for testing. In addition, L. G. Doroshenkov et al. [7] explored sleep staging using the

HMM method, with the signals measured from two EEG channels (Fpz-Cz and Pz-Oz).

HMM permits analysis of non-stationary multivariate time series by modeling the

state transition probabilities and the probability of the observation of a state. During

the HMM process, the result of the previous state will influence the state recognition

result of the next state. This is similar to the process for sleep staging, which should

consider the relationship between the previous sleep stage and the next sleep stage. As

it possesses the properties of successive stage transition, the HMM is a promising

model for sleep staging.

According to the type of probability distributions used in HMMs, they can be cate-

gorized as Continuous Hidden Markov Models (CHMMs) and Discrete Hidden Markov

Models (DHMMs). The DHMM provides more stable recognition results and faster

training, with a recognition accuracy that is not less than that of the CHMM. There-

fore, the DHMM was adopted for sleep staging during this study. The useful features of

the sleep signals are selected to train the DHMM. Although HMM-based sleep staging

has been explored during previous studies [5-7], the accuracy of these results was poor,

probably because sleep stage transition conditions were not included in the HMM

modeling process. Indeed, the probability of a sleep stage transition is highly dependent

on the current stage; the probability of particular stages appearing after the current

stage is low. These transition conditions should be considered during HMM modeling

to improve the accuracy of the modeling results, and consequently, the accuracy of

sleep staging. Therefore, this report proposed a transition-constrained DHMM based

on sleep stage transition conditions. To rule out impossible or infrequent stage transi-

tions, the probability matrices in the proposed transition-constrained DHMM were
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adjusted to accommodate sleep stage transitions during the training phase to improve

the recognition rate. In the future, the constructed HMM model could become a reli-

able computer-assisted tool for clinical staff to increase the efficiency of sleep scoring.
Method
The main purpose of this section is to provide an understanding of the basic elements

of sleep stages. First, polysomnography, which includes electroencephalograms (EEGs),

electrooculograms (EOGs) and electromyograms (EMGs), among others, as shown in

Figure 1 will be introduced [8]. Second, the classification of sleep stages used in the R&K

rules will be introduced, together with an explanation as to why we adopted the new

sleep staging classification. Finally, a number of modified sleep stages and the smoothing

method for staging results are described.
Polysomnography

Polysomnography (PSG) is a comprehensive recording of the biophysiological changes

that occur during sleep. PSG monitors several body functions during sleep including

brain activity (electroencephalogram, EEG), eye movement (electrooculogram, EOG),

muscle activity or skeletal muscle activation (electromyogram, EMG), and heart rhythm

(electrocardiogram, ECG) [8,9]. During this study, all-night polysomnographic sleep

recordings were obtained from 20 healthy subjects (12 males and 8 females) ranging

from 19 to 23 years of age (mean= 21.2 ± 1.1 years). These measurements were

approved by the internal review board of National Cheng Kung University. The subjects

were interviewed concerning their sleep quality and medical history. None of the sub-

jects reported any history of neurological or psychological disorders. The all-night PSGs

were recorded in the sleep laboratory at the cognitive institute of National Cheng Kung

University. There was no outside interference during data collection, and no medica-

tions were used to induce sleep.

The recordings included six EEG channels (F3-A2, F4-A1, C3-A2, C4-A1, P3-A2, and

P4-A1, according to the international 10–20 standard system), two EOG channels
Figure 1 Typical polygraphic recordings during the wake (WK), stage 1 (S1), stage 2 (S2) light sleep,
slow-wave sleep (SWS) associated with deep sleep, and rapid-eye movement (REM) states. Legend:
Each raw shows the electroencephalography (EEG), electrooculography (EOG) and chin electromyography
(EMG) data during the corresponding sleep stage.
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(positioned 1 cm lateral to the left and right outer canthi), and a chin EMG channel

(Siesta 802 PSG, Compumedics, Inc.). The sampling rate was 1 K samples/second with

16-bit resolution. The 20 PSG sleep recordings were visually scored by a sleep specialist

using the R&K rules with a 30-s interval (termed the epoch). Figure 1 presents typical

polysomnographic recordings corresponding to various sleep stages.
Visual scoring

The standard of visual sleep staging is based on the R&K rules, which were proposed

by Rechtschaffen and Kales in 1968 [10]. According to these rules, stages are scored

epoch-by-epoch in 20–30 second intervals. The sleep is divided into six stages: stage

wake (Wake), stage 1 (S1), stage 2 (S2), stage 3 (S3), stage 4 (S4) and stage rapid eye

movement (REM) [4]. The Rechtschaffen and Kales sleep staging criteria is listed in

Table 1.

