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Abstract

Background: Hyperthermia is considered one of the new therapeutic modalities for
cancer treatment and is based on the difference in thermal sensitivity between
healthy tissues and tumors. During hyperthermia treatment, the temperature of the
tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer
cells. This paper investigates design, modeling and simulation of a new non-invasive
hyperthermia applicator system capable of effectively heating deep seated as well as
superficial brain tumors using inexpensive, simple, and easy to fabricate components
without harming surrounding healthy brain tissues.

Methods: The proposed hyperthermia applicator system is composed of an air filled
partial half ellipsoidal chamber, a patch antenna, and a head model with an
embedded tumor at an arbitrary location. The irradiating antenna is placed at one of
the foci of the hyperthermia chamber while the center of the brain tumor is placed
at the other focus. The finite difference time domain (FDTD) method is used to
compute both the SAR patterns and the temperature distribution in three different
head models due to two different patch antennas at a frequency of 915 MHz.

Results: The obtained results suggest that by using the proposed noninvasive
hyperthermia system it is feasible to achieve sufficient and focused energy
deposition and temperature rise to therapeutic values in deep seated as well as
superficial brain tumors without harming surrounding healthy tissue.

Conclusions: The proposed noninvasive hyperthermia system proved suitable for
raising the temperature in tumors embedded in the brain to therapeutic values by
carefully selecting the systems components. The operator of the system only needs
to place the center of the brain tumor at a pre-specified location and excite the
antenna at a single frequency of 915 MHz. Our study may provide a basis for a
clinical applicator prototype capable of heating brain tumors.

Keywords: Bioheat equation, Specific absorption rate (SAR), Computational
modeling, Patch antenna, Ellipsoidal chamber
Background
Hyperthermia or thermotherapy has often been used alone to induce cancer cell death

by elevating the temperature in these cells or as an adjunctive cancer treatment modal-

ity to improve the clinical outcome of radiotherapy and chemotherapy [1,2]. During

hyperthermia therapy, the tumor is heated to a temperature in the range of 40–45°C

for a defined period of time (30–60 min) resulting in damaging cancer cells, while

keeping healthy tissue at safe temperatures.
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Research interest in the applicability of clinical hyperthermia in cancer therapies is con-

tinuously growing. Local, regional, and whole-body hyperthermia treatment regimens

have been under extensive investigation during the past decades and have provided prom-

ising results with several types of cancers [3-6]. The quality and the effectiveness of hyper-

thermia treatment is highly dependent on the ability to deposit power and thus, to

localize the temperature distribution in the tumor region without harming the surround-

ing normal tissues. While, hyperthermia has proven to be an effective tool in the treat-

ment of superficial tumors [7,8], further research is still required to sufficiently heat deep

seated tumors. In particular, invasive interstitial microwave hyperthermia has been

employed successfully for the treatment of tumors within the brain [9-12], but the major

problem with this technique is that it requires transcranial implantation into the tumor.

Thus, research should be focused on raising the quality of hyperthermia devices used for

effective and localized cancer treatment of deeply seated brain tumors.

Several computational studies have proposed non-invasive hyperthermia applicators

to heat superficial tumors [13,14]. Specifically, antenna arrays have been used for the

application of hyperthermia to superficial regions of the head and neck [15,16]. These

applicators are not suitable for effectively heating deep seated brain tumors. Focusing

electromagnetic power into tumors deeply located in the brain possesses a challenge

since high water content tissues such as blood and muscle absorb this power and rap-

idly attenuate wave propagation, thus preventing deep penetration into the brain.

Therefore, many research attempts were undertaken to develop applicators capable of

noninvasively depositing electromagnetic energy into brain tissues without affecting

surrounding healthy tissues.

Theoretical studies [17] and laboratory measurements [18,19] were carried out to

examine the possibility of using arrays of multiple antennas for heating deeper regions

in a neck-mimicking cylinder as well as in phantom models [20-23]. Paulides et al., [23]

developed a hyperthermia applicator using an array of multiple dipole antennas. The

specific absorption rate (SAR) was computed in a 3D model of the neck containing a

lymph node tumor which served as the basis for their prototype. Ishihara et al. [21]

designed a reentrant cavity hyperthermia applicator to heat head and neck tumors

using a homogeneous tissue phantom model to compute the temperature distribution

in their model.

In addition, extensive theoretical and experimental research has been conducted to

develop a noninvasive focused hyperthermia system based on the use of a complete el-

lipsoidal beamformer [24,25]. In these studies, deep and superficial focused hyperther-

mia was only achieved using a combination of operation frequencies and several

dielectric matching layers placed around a spherical head, as well as a 13 tissue head

model. Several hot spots were also observed in phantom temperature measurements

[26]. Furthermore, a dipole/double discone antenna was used to deposit energy into

their head and phantom models. Dipoles, however, require an RF-matching network

containing a balun which absorbs a substantial amount of power and thus decreases the

efficiency of the antenna used in their prototype. The temperature distribution in brain

tumors located at various positions in simulated head models was not investigated in

these studies. Zastrow et al. [27] proposed and evaluated the performance of a noninva-

sive time-multiplexing microwave beamforming technique for selective localized heating

of target locations in a numerical head phantom. The microwave source consisted of an
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array of 134 small antennas placed around the head while deionized water was used as a

coupling medium in contact with the surface of the head. While the efficacy of the pro-

posed system was demonstrated, simplification and further optimization of the setup is

essential for its application to a clinical hyperthermia system.

