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Abstract

Background: Abnormal blood glucose (BG) concentrations have been associated
with increased morbidity and mortality in both critically ill adults and infants.
Furthermore, hypoglycaemia and glycaemic variability have both been
independently linked to mortality in these patients. Continuous Glucose Monitoring
(CGM) devices have the potential to improve detection and diagnosis of these
glycaemic abnormalities. However, sensor noise is a trade-off of the high
measurement rate and must be managed effectively if CGMs are going to be used
to monitor, diagnose and potentially help treat glycaemic abnormalities.

Aim: To develop a tool that will aid clinicians in identifying unusual CGM behaviour
and highlight CGM data that potentially need to be interpreted with care.

Methods: CGM data and BG measurements from 50 infants at risk of hypoglycaemia
were used. Unusual CGM measurements were classified using a stochastic model
based on the kernel density method and historical CGM measurements from the
cohort. CGM traces were colour coded with very unusual measurements coloured
red, highlighting areas to be interpreted with care. A 5-fold validation of the model
was Monte Carlo simulated 25 times to ensure an adequate model fit,

Results: The stochastic model was generated using ~67,000 CGM measurements,
spread across the glycaemic range ~2-10 mmol/L. A 5-fold validation showed a
good model fit: the model 80% confidence interval (Cl) captured 83% of clinical CGM
data, the model 90% Cl captured 91% of clinical CGM data, and the model 99% Cl
captured 99% of clinical CGM data. Three patient examples show the stochastic
classification method in use with 1) A stable, low variability patient which shows no
unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic
event (classified as unusual), and, 3) A patient with very high, potentially
un-physiological, glycaemic variability after day 3 of monitoring (classified as very
unusual).

(Continued on next page)

© 2012 Signal et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:matthew.signal@pg.canterbury.ac.nz
mailto:matthew.signal@pg.canterbury.ac.nz
http://creativecommons.org/licenses/by/2.0

Signal et al. BioMedical Engineering OnLine 2012, 11:45 Page 2 of 12
http://www.biomedical-engineering-online.com/content/11/1/45

(Continued from previous page)

Conclusions: This study has produced a stochastic model and classification method
capable of highlighting unusual CGM behaviour. This method has the potential to
classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or
sensor noise, and to help identify possible sensor degradation. Colour coded CGM
traces convey the information quickly and efficiently, while remaining
computationally light enough to be used retrospectively or in real-time.

Keywords: Continuous Glucose Monitor, Classify, Neonatal, Intensive care unit,
Glycaemia

Background

Abnormal blood glucose (BG) concentrations have been associated with increased mor-
bidity and mortality in both critically ill adults and infants. Patients in the intensive
care unit (ICU) often experience high levels of insulin resistance [1-7] and stress-
induced hyperglycaemia, which can negatively impact outcomes [1-3,7,8]. Similarly,
hyperglycaemia in very-low-birth-weight or premature infants is also associated with
negative outcomes [9,10]. Further complicating the matter, hypoglycaemia and gly-
caemic variability have both been independently linked to mortality in critically ill
patients [11-14].

Diagnosis of hyperglycaemia and hypoglycaemia in critically ill patients is by BG mea-
surements, which are typically taken several hours apart. More frequent BG measure-
ments are not clinically practical due to the additional nursing workload [15-17] and
in preterm infants, blood volume considerations. Consequently, important glycaemic
events between BG measurements can go undetected. Continuous Glucose Monitor-
ing (CGM) devices have the potential to improve the detection and diagnosis of
these glycaemic abnormalities. The continuous glucose monitoring system (CGMS®
System Gold™ Medtronic, Minimed, Northridge, CA, USA) provides a glucose value
every 5 minutes or 288 measurements per day, with only 2—4 BG measurements per
day required for device calibration.

There have been relatively few successful investigations of CGMs in critical care use
[18-21], although they are well studied in Type 1 diabetes [22-24]. In particular, one
set of tight glycaemic control trials using CGM technology was not particularly suc-
cessful due, in part, to significant sensor noise [25,26]. In some cases, added sensor
noise is a trade-off for the CGM’s far higher, automated sampling rate [18,27] and must
be effectively managed for these devices to be used successfully. However, these sensor
and algorithm technologies are also constantly evolving with every new generation
offering improvements [24,28].