The characteristics of stages S3 and S4 are very similar. Therefore, to facilitate simple

and accurate sleep staging, the American Academy of Sleep Medicine (AASM) group

combined stages S3 and S4 into the deep sleep, or slow wave sleep (SWS) stage, in

2007 [2]. The term SWS is used to reinforce the physical meaning of this stage. There-

fore, during this study the five-stage classification: Wake, S1, S2, SWS, and REM, was

utilized.

In addition, if more than half of the EEG or EMG signal epochs were unidentifiable

due to amplifier blocking or muscle activity, the epoch was labeled as an arousal stage

or a body movement stage. Consequently, a new temporary stage called the movement

stage (Mov) was added to the visual scoring if the amplitude of EEG signals was over

200 μV. This temporary movement stage includes arousal and body movement. After

the smoothing process at the end of sleep recognition, the movement stage will be

replaced by wake if arousal occurs or by other sleep stages if body movement occurs

[8].
Processing for sleep data

The DHMM sleep staging system analyzes data from the central EEG (C3-A2), the dif-

ference between the two EOGs, and the chin EMG. After down-sampling the signals to

256 samples/second for lower computational complexity, the EEG and EOG data were

filtered with an eighth-order Butterworth band-pass filter with a cutoff frequency of
Table 1 Rechtschaffen and Kales sleep staging criteria [10]

Sleep
Stage

Scoring Criteria

Wake When the subject closes their eyes, >50% of the page (epoch) consists of alpha (8–13 Hz) activity or
low-voltage, mixed (3–7 Hz) frequency activity.

Stage 1 50% of the page (epoch) consists of related low-voltage mixed (3–7 Hz) activity. Slow rolling eye
movements lasting several seconds are often observed in early stage 1.

Stage 2 Appearance of sleep spindles and/or K complexes and <20% of the epoch may contain high-
voltage (>75 μV, <2 Hz) activity. Sleep spindles and K complexes must each last >0.5 seconds.

Stage 3 20%-50% of the epoch consists of high-voltage (>75 μV), low-frequency (<2 Hz) activity.

Stage 4 >50% of the epoch consists of high-voltage (>75 μV, <2 Hz) delta activity.

Stage REM Relatively low-voltage mixed frequency EEG with episodic rapid eye movements and absent or
reduced chin EMG activity.
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0.5–30 Hz, and the EMG data were filtered with a 5–100 Hz eighth-order Butterworth

band-pass filter. The continuous time signals were segmented with every 30-s epoch.

Before extracting the spectral features, the signal was segmented into non-

overlapping intervals of two seconds for a 512-point fast Fourier transformation (FFT)

calculation. The spectrums corresponding to the 15 2-s segments were averaged to rep-

resent the spectrum for a 30-s epoch. Table 2 lists the 13 features used in this paper

[4,9,11-15].

Power spectrum (PS)

After the FFT, the power spectrum (dB) was summed among the band 0–30 Hz for the

EEG, EOG and EMG, and this was considered the total power. The total powers in the

EEG and the EMG were used as features and for the calculation of the power ratio.

The total power in the EOG was used for the calculation of the power ratio. It was

obtained using the following equation:

PStotal ¼
X30

f¼0
PS fð Þ ð1Þ

where PS(f ) is the power of the frequency f.

Power ratio (PR)

After the FFT, for one frequency band in a 30-sec epoch, which has 15 powers, the

mean power of each frequency band was collected. Thereafter, the ratio of each band

to the total power 0–30 Hz was calculated and considered a feature. The power ratio is

given by the following equation:

PR ¼
Xj

f¼i
PS fð ÞX30

f¼0
PS fð Þ

ð2Þ

where i and j indicate the ranges of the respective spectral power band for the PR

features. Table 2 presents the total bands of the power ratio in our features (0–

4 Hz, 4–8 Hz, 8–13 Hz, and 22–30 Hz for EEG, and 0–4 Hz for EOG).
Table 2 Features for sleep scoring

No. Type Feature Source

1 PS Total power of 0–30 Hz EEG

2 PS Total power of 0–30 Hz EMG

3 PR 0-4 Hz/0-30 Hz EEG

4 PR 4-8 Hz/0-30 Hz EEG

5 PR 8-13 Hz/0-30 Hz EEG

6 PR 22-30 Hz/0-30 Hz EEG

7 PR 0-4 Hz/0-30 Hz EOG

8 SF Mean frequency of 0–30 Hz EEG

9 SF Mean frequency of 0–30 Hz EMG

10 DR Alpha ratio EEG

11 DR Spindle ratio EEG

12 DR SWS ratio EEG

13 EMG energy Mean amplitude EMG

* PS, Power spectrum; PR, Power ratio; SF, Spectral frequency; DR, Duration ratio.