Careful selection, design and tuning of the antenna used as a source of tissue irradi-

ation in noninvasive hyperthermia applicators is necessary since the presence of the

head comprised of lossy soft tissues in the vicinity of the antenna has a considerable ef-

fect on the characteristics and the performance of the antenna.

In addition, the hyperthermia applicator system should provide efficient power ab-

sorption distribution (SAR) and selective heating efficacy in deep seated brain tumors.

The SAR is a measure of the rate at which electromagnetic energy is absorbed by brain

tissues and is a vital quantity in assessing the effectiveness of hyperthermia. The

temperature in brain tissues is usually computed by substituting the SAR values into

the Pennes bioheat equation. Knowledge of the temperature distribution in brain tis-

sues is essential since the goal of hyperthermia is to raise the temperature of the tumor

without affecting healthy brain tissues.

To our knowledge, adequate localization and focusing of energy patterns and the cal-

culation of the temperature distribution in a realistic 3D head model containing a

deeply seated as well as a superficial brain tumor due to irradiation by a simple easy to

fabricate antenna excited at a single frequency placed in a partial half ellipsoidal nonin-

vasive air filled hyperthermia applicator is still lacking. In this study, we numerically

designed a noninvasive hyperthermia applicator system composed of a patch antenna, a

partial half ellipsoidal chamber and a head model containing a tumor. The FDTD

method was used to compute both the SAR patterns and the temperature distribution

in three different head models. Several improvement steps were performed on all of the

applicator system configurations to adequately ensure sufficient and focused energy de-

position and temperature distribution in the brain tumor. The system is capable of

heating deep seated as well as superficial brain tumors by placing the center of the

tumor at a pre-specified location (one of the foci) controlled by the operator of the pro-

posed hyperthermia system. The use of a partial half ellipsoidal chamber ensures better

head positioning and patients comfort compared to whole ellipsoidals.
Methods
Hyperthermia system model

The proposed focused deep brain hyperthermia model consists of a half ellipsoidal

chamber with part of the bottom horizontal walls, coinciding with the major axis, par-

tially covered (60 cm). A vertical cut is removed from the opposite side of the half el-

lipsoidal chamber leaving room for the head to be placed in the open uncovered part

(Figure 1A). The radiating device (antenna) is placed at one of the chambers focal

points while the target (brain tumor) is placed at the other focal point. The exact place-

ment of the antenna inside the chamber is depicted in Figure 1B. The distance between

the brain tumor placed at one of the focal points of the hyperthermia chamber model

and the antenna placed at the other focal point was 30 cm.

This chamber was based on the interesting focusing properties of ellipsoidal reflec-

tors, where if a light source is placed at one focus of the ellipse; all light rays on the



Antenna

80 cm

47.7 cm

Head
Model Focal Points

A

Chamber
Antenna

Head Model

B

Figure 1 Hyperthermia chamber model (A) sagittal view, (B) axial view. The tumor in the head model
is placed at one of the foci while the antenna is placed at the other focus.
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plane of the ellipse are reflected to the second focus with the same path length. The

walls of the chamber are modeled as a thin shell of copper (5 mm in thickness) having

a conductivity of σ = 5.8 × 107 S/m. The system arrangement ensures better directivity,

higher energy deposition and better focusing in the brain tumor.
Chamber model

Different chamber model sizes were simulated to ensure better focusing properties in

the brain tumor. The final chamber size was selected based on the design that ensures

a better localization and maximum SAR deposition at the target region (tumor) in the

head. The final model used in this study had a chamber major axis of 100 cm while the

distance from the center of the major axis to the top of the chamber was 47.7 cm. Sev-

eral vertical sections were deducted from the edge of the chamber close to the second

focal point where the brain tumor is placed. A vertical section 20 cm to the right of the
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second focal point was selected where simulations have shown that the focusing prop-

erties into the tumor did not improve when sections were made at larger distances.
Human head models

Three head models were used in our computations. First, the average brain model con-

sisted of a two layered sphere representing the simplest head configuration model [2].