If CGM devices are to be used in the clinical setting to monitor, diagnose and poten-
tially aid in the treatment of abnormal glycaemia, clinicians need to know the data are
reliable and accurate. Consider a scenario in which CGM data are retrospectively ana-
lysed to classify hypoglycaemia in neonates, where frequent BG measurements are not
available. Three consecutive measurements in a CGM trace read 4 mmol/L, 2.5 mmol/L,
followed by 4 mmol/L. If hypoglycaemia was classified as a measurement below
2.6 mmol/L, then this would be recorded as a hypoglycaemic event. However, if the rest
of the CGM trace was very stable with low variability, intuition would suggest this
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'event’ is potentially a sensor artefact. There currently is no reliable method to determine
which of these interpretations is more likely to be “true”.

Our manuscript describes a tool that will aid clinicians in identifying unusual CGM
behaviour, retrospectively or in real-time, and highlight sections of the CGM glucose
trace that potentially need to be interpreted with care. Specifically, the focus is to iden-
tify unusual CGM sensor behaviour, not unusual glycaemic excursions.

Subjects and methods

Subjects

This study used CGM data from 50 babies at risk of hypoglycaemia who were admitted
to the Waikato Hospital Newborn Intensive Care Unit (NICU). The cohort contained
26 males and 24 females with a median gestational age of 34 weeks and a median birth
weight of 2172 g. The primary risk factors used to identify infants likely to become
hypoglycaemic include diabetic mother, prematurity and being small or large for gesta-
tional age. The study was approved by the Northern Y Regional Ethics Committee.

Continuous glucose monitoring

All patients had interstitial glucose monitoring using the CGMS® System Gold™ (Med-
tronic, Minimed, Northridge, CA, USA). Monitoring began on admission to the NICU
and finished after 7 days or when the baby was no longer considered to be at risk of
hypoglycaemia, whichever came first. During the monitoring period nurses were asked
to record all BG concentrations, feeding and medication for the management of
hypoglycaemia. However, they remained blind to the glucose concentrations deter-
mined by the device. The device was calibrated per the manufacturer’s recommenda-
tions and all of the data entered into the device were checked against clinical records
for accuracy. Upon completion of monitoring, data were downloaded to a PC using
CGMS system solutions software version 3.0C, which calibrated the CGM readings
retrospectively. A total of 234 days of CGM data (67438 measurements) were collected
and the per-patient median [IQR (inter-quartile range)] duration of monitoring was 4.7
[4.0 - 5.7] days.

Calibration measurements

The CGM device required calibration 2—4 times daily to convert the electrical current
produced by the sensor into a meaningful glucose value. Blood samples were taken by
nursing staff via heel-pricking and the glucose concentration was used to calibrate the
CGM device. The median [inter-quartile range (IQR)] interval between samples was 4.8
[3.5 — 6.4] hours.

All BG calibration measurements were made using a blood gas analyser (Radiometer,
ABLB800Flex, Copenhagen) using the glucose oxidase method. This device has a reading
range of 0.0 to 60.0 mmol/L and a C.V. of 1.4-2.2% [29,30]. Furthermore, a study by
Watkinson et al. showed that a device from the same family, using the same glucose
electrode, had a coefficient of variation of 2.1% in ICU patients and performance was
not affected by haematocrit, pH or PaO2 [30]. Due to the location of the blood gas ana-
lyser, a short time delay (estimated < 15mins maximum) was possible between taking
the blood sample and introducing the resulting measurement into the device.
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Stochastic model

A stochastic model based on the kernel density method was implemented to classify
unusual CGM measurements using the previous CGM measurement and information
about the history of CGM behaviour. The model is an extension to the methods
described by Lin et al. [27] who developed a stochastic model for insulin sensitivity pre-

diction.
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The model was generated using Equations 1 and 2 which define the 2-dimensional
kernel density estimation in conditional CGM measurement variability. Each
¢(x;%:,0,,%) and ¢ (y;:,0,,%) is a normal probability density function (pdf) centred at
the corresponding x; and y;. To force non-negativity in x and y, p,, and p,, normalise
each ¢(x;x;,0,,%) and ¢(y;y:,0,,) in the positive domain. Specifically, for a given CGM
measurement CGM,,_;, Equations 1 provides a continuous, empirical estimate of the
conditional pdf for the next CGM measurement, CGM,,. These conditional pdf’s provide
the basis for classifying CGM measurements and identifying unusual CGM behaviour.