Pan et al. BioMedical Engineering OnLine 2012, 11:52 Page 6 of 19
http://www.biomedical-engineering-online.com/content/11/1/52
Spectral frequency (SF)

After FFT, the mean frequency of spectral power (SF) was calculated for the EEG and

the EMG. The SF was defined by the equation:

SF ¼
X30

f¼0
f � PS fð ÞX30

f¼0
PS fð Þ

ð3Þ

Duration ratio (DR)

Alpha ratio The alpha ratio is the ratio between the alpha windows and the total

windows in an epoch. Two eighth-order bandpass Butterworth filters with passbands

of 8–13 Hz and 22–30 Hz were designed. In addition to the normally used alpha

band of 8–13 Hz, a beta band of 22–30 Hz was added as a feature, as we found

that Wake had high power in the 22–30 Hz band. The two filtered signals were

combined, and a threshold (0.5) was used to detect it.

Spindle ratio The spindle ratio is the ratio between the spindle windows and the total

windows in an epoch. FFT and Butterworth bandpass filtering among the sigma band

of 12–15 Hz were used to calculate the spindle ratio. FFT was used to determine if the

power of the sigma band (12–15 Hz) was high, and the filtering signal was used to de-

tect any large, sudden amplitude changes.

SWS ratio Similar to the alpha and spindle ratio, the SWS ratio is the ratio between

the SWS windows and the total windows in an epoch. We designed a third-order band-

pass Butterworth filter with a passband of 0.5-2 Hz. This was predominantly used to

separate SWS from the other stages.

EMG energy

The mean value of the absolute amplitude of the total data points in an epoch was cal-

culated from the EMG signal and considered a feature. During sleep, particularly dur-

ing the REM stage, EMG activity decreases compared with the activity while awake.

This feature can be used for artifact detection. The EMG energy increases during body

movement.

DHMM for Sleep Staging

This section introduces the proposed strategy for sleep staging by the proposed

transition-constrained DHMM. These methods include the method for generating the

codebook for the quantization of sleep signal features and the method for modeling the

transition-constrained DHMM for sleep recognition.

Vector Quantization and Codebook Generation

Each epoch has thirteen features after pre-processing and feature extraction in this

study, with the thirteen features being formed as a feature vector. As the feature vectors

are real number vectors in real space with thirteen dimensions, vector quantization of

these feature vectors is necessary to reduce the computational burden. Therefore, a

codebook for the process of feature vector quantization should be created to allow the

results of the vector quantization to be a set of observation codes for DHMM imple-

mentation and recognition.
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To create the codebook, the range of values for each element of the feature vectors in

the samples used for training was obtained. The interval between the upper bound and

lower bound of the range of each element was divided equally into m subintervals, where

m is the number of groups into which the feature vectors were classified. Thereafter, m

vectors were generated to form the initial codebook. Initially, the value of each element

of the m vectors was randomly generated with a value in the corresponding subinterval.

To train the codebook, we calculated the distance dk between the feature vector

vf= [vf0vf1. . .vfn]
T and the kth vector Vck= [Vck0Vck1. . .Vckn]

T in the codebook as follows:

dk vf
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

vfi � Vcki
� �2s

ð4Þ

After obtaining all values of dk through the codebook, vf was classified in the group

with the smallest dk. According to the updated feature vectors of each group, a new

center vector (a row vector in the codebook) was obtained:

V̂ k ¼ 1
Nk

�
XNk

n¼1

vkfn ð5Þ

where V̂ k is the new center vector (a new row vector in codebook) of the kth group, vfi
k

is the ith feature vector in the kth group, and Nk is the number of feature vectors in

the kth group. These two steps were repeated until the codebook converged, complet-

ing the training process of the codebook.