The inner sphere representing average brain tissue had a radius of 8.5 cm, while the

outer sphere representing the skull had a radius of 9 cm as shown in Figure 2A. The

simple head model forms a reference configuration and is farther extended to a more

complicated layered concentric spheres head model consisting of three concentric

spheres representing the skull, the cerebral spinal fluid (CSF) and the gray matter

(GM). Sphere radii were 9 cm, 8.5 cm and 8 cm respectively (Figure 2B). A spherical

tumor (20 mm in diameter) was placed at the center of these two head models. Finally,

a more complex realistic 3D head model was constructed and used in the final hyper-

thermia system model. The final 3D realistic head model was constructed to simulate

the human head as shown in Figure 2C. A hundred and twenty transverse magnetic

resonance imaging (MRI) anatomical slices of a 35 year old male with a brain tumor

were segmented, stacked and surface rendered to generate the head model. MR images

were acquired by the national cancer institute with patient consent obtained. The head

model consisted of seventeen different structures: the skin, skull, CSF, GM, white mat-

ter (WM), ventricles, pons, medulla, cerebellum, muscle, fat, mouth cavity, tongue,

sinus, eyes, cartilages and a tumor. The spatial resolution of the human head was

2 mm. The size of the brain tumor was approximately 2 cm in diameter and was either

centrally located close to the ventricles or superficially placed in the head model. The

electrical properties (dielectric constant and conductivity) and the thermal properties

used in our computations for different human head tissues were assigned according to

the values reported in the literature [28] and the SEMCAD material database. Table 1

lists the values of the thermal properties for different brain structures and the tumor.

The brain tumor conductivity and dielectric constant were assigned two different

values of σ1 = 0.595 S/m, E1 = 38.836 and σ2 = 1.21 S/m, E2 = 63.259 respectively. The

cancer contrast was 1:1 in the electrical conductivity and relative permittivity compared

to the surrounding tissue in the first case. In the second case, the cancer contrast

was ~2:1 relative to the surrounding tissue in the electrical conductivity and ~ 1.6:1 in

the relative permittivity. The 1:1 contrast case was adopted to eliminate any enhance-

ment in the selectivity of microwave absorption in the brain tumor due to the contrast

in the electrical properties and was considered a control case to test the focusing ability

of the proposed hyperthermia system. This contrast case was tested in the optimized

proposed hyperthermia system in the presence of the 3D realistic head model. The sec-

ond contrast case was simulated based on actual measured electrical properties

reported in the literature for brain cancer tissues [29,30]. The contrast in the electrical

conductivity also agrees with measured values reported for breast cancer tissues while

the contrast in the dielectric permittivity was a little higher (1.6 compared to 1.2) [31].

The thermal properties of the brain tumor were similar to those of the surrounding

WM. A convective boundary condition was employed at the skin air interface with a

heat transfer coefficient of 8 W/m2K [32].
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Figure 2 Head Models (A) average brain model, (B) layered concentric sphere model of the brain
and (C) realistic 3D head model.
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Antenna models

Two patch antennas with two different substrates: a silicone substrate and a foam sub-

strate assigned dielectric constants of εr =11.9 (tangent loss tan δ =0.0437) and εr =

1.002 respectively, were designed, analyzed and optimized for use in the brain hyper-

thermia applicator. The first antenna design consisted of a conducting ground plane

(13.5 × 13.5 cm2) and a conducting patch (4.8 × 4.8 cm2) at a distance h = 1 mm from



Table 1 Thermal properties of human head tissues and tumor

Tissues ρ C k Qmet B

kg/m3 J/kg.°C W/m.°C W/kg W/m3.°C

Brain/gray matter 1039 3675 0.57 6.833 35000

Brain/white matter 1043 3621 0.5 6.807 35000

Cerebellum 1040 3640 0.53 6.827 35000

CSF 1007 4191 0.6 0 0

Ear cartilage 1097 3500 0.45 0.2 9100

Eye sclera 1090 3664 0.4 0 0

Fat 916 2524 0.25 0.328 916

Medulla 1039 3675 0.57 6.833 35000

Mouth cavity 1.2 1006 0.03 0 0

Muscles 1041 3546 0.53 0.461 3360

Pons 1039 3675 0.57 6.833 35000

Skin 1100 3437 0.35 1.473 9100

Sinus 1.2 1006 0.03 0 0

Skull 1990 1300 0.39 0.307 1000

Tongue 1041 3546 0.53 0.461 13000

Ventricles 1007 4191 0.6 0 0

Tumor 1043 3621 0.5 6.807 35000
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the groundplane. The second antenna consisted of a conducting ground plane (60 ×

40 cm2) and a conducting patch (16 × 8 cm2) at a distance h = 4 mm from the ground-

plane. The conducting patch and the ground plane of each antenna were assigned elec-

trical properties of copper. The polarization of the antenna is along its length.

Input power was set to 500 W and 50 W for the first and second antennas respect-

ively. Simulations were carried out with harmonic excitation signals. The selected res-

onant frequency used in our computations was 915 MHz since it was found to be

within the range of promising authorized frequency candidates for head and neck appli-

cators [33]. The return loss (S11) for the two antennas was computed and several

optimization steps were performed to fine tune the antenna to resonate at the desired

frequency when placed in the hyperthermia applicator system model.