CGM measurement classification
Using the stochastic model, a given CGM measurement, CGM,,, is classified as follows:

1. The previous measurement, CGM,, ;, is used to find the corresponding
conditional pdf from the model.

2. CGM,, is located in the pdf and its percentile value in the conditional pdf is
determined.

3. The percentile is used to classify CGM,,, where a very high or very low percentile
is indicative of an outlier. These outliers are classified as unusual CGM measurements.

The measurement-to-measurement sections of the CGM trace were colour coded
based on the percentile value, to highlight areas of unusual CGM behaviour quickly
and effectively. Three confidence intervals (CI’s) were used to specify the colour: within
80% CI (10th-90th percentile) was blue, within 90% CI (5th-95th percentile) was cyan,
within 99% CI (0.5th-99.5th percentile) was yellow, and outside 99% CI was red. These
intervals were chosen based on the data used in this study and can be customised for
different patient groups and/or different CGM sensors. As the scale starts at 80% CI,
the focus here is on classifying outliers, rather than the full range.

5-fold validation of stochastic model

A 5-fold validation was used to check the fit of the stochastic model. The data set
(N =50) was randomly divided into 5 sets of 10 patients. For each 10 patient group, the
remaining 40 patients were used to create a stochastic model which was then tested on
the group of 10 patients. The model fit was assessed by counting the number of clinical
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CGM measurements (from the 10 patients) captured by the model’s 80% CI, 90% CI
and 99% CL

Due to the random nature of this validation procedure, Monte Carlo (MC) methods
were used to reduce the effect of randomly selected outliers on overall results. MC
methods provide a robust means of estimating the range of possible outcomes for a
process involving one or more random variables. In this study, the MC simulation
involved repeating the 5-fold validation 25 times, and reporting the Median [IQR]
results.

Results

Clinical CGM data and stochastic model generation

Figure 1 shows a plot of all the CGM data (CGM,,_;, CGM,,). The contour lines repre-
sent the 5th, 25th, 50th, 75th, and 95th percentiles of the stochastic model surface.
Figure 2 shows a distribution of the data density by glycaemic level. Figure 3 shows a
surface plot of the stochastic model. Conditional probability density functions are
slices parallel to the CGM,, axis, and each slice has an area under the curve of 1.0.
Figure 4 shows a comparison of the pdf's obtained from the model versus the pdfs
obtained directly from the CGM data. Each pdf shows the expected distribution of
CGM,, given a previous measurement (CGM,, ;) of 2, 4, 6, 8 or 10 mmol/L. It should
be noted that the pdfs could be generated for any value of CGAM,,_ ; within the
bounds of the model; Figure 4 shows just five examples.

Classification of representative CGM data

Figures 5, 6, 7 show three examples of CGM traces that have been coloured using the
stochastic classification method. Figure 5 shows a stable trace, which is almost entirely
dark blue, indicating the measurement-to-measurement change throughout the trace is
not unusual. Figure 6 shows a trace with several potentially unusual measurements
throughout the trace. The hypoglycaemic event that occurs at approximately one day
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Figure 1 CGM,,; vs. CGM,, Plot of CGM measurement pairs (CGM,_;, CGM,,) with contour lines
representing the 5th to 95th percentiles, from the bottom of the plot up.
.
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Figure 2 Data density by glycaemic level. Density of the data set by glycaemic level. Density is shown as
a percent of the total data set (67,438 measurements).

after monitoring began is coloured red and classified as very unusual. Figure 7 shows a
trace with a few potentially unusual measurements for the first three days of monitor-
ing. After day 3 a high proportion of the CGM measurements are classified as very un-

usual and are coloured red.