DHMM and Sleep Stage

During sleep staging, the current stage usually has a significant relationship with the

next stage. That is, the next stage will transit based on the current stage. For example,

if the current stage is Wake, the next stage may be Wake or S1. Hence, the probability

of a specific sleep stage transition is highly dependent on the current stage. The prob-

ability of a certain stage appearing after the current stage is limited. For example, the

probability of Wake appearing after SWS is low [8]. Based on the expert manual staging

results, the sleep stage transition rules were obtained and are depicted in Figure 2; all

of the allowable transitions are indicated by arrows.
Figure 2 Allowable sleep stage transitions in healthy subjects.
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While the states of the DHMM are unobservable, the outputs in each state are ob-

servable. Each state has a probability distribution over the possible output tokens.

Therefore, the sequence of output tokens generated by the DHMM provides informa-

tion concerning the sequence of hidden states. To apply the DHMM to sleep staging,

the features introduced in Sec. II were defined as the output tokens (observation), while

the sleep stages were defined as the hidden states of the DHMM. The parameters for

the DHMM [16] were defined as follows:

λ: DHMM model, λ= (A,B,π)

A: A= [aij], aij is the probability of state xi transferring to state xj

aij ¼ P qt ¼ xj qt�1 ¼ xij Þ�
B: B= [bj(k)], bj(k) is the probability of the kth observation, which is observed from

state xj, i.e., bj(k) = P(ot= vk|qt= xj)

π: π= [πi], πi is the probability of the case where the initial state is xi
πi ¼ P q1 ¼ xið Þ

X: the state vectors of the DHMM

X ¼ x1; x2; � � �; xNð Þ
V: the observation event vector of the DHMM

V ¼ v1; v2; � � �; vMð Þ
O: the observation results of the DHMM

O ¼ o1; o2; � � �; oT
Q: the resulting states of the DHMM

Q ¼ q1; q2; � � �; qT
Note that, for the application of the DHMM to sleep staging, the states xi, i= 1, 2, . . ., 6

in the DHMM correspond to the sleep stages Wake, S1, S2, SWS, REM, and Mov,

respectively.

Training the transition-constrained DHMM

This subsection introduces training of the transition-constrained DHMM based on the

allowable sleep stage transitions in Figure 2. First, the probability of the observations

according to the DHMM model λ= (A,B,π) was calculated using the following equa-

tion (6) [17]:

PðO λj Þ ¼
X
Q

PðO Q; λj ÞPðQ λj Þ

¼
X
q1...qT

πq1bq1 o1ð Þ � aq1q2bq2 o2ð Þ � � � aqT�1qT bqT oTð Þ: ð6Þ

This equation enables an evaluation of the probability of the observations O based on
the DHMM model λ= (A,B,π). However, the amount of time needed to evaluate P

(O|λ) directly would be exponential to the observation number T. For this reason, a

Forward Algorithm [16] was applied to reduce the computation time for equation (6)

and is described as follows.

The forward algorithm The Forward Algorithm can be described by three steps:

initialization, recursion and termination. The details are listed below and are depicted

in Figure 2.
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Initialization:

α1 ið Þ � πibi o1ð Þ; 1≤i≤N ð7Þ

Recursion:
αtþ1 jð Þ ¼
XN
i¼1

αt ið Þaij
" #

bj otþ1ð Þ; 1≤t≤T � 1; 1≤j≤N ð8Þ

Termination:
PðO λj Þ ¼
XN
i¼1

αT ið Þ ð9Þ

The Forward Algorithm reduces the complexity of the calculations from 2TNT to
N2T [16].

To train the DHMM model parameters λ= (A,B,π) based on the sleep data, some

notations were defined for convenience as follows:

Eij the event of the transition from state xi to state xj
Ei• the event of the transition from state xi to leave

E•j the event of the transition from other states to state xj
Ehi the event of state xi appears at the initial state

n(Eij) the number of the transition from state xi to state xj
n(Ei•) the number of the transition from state xi to other states

n(E•j) the number of the transition from other states to state xj
n(E•j, o= vk) the number of the transition from other states to state xjwith observation

code vk
n(Ehi) the number of the event of state xi appears at the initial state

To train A,B, andπ of the DHMM, the hidden states for each observation were esti-

mated with the initial A,B, andπ. Thereafter, the values n(Eij), n(Ei•), n(E•j), n(E•j, o= vk),

and n(Ehi) were computed for all training data. Subsequently, the elements in matrices

A,B, andπ were updated as follows,

�aij ¼
n Eij
� �

n Ei�ð Þ ð10Þ

�bj kð Þ ¼ n E�j; o ¼ vk
� �

n E�j
� � ð11Þ

�πi ¼ n Ehið Þ
nTD

; ð12Þ

where nTD is the number of training data. The transition matrix A stores the probability

of state xj following state xi. In the proposed transition-constrained DHMM, to rule

out impossible sleep stage transitions, the aij corresponding to the impossible transition

was set to zero according to the sleep stage transition diagram presented in Figure 2.