The efficiency of an antenna is mainly dependent on the antenna's return loss S11 —

the ratio of power reflected to power input. S11 is typically measured on a decibel scale

as

S11 ¼ 10 log10
Pr
Pi

where Pr is the reflected power and Pi is the input power. Since S11 is measured on a

decibel scale, smaller S11 indicates greater power coupled to the brain tissue. The 3D

radiation patterns of the foam substrate antenna inside the hyperthermia system model

with and without the presence of the head model were also computed.

FDTD analysis

The SEMCAD X version 14 (SPEAG, Zurich, Switzerland), a commercial finite-difference

time-domain (FDTD) based program, was used to compute the electromagnetic energy



Yacoob and Hassan BioMedical Engineering OnLine 2012, 11:47 Page 8 of 22
http://www.biomedical-engineering-online.com/content/11/1/47
SAR deposited in brain tissues and the tumor as well as the thermal profiles in these tis-

sues. The SAR is defined as the power absorbed into the unit mass of tissue.

SA ¼ σ

2ρ
E2
i ð1Þ

Where, Ei is the peak value of electric field component. The constants σ and ρ denote

the conductivity and mass density of the tissue respectively. The computed SAR values

were then substituted as the heat source into the Pennes bioheat equation to compute

the temperature distribution in different head models as well as in the tumor. The bio-

heat equation is represented as follows:

ρc
dT
dt

¼ r:krT þ Qr þ Qm � ρbιcbιwbι T � Tbιð Þ ð2Þ

where ρ is the density of tissue, c is the specific heat capacity, T is the temperature of

tissue, k is the thermal conductivity, Qr is the regional heat delivered by the source

(SAR), Qm is the power generated by metabolism, ρbl is the density of blood, cbl is the

specific heat capacity of blood, wbl is the blood perfusion, and Tbl is the temperature of

blood. B represents the term associated with blood flow and equals ρbl cbl wbl.

The entire computational domain is divided into voxels, i.e., small cubical elements.

SEMCAD provides the possibility of grid refinement since the grid lines do not have to

be spaced homogeneously. A maximum of grid stepping between λ/15 and λ/20 is indi-

cated for sufficient accuracy for a variable grid. The spatial discretization of the compu-

tational grid was < 1.5 mm. Grid refinements at small brain structures, antenna and half

ellipsoidal chamber were used to increase the accuracy of the model while retaining ac-

ceptable computational times and satisfying the stability criterion. In our simulations, a

twelve-layered UPML was adopted as the absorbing boundary to truncate the computa-

tional domain. Convergence was assessed by monitoring the convergence of the S11
parameters from iteration to iteration and when the difference in the maximum value

of multiple subsequent periods has decreased to a few percent. The temperature in-

crease in the human head was calculated for an exposure time of 30 minutes.

Numerical results
Various simulations were carried out at 915 MHz to test the applicability of the pro-

posed hyperthermia system model. Two patch antennas having different substrate

materials were used to irradiate three different head models and the field distribution

inside the proposed chamber, with and without the presence of the human head model

was computed. SAR and thermal profiles were also calculated in different brain tissues

as well as in the tumor.

The return loss S11 for both antennas was calculated and their dimensions were opti-

mized to fine tune the antennas to resonate at the desired frequency.

Figure 3 shows the return loss for the patch antenna with a silicone substrate when

the antenna is placed at one of the focal points of the hyperthermia chamber model. A

value of approximately −17 dB is observed for the S11 at 915 MHz.

A return loss S11 of −11 dB was observed for the second antenna having a foam sub-

strate when the antenna was placed at one of the foci of the hyperthermia chamber

model at the desired frequency (see Figure 4). The 3D radiation patterns of the foam



Figure 3 Return loss S11 for the patch antenna with a silicone substrate inside the hyperthermia
chamber model.
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substrate antenna inside the hyperthermia system model with and without the presence

of the head model were computed and depicted in Figure 5 A and B at a point inside

the proposed hyperthermia chamber. In the direction towards the head, radiation is

reduced due to the power absorbed by the head. In the opposite direction there is even

a slight increment in radiation, possibly due to partial reflection from the head. A simi-

lar radiation pattern was observed for the silicone substrate antenna.
Focusing properties of the proposed system in the absence of the head model

The focusing properties of the hyperthermia system model were investigated initially

without the presence of the human head model. The electric field distribution inside
Figure 4 Return loss S11for the patch antenna with a foam substrate inside the hyperthermia
chamber model.
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Figure 5 3D radiation patterns of the foam substrate antenna inside the hyperthermia chamber
model (A) with the head model present, (B) no head model present.
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the proposed system is depicted in Figure 6. It is observed that the radiated energy

emitted by the antenna placed at one focus converges on the other focal point. Thus,

the geometrical focal point and the electromagnetic convergence area coincide. A 3-dB

focusing region of approximately 3 cm is observed in the absence of the head model.
Chamber

AntennaFocus
Figure 6 Electric field distribution inside the hyperthermia chamber model at 915 MHz.
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Both antenna configurations show a similar electric field pattern inside the hyperther-

mia system model without the presence of the human head model.