Discussion

Clinical CGM data and stochastic model generation

The aim of this study was to design a tool that could aid clinicians in identifying un-
usual CGM behaviour that should potentially be interpreted with care. Stochastic mod-
elling methods from [31] and a method of colouring CGM traces were used to
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Figure 3 Stochastic model surface. Data density by glycaemic level. Stochastic model surface for this
data set. Conditional probability density functions are the surface slices along CGM,,_jaxis, each slice has an
area under the curve summing to 1.0. A colour gradient was used to show the height of the surface.
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Figure 4 Model surface vs. clinical data. Comparison of conditional probability density functions at
different CGM,, ;. Pdf's from the model are solid lines and empirical pdf's from actual CGM data are dotted.
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highlight unusual CGM behaviour clearly and efficiently, in either real-time or

retrospectively.

Figures 1 and 2 give information about the raw data used to create the stochastic

model. More than 99% of the data is within 2-10 mmol/L range, shown in Figure 2.

There are several outliers in Figure 1 that have a very large change in glycaemia over

the 5 minute measurement interval. The high data density means these outliers have

little effect on the model fit, shown by the smooth and tight percentile lines in Figure 1.

However, below 2 mmol/L there are 97 CGM measurements and due to the relatively

low density of data the outliers have more impact on the model fit. This effect is clearly

seen in the 95th percentile line of the model, which strays upward at levels below

2 mmol/L. Similarly, above 10 mmol/L there are only 232 measurements and the per-

centile lines all have a wave-like shape, again showing the effect of outliers where data

density is low. A greater data density would alleviate these issues without changing the

approach in this proof-of-concept.

-

CGM measurements were classified unusual.
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Figure 5 Classification example 1. Stable CGM trace with no yellow or red measurements indicating no
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Figure 6 Classification example 2. CGM trace with several measurements classified as mildly unusual.
Note the hypoglycaemic event at ~1 day which has been classified as very unusual (red).

The quality of data used to create a stochastic model will affect how future CGM
measurements are classified. If a model is created using low quality data, containing a
significant number of outliers, then the model could potentially classify future outlier
measurements as ‘usual’ or ‘expected’. Data quality is particularly important when using
small data sets, as single outliers can have more effect on the overall model. However,
the growing use of databases and electronic records means that collecting large
amounts of data that are fully representative will become easier, even for sub-cohorts.
Thus, this work foreshadows an application with potential for good clinical use in fu-
ture, as the method of creating such models is general.

Figure 3 shows the surface of the stochastic model. The colour gradient shows how
the shape of the model changes in the domain of CGM,,; and that a single, global
probability density function is not applicable to this data set. Figure 4 further reinforces
this with 5 pdf’s taken from the model at different CGM,, ; values, resulting in 5 differ-
ent shaped density functions. These pdf’s are also used to show that the model fits the
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Figure 7 Classification example 3. CGM trace with several measurements classified as mildly unusual.

After day 3 the trace is classified as very unusual (red) and could be indicative of sensor malfunction.
. J
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empirical data well. The model pdf’s (solid lines) overlay the empirical data (dotted
lines) with only minor discrepancies.

Additionally, the model fit was checked using a 5-fold validation, with results
shown in Table 1. Across the 25 MC runs, the 80% CI captured 83% of the data (me-
dian), the 90% CI captured 91% of the data (median) and 99% CI captured 99% of
the data (median). These results show the model to capture the CGM data well over
the expected range of CGM values, with little variation in the percentage of data cap-
tured in each CL

Classification of representative CGM data

Figures 5, 6, 7 show 3 different CGM data sets and how the stochastic model clas-
sified the individual CGM measurements within them. Figure 5 shows a very stable,
flat CGM trace with only small variations over the 3.5 days of monitoring. The
CGM trace passes near all calibration measurements and there doesn’t appear to be
any unusual CGM behaviour. The stochastic model classified almost the entire trace
as dark blue indicating no unusual CGM behaviour. The interpretation of this trace
would not likely be influenced with the additional information provided by the
model.