For example, the situation of SWS following Wake is impossible, and a14 is set to zero.

The above procedures were repeated until the matrices A,B, andπ converged. Figure 3

illustrates the training process for the DHMM sleep model.



Figure 3 Illustration of the Forward Algorithm.
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States guess from DHMM

The states hidden behind the DHMM can be estimated according to the measured ob-

servation of each state by the DHMM. This is the most important process in applying

the DHMM to sleep staging. In this paper, the Viterbi Algorithm [16] was used to cal-

culate the hidden states in the DHMM:

The viterbi algorithm Initialization:

δ1 ið Þ � πibi o1ð Þ; 1≤i≤N ð13Þ

Recursion:
δt jð Þ ¼ max
1≤i≤N

δt�1 ið Þaij
� �

bj otð Þ; 2≤t≤T ; 1≤j≤N ð14Þ

ψt jð Þ ¼ arg max
1≤i≤N

δt�1 ið Þaij
� �

; 2≤t≤T ; 1≤j≤N ð15Þ

Termination:

P� ¼ max
1≤i≤N

δT ið Þ½ � ð16Þ

q�T ¼ arg max
1≤i≤N

δT ið Þ½ �; ð17Þ

where qT
* is the estimated state in time T.
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Optimal state sequence backtracking for estimated states qt
*:

q�t ¼ ψtþ1 q�tþ1

� �
; t ¼ T � 1;T � 2; . . . ; 1: ð18Þ

In the Viterbi Algorithm, δt(j) records the maximum probability transition from the

previous state xi to the present state xj, and ψt(j) records the state with the estimated

highest possibility from the previous state. The Viterbi Algorithm used for calculating the

state of the DHMM from equations (13)-(18) is illustrated in Figure 4 for clarification.

Proposed strategy for sleep staging

In this section, the strategy for sleep staging is described. In the DHMM recognition

process, the transition-constrained DHMM model should be trained and then used for

sleep staging. As the transitions between hidden states of the DHMM are similar to

those between the sleep stages, the sleep stages were assigned to be the hidden stages

of the DHMM (see Figure 5). Consequently, for the DHMM λ= (A,B,π) applied to

sleep staging, the matrix A indicates the probability of transition from one sleep stage

to another, the matrix B indicates the probability of the observation from the sleep

stage to which the feature vector belongs, and the matrix π indicates the probability

that a sleep stage occurs during the initial stage in a sleep sample.

The features of each epoch via vector quantization become the observations and were

used to train the DHMM or estimate the sleep stage by the DHMM. Each observation

code, which is the feature vector calculated from a 30-second sample of a sleep stage,
Figure 4 The DHMM sleep model training process.



Figure 5 Illustration of the backtracking step of the Viterbi Algorithm [16].
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was used to estimate the sleep stage. Therefore, the total sleep stages for a sleep sample

could be estimated by testing a sequence of observation codes through the DHMM.

Figure 6 presents the structure of a DHMM used for sleep staging.

Based on the discussion above, the sleep staging procedure is summarized as follows:

Step 1. Train codebook by K-mean method using the sleep signal samples for training.

Step 2. Generate DHMM model by training (A,B,π) under the constraints of the

sleep stage transitions given in Figure 2.

Step 3. Create a quantized observation code from an epoch’s feature vector to be

quantized using the codebook in Step 1.

Step 4. Perform the Forward Algorithm using (A,B,π) in the DHMM. Recognize the

sleep stage with the highest probability at the end of the sleep stage sample.