SAR results

SAR in the uniform spherical head model

The SAR was computed in a simple spherical head model composed of skull, average

brain tissue and a tumor (Figure 7). The antenna having a foam substrate was used to

irradiate this simple head model. In this configuration, the ~ 2:1 contrast between the

tumor and the surrounding WM case was adopted. A centrally located region of high

SAR (107 mW/g) is observed (yellow color). This high SAR region coincides with the

tumor placed at the center of the spherical head model. A similar pattern was observed

when using the antenna with a silicone substrate.

SAR in the layered concentric spherical head model

The SAR was computed in a more complicated head model composed of concentric

spheres representing different brain tissues (skull, CSF, GM and a tumor) which was

placed at one of the foci of the hyperthermia chamber model (Figure 8). The antenna

having a foam substrate was used to irradiate this head model. In this configuration,

the ~ 2:1 contrast between the tumor and the surrounding WM case was adopted. The

SAR pattern shows a centrally located region of high SAR within the tumor as well as

in the outer thin CSF layer. A similar pattern was observed when using the antenna

with a silicone substrate. Using more tissues in the head model caused different values

of SAR in the tumor (120 mW/g) compared to the simpler head model (107 mW/g).

On the other hand, unwanted higher values of SAR, compared to those in the tumor,

were observed in the CSF layer (293 mW/g). The presence of the high water content

CSF layer in the layered model caused better energy focusing off the chamber walls into

the tumor. Thus, indicating the importance of using more complicated head models to

account for tissue heterogeneities in the brain.
Figure 7 SAR distribution (in mW/g) in an axial plane of the spherical head model when placed at
one of the focal points of the hyperthermia chamber model and the antenna with a foam substrate
placed at the other focal point.



Figure 8 SAR distribution (in mW/g) in an axial plane of the concentric spherical head model when
placed at one of the focal points of the hyperthermia chamber model and the antenna with a foam
substrate placed at the other focal point.
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Focusing properties of the Proposed System in the presence of the 3D realistic head model

The focusing properties of the half ellipsoidal chamber were investigated in the pres-

ence of the realistic head model containing the tumor. The electric field distribution in-

side the proposed hyperthermia system is depicted in Figure 9. The center of the brain

tumor was placed at one focal point and either antenna placed at the other focal point.

Penetration of the field is observed and focusing on the 2 cm brain tumor which coin-

cides with the focal point is achieved. The radiated energy was mainly localized in the

tumor as well as the high water content tissues in the brain (CSF and the ventricles). It

is worth noting that similar electric field patterns were observed in the hyperthermia

system model with the realistic head model present due to irradiation by either anten-

nas and for the two electrical properties contrast cases adopted in this study (the 1:1

contrast and the ~ 2:1 contrast between the tumor and the surrounding WM).
Antenna

Human 
head 

Tumor
Figure 9 Electric field distribution inside the hyperthermia chamber model in the presence of the
3D head model containing a deep seated tumor at 915 MHz.
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SAR in the realistic 3D head model with a deep seated tumor

The SAR was computed in the brain tissues when the deep seated tumor in the head

was placed at one of the focal points of the hyperthermia chamber model system and

the antenna was placed at the other focal point. In the first configuration, the antenna

having a silicone substrate was used to irradiate the head (Figure 10A, B). Localization

of the SAR was observed at the tumor in the axial and sagittal views, but the maximum

SAR was located at the ventricles in the sagittal view. SAR distributions, although small

compared to the ventricles, were also located in the outer thin CSF layer of the head.

Higher SAR values observed in the ventricles is due to the fact that these brain struc-

tures contain CSF. Using more tissues in the head model caused lower values of SAR

in the tumor compared to the previous head models.

In the second configuration, the antenna with a foam substrate was placed at the

other focal point opposite to the head (Figure 11A, B). In this configuration, the 1:1

contrast between the tumor and the surrounding WM case was simulated. Although

the observations on the SAR patterns were similar to those computed for the silicone

antenna, much higher SAR values are assessed in brain tissues. Thus, indicating the ad-

vantage of using an antenna with a higher efficiency.

When the ~ 2:1 contrast between the tumor and the surrounding WM case was

adopted, a similar SAR pattern was observed in the tumor in both the axial view and

the sagittal view (Figure 12A, B). Higher SAR values are observed in the tumor com-

pared to the 1:1 contrast case. Increasing the input power to the foam antenna from

50 W to 64 W caused the SAR value for the 1:1 contrast case in the tumor to increase

to the same SAR value observed for the ~2:1 contrast case.

It is also worth noting that the SAR value in the tumor was less than those computed

in the two simpler head models due to the complexity of the head geometry and the

presence of more brain structures.

