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Abstract

Background: In sparse-view CT imaging, strong streak artifacts may appear around
bony structures and they often compromise the image readability. Compressed
sensing (CS) or total variation (TV) minimization-based image reconstruction method
has reduced the streak artifacts to a great extent, but, sparse-view CT imaging still
suffers from residual streak artifacts. We introduce a new bone-induced streak artifact
reduction method in the CS-based image reconstruction.

Methods: We firstly identify the high-intensity bony regions from the image
reconstructed by the filtered backprojection (FBP) method, and we calculate the
sinogram stemming from the bony regions only. Then, we subtract the calculated
sinogram, which stands for the bony regions, from the measured sinogram before
performing the CS-based image reconstruction. The image reconstructed from the
subtracted sinogram will stand for the soft tissues with little streak artifacts on it. To
restore the original image intensity in the bony regions, we add the bony region
image, which has been identified from the FBP image, to the soft tissue image to
form a combined image. Then, we perform the CS-based image reconstruction again
on the measured sinogram using the combined image as the initial condition of the
iteration. For experimental validation of the proposed method, we take images of a
contrast phantom and a rat using a micro-CT and we evaluate the reconstructed
images based on two figures of merit, relative mean square error and total variation
caused by the streak artifacts.

Results: The images reconstructed by the proposed method have been found to
have smaller streak artifacts than the ones reconstructed by the original CS-based
method when visually inspected. The quantitative image evaluation studies have also
shown that the proposed method outperforms the conventional CS-based method.

Conclusions: The proposed method can effectively suppress streak artifacts
stemming from bony structures in sparse-view CT imaging.
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Background
Sparse-view CT is of great importance in clinical imaging for its potential to reduce

the x-ray dose to the human subject and the scan time [1–3]. In sparse-view CT,

less number of projection views than is required to satisfy the Nyquist sampling

theorem is employed. Conventional filtered backprojection (FBP) based image recon-

struction methods gives severe streak artifacts, sort of aliasing artifacts, in the

images, which would hamper clinical utility of the sparse-view CT. Bony structures
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makes strongest streak artifacts, and physiological motions of the human subject,

beam hardening, and photon starvation also make streak artifacts [4–7]. In sparse-

view CT image reconstruction, iterative image reconstruction methods are usually

employed since they outperform the conventional FBP methods in terms of signal-

to-noise ratio (SNR) and streak artifacts [8–10]. Recent developments of compressed

sensing (CS) or total variation (TV) minimization-based image reconstruction meth-

ods have reduced streak artifacts to the extent that sparse-view CT would be a

plausible imaging modality for some clinical applications [11,12]. Imaging guided ra-

diation therapy (IGRT) using a cone-beam CT (CBCT) is one of the applications of

great interests [13]. It is now widely recognized that the CS-based image reconstruc-

tion can suppress streak artifacts to the unnoticeable level in the case of simple-

structured-phantom imaging with the number of views as small as several tens

[14–19]. But, in human imaging in which sparsity of the images is much lower

than in the phantom imaging case, the CS-based image reconstruction methods

often fail in suppressing streak artifacts. There have been a few reports on streak

artifact suppression techniques in the CS-based image reconstruction. Leng et al.

introduced a method to suppress respiration-induced streak artifacts in four-

dimensional CBCT [20]. They used a full-view image as a prior to suppress the

streak artifacts in each respiratory phase image. They also proposed a method that

a full-view image be used as a prior for the constraint in the CS-based image re-

construction from highly sparse-view projection data [15].

In this paper, we introduce a new sparse-view image reconstruction method to fur-

ther reduce streak artifacts stemming from high-intensity objects like bony structures

or metal implants. We incorporate bone segmentation into the CS-based image recon-

struction to prevent streak artifact formation in the soft tissue regions. We have verified

the proposed method using the projection data obtained from micro-CT scanning of a

contrast phantom and a laboratory rat.