Step 5. Backtrack using the Viterbi Algorithm to deduce the transference of all sleep

stages.
Figure 6 Structure of a DHMM for sleep staging.
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Statistics

To evaluate the performance of the proposed sleep staging method, 10 all-night PSG

recordings from 10 subjects were used for testing. The Cohen’s kappa coefficient [18]

was calculated to assess the robustness of our system. Cohen’s kappa coefficient (K) is a

statistical measure of inter-rater agreement among two or more raters. The Cohen's

kappa K is defined by equation (19):

K ¼ Po � Peð Þ= 1� Peð Þ ð19Þ

where Po is the relative observed agreement among raters or the total agreement prob-

ability, and Pe is the hypothetical probability of chance agreement. This is thought to

be a more robust measure than simple percent agreement calculations, as κ considers

agreements that occur by chance. The interpretation of kappa coefficients by Landis

and Koch [19] is as follows: values of less than 0.00 indicate poor agreement; 0.00 to

0.20 indicate slight agreement; 0.21 to 0.40 indicate fair agreement; 0.41 to 0.60 indicate

moderate agreement; 0.61 to 0.80 indicate substantial agreement; and greater than 0.80

indicate excellent agreement. The average kappa (0.73) of our system demonstrated

substantial reliability.

Experiment
This section will reveal the experimental results based on the strategy described in the

previous section. The EEG, EOG and EMG signals of twenty subjects between the ages

of nineteen and twenty-seven years were measured. These data were then used for the

sleep staging experiment. The specs used during the experiments for the DHMM are

presented in Table 3. The experimental results are described and discussed in the fol-

lowing subsections.

Experiment results

During the experiment, we used the signals measured from single EEG channel (C3-

A2), EMG and EOG to generate the thirteen features. A total of 158 hours of sleep data

were recorded and then used to train ten subjects and test ten subjects.

The performance of different codebook sizes and their respective recognition rates

were compared using the DHMM. The results are listed in Table 4, where the mean of
Table 3 Summary of the specs of the DHMM in the experiments

Items Specs of the DHMM

Time duration for one epoch 30 seconds

Epoch number for a subject 900

Number of training data 10

Number of testing data 10

Size of codebook 30/40/50/60 (four different codebook sizes were used)

Hidden state 5 (equal to the five sleep stages)

Observation code 30/40/50/60 (equal to the codebook size)

λ= (A, B, π)

A matrix dimensions equal to Hidden state×Hidden state

B matrix dimensions equal to Observation code×Hidden state

π matrix dimensions equal to Hidden state× 1
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the recognition results is defined as the number of correctly recognized epochs over

the number of the total epochs in a sample subject. The mean value of the total sleep

stage recognition rate (MSSRR) is determined by equation (20):

MSSRR ¼

X5
i¼1

Ci
,

ET

ð20Þ

where Ci is the number of correct recognitions for the ith stage and ET is the total

epochs.

According to the results in Table 4, we can conclude that a larger codebook size con-

tributes to better recognition rates (i.e., codebook = 50 or 60). However, when the size

of the codebook reaches 60, the recognition rate no longer increases, and the kappa co-

efficient decreases. Moreover, the training time increases greatly when the size of the

codebook reaches 60. Thus, a codebook size of 50 was chosen as the optimal number

for the experiments.

With the exception of S1, the sensitivities of the stages were higher than 81%. The

most accurately classified stage was SWS (94.9%), and the least accurately classified
Table 4 Recognition rates and kappa coefficient for different sizes of codebook by
DHMM using ten testing subjects

codebook= 30 DHMM (MSSRR: 83.39% and K=0.69)

Manual scoring Wake S1 S2 SWS REM

Wake (%) 81.11 8.87 7 0.09 2.93

S1 (%) 24.38 26.6 31.08 3.96 13.97

S2 (%) 4.77 1.24 77.03 11.58 5.39

SWS (%) 0.55 0 3.54 95.92 0

REM (%) 0 1.72 2.94 0.49 94.84

codebook= 40 DHMM (MSSRR: 84.36%K=0.71)

Manual scoring Wake (%) 86.82 4.29 6.63 0.09 2.17

S1 (%) 29.17 30.31 28.59 0.20 11.72

S2 (%) 2.94 1.14 82.41 10.95 4.35

SWS (%) 0.31 0 4.55 95.14 0

REM (%) 0 5.85 5.33 0.11 88.7

codebook= 50 DHMM (MSSRR: 85.29%K=0.73)

Manual scoring Wake (%) 88.81 2.64 6.29 0.09 2.17

S1 (%) 21.44 33.62 33.19 0.21 11.54

S2 (%) 2.16 1.08 81.58 11.46 3.72

SWS (%) 0.23 0 4.85 94.92 0

REM (%) 0 3.47 5.05 1.34 90.14

codebook= 60 DHMM (MSSRR: 85.12%K=0.69)

Manual scoring Wake (%) 83.68 7.57 5.82 0.08 2.84

S1 (%) 26.41 26.71 33.2 0 13.67

S2 (%) 2.66 1.66 82.3 9.82 3.56

SWS (%) 0 0 7.24 92.76 0

REM (%) 1.23 2.3 6.07 0 90.4
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stage was S1 (<34%). In the majority of cases, S1 was classified as Wake (21%), S2

(33%) or REM sleep (12%), consistent with previous studies [5-7]. However, the total

time of S1 in the 20 all-night sleep recordings was less than 4%.