SAR in the realistic 3D head model with a superficial tumor

The brain tumor was placed at a superficial location inside the realistic 3D head model

instead of being deeply seated within the brain. This is analogous to a clinical situation

where all the physician needs to do is to place the center of the brain tumor wherever

it is located in the head at the other focal point of the hyperthermia system. The SAR
Tumor

A

Ventricle
s

Tumor

B

Figure 10 SAR distribution (in mW/g) in the realistic head model with a deep seated tumor placed
at one of the focal points of the hyperthermia chamber model and the antenna with a silicone
substrate placed at the other focal point for the ~2:1 contrast case between the tumor and the
surrounding tissue (A) axial view and (B) sagittal view.
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Figure 11 SAR distribution (in mW/g) in the realistic head model with a deep seated tumor placed
at one of the focal points of the hyperthermia chamber model and antenna with the foam
substrate placed at the other focal point for the 1:1 contrast case between the tumor and the
surrounding tissue (control case) (A) axial view and (B) sagittal view.
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was computed in the realistic 3D head model with its superficial tumor placed at one

of the focal points of the hyperthermia chamber model and the antenna with a foam

substrate placed at the other focal point (Figure 13A, B). In this configuration, the ~ 2:1

contrast between the tumor and the surrounding WM case was adopted. A localized

SAR pattern was observed at the superficial tumor in both the axial view and the sagit-

tal view. Smaller values of SAR (approximately 20% of the maximum SAR value) were

observed in the outer CSF layer and the ventricles. Similar SAR patterns would be

observed when using the silicone substrate antenna with the exception that lower

values of SAR would be present in the head.
Temperature results

Temperature in the realistic 3D head model with a deep seated tumor

It’s very important to calculate the temperature due to hyperthermia therapy process,

because the SAR values alone are not sufficient to assess the effectiveness of the hyper-

thermia therapy process. The SAR values are substituted into the bioheat equation to

compute the temperature in different brain tissues. The temperature values were
A

Ventricle Tumor

B

Figure 12 SAR distribution (in mW/g) in the realistic head model with a superficial tumor placed at
one of the focal points of the hyperthermia chamber model and antenna with the foam substrate
placed at the other focal point for the ~2:1 contrast case between the tumor and the surrounding
tissue (A) axial view and (B) sagittal view.
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Figure 13 SAR distribution (in mW/g) in the realistic head model with a superficial tumor placed at
one of the focal points of the hyperthermia chamber model and antenna with the foam substrate
placed at the other focal point for the cancer contrast ~ 2:1 case relative to the surrounding tissue
(A) axial view and (B) sagittal view.
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calculated when the brain tumor within the head was placed at one of the focal points

of the hyperthermia chamber model system and the antenna placed at the other focal

point. In the first configuration, the antenna having a silicone substrate was used to ir-

radiate the head (Figure 14A, B). The~ 2:1 contrast between the tumor and the sur-

rounding WM case was adopted. A localized temperature of 39.5°C was observed in

the tumor. Another observation worth noting is that the temperature distribution does

not coincide exactly with the SAR distribution in brain tissues since the highest

temperature exists in the tumor in the sagittal plane while the temperature in the outer

CSF layer and ventricles was less than 38°C (see Figure 10B, Figure 14B).

In the second configuration, the antenna with a foam substrate was placed at the

other focal point opposite to the head (Figure 15A, B). In this configuration, the 1:1

contrast between the tumor and the surrounding WM case was adopted. A

temperature of 41.8°C was observed in the deep seated tumor while the temperature of

the surrounding healthy brain tissue was below 37.8°C. Increasing the input power to

the antenna from 50 W to 64 W caused the temperature in the tumor to increase to

therapeutic values of 43.4°C while keeping the temperature of the surrounding healthy

brain tissue below 38.5°C.
BA

Tumor

Figure 14 Temperature distribution (in °C) inside the deep seated tumor in the head model placed
at one of the focal points of the hyperthermia chamber model and the antenna having a silicone
substrate placed at the other focal point for the ~2:1 contrast case between the tumor and the
surrounding tissue (A) axial view and (B) sagittal view.
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Figure 15 Temperature distribution (in °C) inside the deep seated tumor in the head model placed
at one of the focal points of the hyperthermia chamber model and the antenna having a foam
substrate placed at the other focal point for the 1:1 contrast case between the tumor and the
surrounding tissue (control case) (A) axial view and (B) sagittal view.
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When the ~ 2:1 contrast between the tumor and the surrounding WM case was

adopted, a localized temperature of 43.4°C was observed in the tumor while the

temperature in the outer CSF layer and ventricles was less than 39°C (Figure 16A, B).

Again, another observation worth noting is that the temperature distribution does

not coincide with the SAR distribution in brain tissues since the highest temperature

exists in the tumor in the sagittal plane (see Figure 12B, Figure 16B). In addition, higher

temperatures are observed in the tumor compared to those computed when the head

was irradiated by an antenna with a silicone substrate placed in the hyperthermia

chamber model (Figure 14).