Methods
ART and CS

We use the algebraic reconstruction technique (ART) and CS as a platform for the

sparse-view image reconstruction. ART is a minimum mean square error (MMSE)

solver to find the image f that best matches the measured projection data g:

Af ¼ g ð1Þ

where A is the system matrix describing the forward projection in the CT scan

[21]. In ART, the above equation is solved in an iterative way that the difference

between the projection data measured in the real scan and the projection data cal-

culated from the estimated image is back-projected on to the image estimated at

the previous iteration step. ART is known to have better performance than FBP in

suppressing streak artifacts in sparse-view imaging. Many variants of ART with dif-

ferent iteration schemes have been proposed to improve the image quality and to

reduce the computation time [22–25]. In this study, we use the ordered-subset

simultaneous algebraic reconstruction technique (OS-SART) [24] for an ART

solver.
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The CS-based image reconstruction methods solve the following constrained

optimization problem which has constraints of data fidelity and pixel positivity [26]:

arg min
f

Ψfj jl1 s:t: Af ¼ g; f ≥ 0 ð2Þ

where Ψ is a sparsifying transform operator, and zj jl1 ¼
PN

i¼1 zij j is the l1 norm of an

N-dimensional vector z. In this study, we use the discrete gradient transform for the

sparsifying transform which has been widely used in the CS-based image reconstruc-

tion [14]:

Ψf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f iþ 1; jð Þ � f i; jð Þ½ �2 þ f i; jþ 1ð Þ � f i; jð Þ½ �2

q
ð3Þ

where i and j are the pixel indices in the x- and y-directions, respectively, and f is the

2D matrix form of f. The discrete gradient transform is often denoted as TV. We im-

plement the CS-based image reconstruction algorithm using the OS-SART to enforce

the data fidelity and the steepest descent method to minimize the TV in an alternating

manner in the iteration. We summarize the algorithm for the CS-based image recon-

struction in the following pseudo-code [19,27].

functionCSTV g;β;βredK;f
init

� �

1. f0 : = finit;

2. for k = 1: 1: K(main loop)

3. update fk by OS-SART from the projection data g;

4. for l = 1: 1: 10 (TV minimization loop)

5. compute the steepest decent direction d of TV;

6. ρ ¼ max fk
�� ��� �� max dj jð Þ;

7. fk ¼ fk � β� ρ� d;

8. end

9. β ¼ β� βred;

10. end

11. return fk

The TV-minimization step has two control parameters, the maximum step size β in

the steepest descent search, the reduction factor βred of the maximum step size after

each iteration of the main loop. It is commonly known that the large step size of the

steepest descent makes the image look smooth, and the small one makes the image

look sharp [13,14]. In this study, we empirically choose β and βred considering that too

large β makes the image weak-contrasted whilst too small β makes the image very simi-

lar to the one reconstructed by ART [14].

Streak-artifact-suppressed CS image reconstruction (SAS-CS)

To reduce streak artifacts stemming from high-intensity structures like bones or metal

implants, we combine CS-based image reconstruction approaches with the conven-

tional FBP. Figure 1 shows the basic idea of the proposed method.



Figure 1 Image reconstruction procedure to suppress the streak artifacts.
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Step 1 : fFBP ¼ FBP gacqð Þ

To identify the high-intensity region that makes strong streak artifacts, we first re-

construct an image using FBP, fFBP, from the acquired sinogram gacq. The resulting

image may have streak artifacts around the high-intensity structures.

Step 2 : Extracting fbone from fFBP

From fFBP, we extract the high-intensity region, denoted as fbone, by applying a thresh-

olding technique. We manually choose the global threshold Tbone by visual inspection

of the image histogram.

Step 3 : Computing gbone by forward projecting fbone

From fbone, we compute forward projection of the high-intensity region to make the

sinogram data gbone that accounts for the high-intensity region only.

Step 4 : gsoft ¼ gacq � gbone

We subtract gbone from the measured sinogram, gacq, to exclude the components

stemming from the high-intensity region.

Step 5 : f soft ¼ CSTV gsoft; β ¼ 0:0060; βred ¼ 0:98;K ¼ 30; f init ¼ 0
� �

]

We use the subtracted sinogram gsoft, which account for the soft tissues only, for re-

construction of soft tissue images using the CS-based method. In this step of CS-based
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image reconstruction, we use a uniform image of zeroes as an initial guess of the

CS-based image reconstruction.

Step 6 : f sum ¼ fbone þ f soft

After reconstructing the soft tissue image fsoft via CS, we add the high-intensity re-

gion image fbone, which has been reconstructed by FBP, to the soft tissue image to get

the composite image fsum.

Step 7 : f final ¼ CSTV gacq; β ¼ 0:0033; βred ¼ 0:98;K ¼ 30; f init ¼ f sum
� �

.

To further refine the CT image, we perform the CS-based iterations again on the ori-

ginal sinogram with the initial guess of the CT image set to fsumobtained at the last

step.