Figure 6 shows a less stable CGM trace with a lot more variability. This trace contains
a few yellow and red sections that potentially need to be interpreted with care. The focus
of this discussion is the ‘hypoglycaemic event’ that occurs at ~ day 1. In the sequence of
5 measurements that lead up to the 1.8 mmol/L minimum, there are two drops of
~1 mmol/L per 5 minute measurement interval. The model has determined these are
extreme outliers and consequently they have been coloured red. The trace then rises to
above 4 mmol/L in 5 measurements, similarly with two rises of ~1 mmol/L per 5 minute
measurement interval. Although the physiological limits of glucose rate-of-change are
still unknown, the level of sensor error that has been reported in previous CGM studies
[18,22] suggest that this hypoglycaemic event could potentially be either glycaemia or
Sensor error.

Interestingly, the bottom of the ‘hypoglycaemic event’ at ~day 1 contains a dark blue
classification; indicating the measurement-to-measurement change immediately after
the nadir was not unusual. This was not unexpected, because the lag 1 model classified
the change between any two consecutive CGM measurements independent of previous
classifications. Additionally, the data in Figure 1 is generally centred on the line CGM,, ; =
CGM,, and consequently the model surface in Figure 3 peaks along or near this line. Thus,
for the hypoglycaemic event at day 1 when the CGM reported 1.8 mmol/L followed by
1.9 mmol/L, CGM,,; =~ CGM,,, and the change was classified as expected (blue — within
80% CI).

It is important to note that the aim of the stochastic model is not to try and deter-
mine the accuracy of the CGM device or the specific cause of a drop in CGM glucose,
but rather to highlight the fact it should be interpreted with care. Furthermore, if the
stochastic model was implemented in a real-time clinical setting and the downward

Table 1 Results from a 5-fold validation of the model
5-fold Model Validation (25 MC runs) 80% Cl 90% Cl 99% Cl
Variation across MC runs (Median [IQR]) 0.83 [0.79 - 0.86] 0.91 [0.89 - 0.93] 0.99 [0.98 - 0.99]
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CGM measurements were observed, it would be beneficial for the clinician to know
whether the sequence of measurements is typical of CGM devices and that patient co-
hort. It should also be noted that without an accurate BG measurement at ~1 day, no
exact conclusion can be drawn about the whether the hypoglycaemic event in this data
was a sensor artefact, or a true glycaemic event.

However, this lack of confirmation is often the reality with CGMs. Clinical protocols
might use stochastic information to justify an added BG measurement to clarify a po-
tentially significant event. After an event, such traces would yield insight not present at
the bedside.

Figure 7 shows an example of CGM data that becomes increasingly more variable
and unstable at approximately day 3 of monitoring. Before day 3, the CGM trace
is predominantly blue and cyan with only small patches of yellow and occasionally
red. However, after day 3 the CGM trace is almost entirely red indicating the sto-
chastic model has classified these measurements as very unusual. The sudden ap-
parent degradation of reliable CGM measurements could be due to a sensor
failure. This is not an unreasonable hypothesis, given the sensors used in this
study were validated for 3 days of continuous monitoring. Again, without more
frequent, accurate BG measurements during the period after day 3 no definitive
conclusions can be drawn. However, this example represents another potential use
of this stochastic model classification method that might be useful to users of
CGM devices.

Finally, the stochastic model and classification methods were used retrospectively in
this study. For real-time use, a stochastic model would be generated using prior
CGM data, and CGM measurements would be entered into the system in real-time.
Classification of paired CGM measurements (CGM,,_;, CGM,,) takes a fraction of a
second, so the corresponding colour coded segment of CGM trace would be dis-
played without significant delay (estimated less than 1 second). The major limitation
in implementing the method in real-time is the ability to stream CGM data to a
computer in real-time. Although the technology is available, no ‘off the shelf’ CGM
devices currently offer this feature.

Conclusions

A stochastic model was shown to be capable of classifying CGM measurements to
highlight unusual CGM behaviour. The method uses a colour coded CGM trace to
convey the information quickly and efficiently and it is computationally light enough
to be used retrospectively or in real-time.

There are several potential uses for the stochastic classification which include, but
are not limited to, classification of hypoglycaemia and detection of potential sensor fail-
ure. Equally, they can augment alarm methods or be used to more optimally time BG
measurements, such as in neonates where blood draws are restricted. Overall, while BG
measurements are required to draw definitive conclusions about glycaemic events, the
stochastic model provides another level of information to aid users in interpretation

and decision making.
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