Temperature in the realistic 3D head model with a superficial tumor

The temperature values were computed in the realistic 3D head model with its tumor

placed at one of the focal points of the hyperthermia chamber model and the antenna

with a foam substrate placed at the other focal point (Figure 17A, B). In this configur-

ation, the brain tumor was placed at a superficial location inside the realistic 3D head

model instead of being deeply seated within the brain. The ~ 2:1 contrast between the

tumor and the surrounding WM case was adopted. A localized temperature of 43.4°C

was observed in the tumor while the temperature in the ventricles was less than 38.8°C.
A B

Figure 16 Temperature distribution (in °C) inside the deep seated tumor in the head model placed
at the one of the focal points of the hyperthermia chamber model and the antenna having a foam
substrate placed at the other focal point for the ~2:1 contrast case between the tumor and the
surrounding tissue (A) axial view and (B) sagittal view.
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Figure 17 Temperature distribution (in °C) inside the superficial brain tumor in the head model
placed at one of the focal points of the hyperthermia chamber model and the antenna having a
foam substrate placed at the other focal point for the ~2:1 contrast case between the tumor and
the surrounding tissue (A) axial view and (B) sagittal view.
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Discussion
The focus of this study was to numerically design a non invasive hyperthermia applica-

tor system capable of adequately heating deep seated as well as superficial brain tumors

embedded in head models using the finite difference time domain method.

The proposed hyperthermia system design is shown to be capable of effectively heat-

ing deep seated as well as superficial brain tumors using inexpensive, simple, and easy

to fabricate constituents. To test the effectiveness of hyperthermia treatment, the spe-

cific absorption rate (SAR) deposited in brain tissues must be high enough to produce

sufficient temperature rise in brain tumors. The hyperthermia chamber system should

be capable of rising the temperature of brain tumors to values above 42°C without

harming surrounding healthy tissues. Therefore, SAR patterns and temperature distri-

bution were computed and compared using two different antenna designs to irradiate

three different head models.

Two improvement strategies were performed on all of the hyperthermia system con-

figurations to adequately ensure sufficient and focused energy deposition (SAR) and

temperature distribution in brain tumors. In the first approach, the head models varied

from a very simple spherical head model to a layered concentric spherical model and fi-

nally to a more complicated and realistic 3D head model. Each of the head models con-

tained a tumor. SAR distributions in the spherical head models, using any of the two

patch antenna configurations, were observed to be different than those computed in

the realistic 3D head model. A localized SAR pattern was observed in the tumor placed

at the center of the simple spherical head model (see Figure 7). Karanasiou et al., [25]

used a similar simple head model in their study, but several hot spots were observed in

their head model. This may be attributed to the antenna they have used or to their ap-

plicator design needing further optimizations. When using the layered spherical head

model, a centrally located region of high SAR within the tumor as well as an undesired

superficial region (coinciding with the outer CSF layer) of the head was observed (see

Figure 8). The CSF is a high water content compartment which has a relatively high di-

electric constant and conductivity compared to the surrounding WM tissue. Most of

the energy was absorbed in the CSF layer compared to the deep seated tumor located
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centrally within the head. This observation is consistent with those used to assess SAR

values deposited in the head due to the exposure to microwave frequencies emanating

from cellular phones [34] and MRI equipment [35]. SAR patterns computed in the real-

istic 3D head model using any of the two antenna configurations showed a distorted

SAR distribution and hot spots in the ventricles as well as in the brain tumor compared

to those observed in the simple head models. The two simpler head models overesti-

mated the values of SAR deposited in the tumor. Thus, highlighting the significance of

using a 3D realistic head model with many tissue heterogeneities to assess the effective-

ness of any hyperthermia system design.

The second approach involved using two different patch antennas of optimized

dimensions in the hyperthermia setup to enforce radiated waves to propagate and re-

flect from the upper walls of the chamber towards the target region (tumor) only.

The antenna design varied from an antenna with a silicone substrate configuration to

an antenna design with a foam substrate. Two parameters of the antenna are affected

by the substrate material, the size of the antenna and its efficiency [36]. High dielectric

substrate materials such as the silicone antenna can reduce the antenna size at the ex-

pense of the antenna efficiency. Thus, there is trade-off between the size of the antenna

and its efficiency. The efficiency of the antenna was assessed by its capability to suffi-

ciently cause localized heating of the brain tumor using much less input power to the

antenna. Although the silicone antenna had a smaller size compared to the foam an-

tenna, it was fed with a much higher input power of 500 W. This antenna design

caused a temperature rise of 39.5°C in the tumor which wasn't high enough to reach

therapeutic levels. Experimental data has shown that the threshold temperature in-

crease of 3.5°C has been noted to be an allowable limit in the brain which does not lead

to physiological damage [37]. The silicone antenna design also had a low radiation effi-

ciency due to high losses in the silicone substrate (loss tangent tan δ = 0.0437). The ra-

diation efficiency of the microstrip antenna is defined as the ratio between the power

radiated into space and the total input power which is dependent on the power dissi-

pated by the substrate dielectric loss.

When a superficial tumor located in the head model was placed at the focal point of

the chamber and irradiated by the foam substrate antenna, the proposed air filled

hyperthermia chamber model was capable of heating the brain tumor using a single

frequency (Figure 17A, B). Whole ellipsoidal chambers employed in another study [26]

to deposit energy into brain regions using different frequencies and dielectric matching

layers may cause patients discomfort due to psychological factors compared to the

hyperthermia chamber system proposed in this study.