Moreover, Table 5 presents the subject-by-subject percentage agreements and

Cohen’s kappa coefficients of the manual scoring versus automatic scoring. The overall

agreement of each subject ranged from 77.09% to 92.62%, and the average sensitivity

was 85.29% (S.D. = 5.5). These results demonstrate that the proposed sleep scoring

method can achieve stable performance across subjects. The average kappa value was

κ= 0.73 (S.D. = 0.05), and the individual kappas ranged from 0.64 to 0.78 for the PSGs

of 10 subjects. The results represented a substantial agreement between our method

and the scoring of the expert.

The 2-fold cross validation was performed during our experiment. The data set was

divided into two subsets, each containing ten subjects. Each time one of the two sub-

sets is used as the test set and the other as a training set. This evaluation process was

repeated five times with random shuffling of the training–testing datasets. The average

overall agreement was 84.68% (S.D. 1.61%). This result demonstrated the robustness of

our method.
Comparison with the existing literature

To compare the results of this paper with existing research concerning HMM-based

sleep staging, previous experimental results are listed in Table 6. Each of these papers

was published prior to 2007. Therefore, the six-stage (Wake, S1, S2, S3, S4, and REM)

classification method was used. To compare these results with our experiment, the rec-

ognition rates of S3 and S4 in the existing literature were summed in the SWS stage. In

addition, the kappa coefficient of the existing research was calculated and is presented

in Table 6.

Table 6 (a) includes the results from the Austrian Research Institute for Artificial

Intelligence, 2002 [5], where the authors used a GOHMM method with five features

calculated from the signals measured by two EEG channels (C3 and C4) and EMG

recorded during sleep. The authors used sleep data from five subjects for training and
Table 5 Subject-by-subject agreement percentages and Cohen’s kappa coefficients

Subject No. Wake (%) S1 (%) S2 (%) SWS (%) REM (%) Overall (%) Kappa

1 100 38.43 86.89 93.97 85.19 85.22 0.77

2 95.31 67.35 83.73 87.5 78.76 83.71 0.78

3 100 24.66 89.42 100 90.44 90.41 0.77

4 93.33 8.53 69.53 100 83.91 78.95 0.64

5 100 31.33 67.77 100 87.82 77.09 0.72

6 75 28.77 93.78 96.84 87.26 92.14 0.71

7 100 22 90.84 100 97.33 92.62 0.78

8 100 9.11 76.97 78.91 94.96 80.26 0.65

9 84.48 48 71.59 97.51 100 84.11 0.76

10 40 58 85.25 94.44 95.76 88.35 0.69

Mean (std) 88.81 (19.1) 33.62 (19.1) 81.58 (9.4) 94.92 (6.9) 90.14 (6.8) 85.29 (5.5) 0.73 (0.05)

S.D., standard deviation.



Table 6 Recognition rate and kappa coefficient in other research

(a) GOHMM [5] (kappa=0.36)

Manual scoring Wake S1 S2 SWS REM

Wake (%) 86 11 0 0 3

S1 (%) 52 22 6 7 13

S2 (%) 13 12 14 24 37

SWS (%) 1 0 4 95 0

REM (%) 32 16 13 13 26

(b) GOHMM [6] (kappa= 0.50)

Manual scoring Wake (%) 79 10 4 0 7

S1 (%) 21 24 19 5 31

S2 (%) 3 8 36 24 29

SWS (%) 0 0 6.5 93.5 0

REM (%) 14 13 4 1 68

(c) HMM [7] (kappa= 0.52)

Manual scoring Wake (%) 51.04 47.30 0.41 0 1.24

S1 (%) 0 4.84 48.39 0 46.77

S2 (%) 0 0 68.62 29.34 2.04

SWS (%) 0 1.09 0 98.91 0

REM (%) 0 0.94 4.72 8.02 86.32
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four subjects for testing. Table 6 (b) presents the results from [6], in which the

GOHMM was used with the signals measured from a single EEG channel (C3) during

sleep. In [6], sleep data from twenty subjects were used for training and twenty subjects

for testing. The results in Table 6 (c) are from the study by L. G. Doroshenkov, 2007

[7], in which the HMM method was used with the signals measured from two EEG

channels (Fpz-Cz and Pz-Oz). The sleep data for these experiments are from the inter-

national database PhysioNet [20]. The kappa coefficient of our method is higher than

those of the aforementioned studies.