The CS-based image reconstruction in step 5 and 7 solves the constrained

minimization problem defined in Eq. (2). Step 5 needs two inputs and three control

parameters. The two inputs are the soft tissue sinogram, gsoft, and the initial guess of

the reconstructed image which is all zeroed. The three control parameters are β and

βred defined in the previous section, and K the maximum number of iterations of the

main loop. In step 7, we perform the CS-based image reconstruction again using the

same procedure as in step 5, but with the data inputs of gacq and fsum which has been

obtained in step 6.
Data acquisition

We have performed all the CT scans using the lab-built micro CT system described in

our previous work [28]. The micro CT system consists of a micro-focus x-ray source, a

rotating object holder, a CMOS flat-panel detector. The micro-focus x-ray source

(L8121-01, Hamamatsu, Japan) has a fixed tungsten anode having an angle of 25°

against the electron beam and a 200 μm-thick beryllium exit window. The emitted

x-ray beam has a span angle of 43°. The source has a variable focal spot size from

5 μm to 50 μm depending on the applied tube power. We have operated the micro-

focus x-ray source in a continuous mode with a 1 mm-thick Al filter. We have used

a commercially available flat-panel detector (C7942, Hamamatsu, Japan) as a 2D

digital x-ray imager in the micro-CT system. The flat-panel detector consists of a

2240 × 2240 active matrix of transistors and photodiodes with a pixel pitch of

50 μm, and a CsI:Tl scintillator.

To validate the proposed method, we have performed CT scans of a contrast phan-

tom and a sacrificed adult rat using the micro-CT. The contrast phantom consists of

seven inserts six of which have physical densities similar to that of water and the rest of

which has the bone-equivalent physical density. Figure 2 shows a schematic diagram of

the contrast phantom along with the physical densities of the inserts. The seven inserts

of 5 mm diameter were in a water bath made of an acryl cylinder of 40 mm diameter.

We have made the inserts using the commercial electron density phantoms (Model 76-

430, Nuclear Associates, NY, USA). We applied tube voltage and current of 40 kVp and

0.5 mA for the contrast phantom imaging, and 65 kVp and 0.34 mA for the rat im-

aging, respectively. To get reference images, we performed full-view scans with the



Figure 2 A schematic diagram of the contrast phantom. Physical densities of the inserts (g/cm3) are
shown in the parentheses.

Jin et al. BioMedical Engineering OnLine 2012, 11:44 Page 6 of 13
http://www.biomedical-engineering-online.com/content/11/1/44
number of views of 900 over 360 degrees. To get sparse-view projection data, we deci-

mated the full-view projection data in the view direction.

Image quality evaluation

In order to evaluate the final image quality particularly in terms of streak artifact for-

mation, we use two metrics, one for the total variations stemming from streak artifacts

and the other for the relative errors of the final image with respect to the reference

image. We define the normalized streak indicator (SI) using the total variation of the

difference image [12] :

SI ¼ TV f � f ref
� �

TV fFBP � f ref
� � ð4Þ

where f is the sparse-view image reconstructed by the proposed method, fref the refer-

ence full-view image reconstructed by FBP, and fFBP the sparse-view image recon-

structed by FBP, respectively. We calculate TV using Eq. (3). For the reference images,

we use the 900-view images reconstucted by FBP which have little streak artifacts.

To evaluate reconstruction errors as compared to the reference image, we use the

relative root mean square error (RRME) defined by [12]:

RRME ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

f i; jð Þ � f ref i; jð Þ� �2
X
i;j

f ref i; jð Þ2

vuuuuut ; ð5Þ

where f is the matrix form of the image vector f.

Results
We have first reconstructed contrast phantom images the size of 512 × 512 using FBP

from the 60-, and 900-view projection data acquired from the micro-CT scan. The

images shown in Figure 3 have the pixel size of 85 × 85 μm2. As can be noticed from

Figure 3b, the 900-view image to be used as a reference image shows little streak arti-

facts whilst the 60-view image shows strong streak artifacts stemming from the high-



Figure 3 Contrast phantom images reconstructed by FBP. The images have been reconstructed from
a 60-view and b 900-view projection data. The images are normalized to 1.0. The display window is
[0.05 0.45].
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intensity insert placed at the center of the phantom. We have reconstructed the con-

trast phantom images using the three iterative reconstruction methods, ART

(Figure 4a), CS (Figure 4b) and SAS-CS (Figure 4d). Figure 4c shows the soft-intensity

image calculated in step 5 in SAS-CS. From the images, we can see that the ART image
Figure 4 Contrast phantom images reconstructed by the iterative methods. Three iterative
reconstruction methods, a ART, b CS and d SAS-CS, have been used. The soft tissue image c has been
reconstructed in step 5 of SAS-CS. The images are normalized to 1.0. The display window is [0.05 0.45].