Our results also revealed that the SAR patterns in brain tissues are not correlated in

a simple manner to the temperature distribution in these tissues. Comparing Figures 10,

11, 12 and 13 with Figures 14, 15, 16 and 17, we find that the temperature increase dis-

tribution does not coincide exactly with the SAR pattern. In particular, although several

hot spots are observed in the SAR patterns, localized and smoother patterns are

observed in the temperature distribution. These results are consistent with those of

previous studies [38,39]. The SAR is known to be not very smooth due to the variation

in the electrical conductivity between different brain tissues [40,41] while the

temperature rise distribution is rather smooth due to thermal transfer mechanisms be-

tween brain tissues.
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The proposed system is designed to achieve focused power deposition in the tumor

through constructive reflections off the upper chamber walls, but selective absorption

of the electromagnetic waves takes place and causes power deposition in the ventricles

as well. There is not good spatial correlation between SAR and temperature, i.e., the

peak temperature in certain brain tissues is not directly related to the peak SAR value

and location. Similar observations were reported in other studies due to the exposure

of the human head to microwave frequencies [37,38,42]. This mismatch is attributed to

the complex, multifactorial relationship between temperature and SAR. The peak

temperature not only depends on tissue properties such as thermal conduction, meta-

bolic heat generation, the complex heterogeneous geometry of the brain structures, but

also largely depends on the wide variance in blood perfusion rates of different tissues.

The complex shape of the ventricles may also lead to a greater thermal diffusion sur-

face area compared to the simple spherical tumor causing further reduction in the

temperature.

The proposed hyperthermia treatment system was shown to be effective in heating

the target tumor while keeping the healthy brain tissue way below the thermal damage

limit. Although hot spots were observed in the ventricles, these temperatures (< 39°C)

were below those observed in another study using a time-multiplexed beamforming

technique (< 41°C) [27]. The circulation of the CSF in the CSF layer and the ventricles

were not accounted for in our model which may reduce the temperatures observed in

these structures due to the cooling effect arising from circulation. The turnover of the

entire volume of CSF is 3–4 times per day [43]. Thus, the temperature in the ventricles

is considered the upper limit of temperature increase. Since hyperthermia is used alone

or as an adjuvant to other treatment modalities, the physician must decide whether to

decrease the input power to the antenna (decrease the temperature in the tumor and

the ventricles) and prolong the treatment for more than 30 minutes or to take the risk

of treatment for a particular patient.

The focusing performance of the proposed hyperthermia system was tested by assign-

ing different electrical properties to the tumor compared to the surrounding tissue due

to uncertainties and the lack of precise values of these properties in the literature. Sev-

eral studies have shown that malignant tissue has a higher electrical conductivity and

permittivity than normal tissue in the breast and the human liver at microwave fre-

quencies [31,44,45]. The difference between healthy tissue and tumor is attributed to

the increased water content of the latter, which results in an increased permittivity and

an increased conductivity [46].

The proposed hyperthermia system caused localized SAR in the tumor for both cases

of contrast between the tumor and the surrounding WM. Although the temperature

rise in the tumor was less for the 1:1 contrast case as compared to the temperature rise

for the ~ 2:1 contrast case (Figure 15 compared to Figure 16), increasing the input

power to the antenna compensated for the observed difference. Thus, indicating the

capability of the proposed system to cause heating of the brain tumor to therapeutic

values despite the contrast in the electrical properties.

It is also worth noting that, calculating the temperature increase with the Pennes bio-

heat equation may have some limitations. In particular, the effect of vasculature which

causes cooling of surrounding tissues was excluded in our study. However, in order to

raise the temperature of the tumor to higher values using the proposed hyperthermia
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applicator, we only need to increase the input source power to the antenna which will

result in higher SAR values and higher temperatures in the brain tumor.

We have built the hyperthermia chamber system and the antenna with a foam sub-

strate using simple inexpensive materials. Preliminary proof of concept was achieved by

placing another antenna at the location of the brain tumor and measuring the S21. In

future work, experimental SAR verification as well as temperature measurements in

different tissues of a phantom head model would be conducted to test the effectiveness

of the proposed hyperthermia chamber model.
Conclusions
We utilized the FDTD method to design, model and simulate a low cost and easy to

fabricate noninvasive air filled hyperthermia applicator system capable of heating deep

seated as well as superficial brain tumors. Accurate modeling of the head geometry

(realistic 3D head model) is of vital importance since simple models do not correctly

predict SAR patterns. Careful design and selection of the antenna as well as the partial

half ellipsoidal chamber proved suitable for raising the temperature to sufficient thera-

peutic values in the target tumor within the brain. Our results may form the basis for a

clinical prototype. The operator of the proposed hyperthermia system only needs to

place the center of the brain tumor at a pre-specified location (one of the foci) and ex-

cite the antenna at a single frequency of 915 MHz.
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