Figure 7 presents the recognition rates of the five sleep stages in this paper and the

existing research concerning HMM-based sleep staging. The average accuracy of our

method was as follows: Wake, 88.81%; S1, 33.62%; S2, 81.58%; SWS, 94.92%; and

REM, 90.14%. The previous three methods average accuracy were as follows: Wake,

86%; S1, 22%; S2, 14%; SWS, 95%; and REM, 26% in [5]; in [6], Wake, 51.04%; S1,

4.84%; S2, 68.62%; SWS, 98.91%; and REM, 96.32%; and in [7], Wake, 79%; S1, 24%;

S2, 36%; SWS, 93.5%; and REM, 68%. The correct recognition rates of our method

are better than those of the other methods for the five sleep stage, with the exception

of SWS, although the differences between the methods for this stage were minimal

(≤4%). Moreover, the epoch number of S2 is largest, accounting for approximately

40-45% of all night sleep in normal subjects [17], and the correct recognition rate of

S2 by our proposed method is better than that of the other methods by between

13% and 67%.

Conclusions
In this paper we proposed a new strategy based on DHMMs, a transition-constrained

DHMM, for sleep staging. The establishment of characteristic features is very



Figure 7 Comparison of the recognition results for each sleep stage obtained in this study with
those of existing studies.
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important for sleep staging and we chose thirteen features from EEGs, EOGs and

EMGs. These features are helpful in distinguishing sleep stages. Although the number

of features used in this study is greater than that of previous studies, the recognition

time for sleep stages is not longer, and the recognition rate is better.

Although several studies based on HMMs have demonstrated high accuracy in SWS,

the sensitivity of S1 was only approximately 20% [7]. S1 is easily mistaken as one of the

other stages, with the exception of SWS, and the number of S1 epochs is significantly

lower than that of the other stages. Therefore, it is difficult to train a model with a high

sensitivity for S1. In our approach, the sensitivity of S1 was approximately 33%. Com-

pared with other research referred to, our S1 result is the most sensitive.

A further advantage of our method is that the recognition rates of each stage are very

balanced. The average kappa (0.73) of our system exhibited substantial reliability and

high robustness. From a clinical perspective, some stages have high error rates and can-

not be used in clinical applications, even if a stage has high sensitivity. Compared with

existing results, our method has the highest kappa coefficient and good home health-

care applicability.

Moreover, a smoothing process was not required; this is an advantage of the

transition-constrained DHMM, which already considers the relationship between sleep

stages in transitions. Sleep staging has periodicity and continuity from light to deep.

However, general classifiers such as the neural network, fuzzy system and rule-based

methods, do not consider temporal contextual information. Therefore, some epochs

may be staged with apparent error, and we should modify these erroneous judgments

according to the temporal contextual information and R&K rules. We applied smooth-

ing rules mentioned in previous studies [2,15] to increase the accuracy of our proposed

method. However, the smoothing process did not significantly improve the recognition

rate. Therefore, we can reduce the time and computing cost associated with the

smoothing process using our proposed method.

To implement the proposed transition-constrained DHMM, the parameters in the

DHMM corresponding to the impossible transition will be set to zero in the training

phase to prevent impossible sleep stage transitions. This improves the recognition rate

of the HMM-based method. The results demonstrate that the recognition rates in our

proposed method are greatly enhanced when compared with existing research. In the
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future these results, which were obtained using young, healthy individuals, should be

extended to older healthy individuals and patients. This method can be applied clinic-

ally to reduce the scoring time. Moreover, we will combine this algorithm with hard-

ware to develop a portable polysomnography system for home healthcare [21]. DHMM

models consider the continuity of human sleep based on probabilistic principles in

model construction [6]. In addition to automatic sleep scoring applications, future work

will include evaluating the continuity of sleep scoring resulting from the DHMM

model, cross experts and the conventional smoothing to enhance the agreement be-

tween experts and the machine.
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