Figure 5 Pixel-intensity profiles of the contrast phantom images along the lines shown in Figure 4a.
Three iterative reconstruction methods, ART, CS, and SAS-CS, are compared for the 60-view imaging. The
pixel intensity profiles a along the line 1 and b along the line 2 in Figure 4a are shown.
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has strongest streak artifacts. In the CS image, the streak artifact has been remarkably

reduced, but we can still see the residual streak artifacts. The SAS-CS image shows

least level of steak artifacts among the three images. Figure 5 shows pixel-intensity pro-

files along the two lines shown in Figure 4a. Along the line 1 which runs the uniform

background region, SAS-CS shows least level of fluctuation demonstrating its perform-

ance of streak-artifact suppression. Along the line 2 which runs over the inserts, CS

and SAS-CS show similar level of fluctuations. Table 1 summarizes the RRMEs and SIs

of the images reconstructed by the aforementioned three methods with respect to the

reference image. Due to the strong streak artifacts, the ART image shows the biggest

RRMEs whilst the SAS-CS image shows the least RRMEs. In terms of the normalized

SI, the ART image also shows the worst performance and the SAS-CS image shows the

best performance.

We have reconstructed rat abdomen images and pelvic floor images, with the matrix

size of 512 × 512 and the pixel size of 120 × 120 μm2, using FBP from the 100-, and

900-view projection data. Figure 6 shows the rat abdomen images reconstructed by

FBP. Here again, the 900-view FBP image is used as a reference image. The streak arti-

facts in the rat abdomen images are less conspicuous than they are in the contrast
Table 1 Means and standard deviations, RRMEs and SIs in the contrast phantom images

Contrast Phantom Case

Reconstruction Methods Mean values ± standard deviations RRME SI

ART 0.1787 ± 0.0172 0.0095 0.4471

CS 0.1784 ± 0.0033 0.0032 0.3014

SAS-CS 0.1783 ± 0.0022 0.0027 0.2966

Three iterative reconstruction methods, ART, CS, and SAS-CS, are compared for the 60-view imaging. Mean values and
standard deviations have been calculated from the pixel-intensity profiles in Figure 5a.



Figure 6 Rat abdomen images reconstructed by FBP. The images have been reconstructed from a 100-view
and b 900-view projection data. The images are normalized to 1.0. The display window is [0.01 0.50].
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phantom images, but we can see clear streak artifacts from the 100-view images.

Figure 7 shows the rat abdomen images reconstructed by the three iterative methods.

Here again, the ART image (Figure 7a) shows the strongest streak artifacts and the

SAS-CS image (Figure 7c) show less streak artifacts than the CS image (Figure 7b).

Figure 8 shows the rat pelvic floor images reconstructed by FBP from the 100- and

900-view projection data. Due to the many bones on the pelvic floor, the 100-view

FBP image shows strong streak artifacts. Figure 9 shows the pelvic floor images

reconstructed by the iterative methods and the difference images taken from the

reference image. Due to the high-intensity bones on the imaging plane, SAS-CS images
Figure 7 Rat abdomen images reconstructed by the iterative methods. Three iterative reconstruction
methods, ART(a), CS(b) and SAS-CS(c), have been used for 100-view imaging. The images are normalized to
1.0. The display window is [0.01 0.50]. Magnified images are shown in the bottom row.



Figure 8 Rat pelvic floor images reconstructed by FBP. The images have been reconstructed from a
100-view, b 900-view projection data. The images are normalized to 1.0. The display window is [0.01 0.55].
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(Figure 9c) also show residual streak artifacts which are, however, far less than the ART

image (Figure 9a) and the CS image (Figure 9b). Table 2 summarizes the RRMEs and SIs

of the rat pelvic images reconstructed by the aforementioned three methods with respect

to the reference image. Due to the strong streak artifacts, the ART image shows the big-

gest RRME whilst the SAS-CS image shows the least RRMEs. In terms of the normalized

SI, the ART image also shows the worst performance and the SAS-CS image shows the

best performance.
Figure 9 Rat pelvic floor images reconstructed by the iterative methods. Three iterative
reconstruction methods, ART (a), CS (b) and SAS-CS (c), have been used for 100-view imaging. The images
are normalized to 1.0. The display window is [0.01 0.55]. Difference images taken from the reference image
are shown in the bottom row. The display window is [-0.25 0.25] for the difference images.
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Discussion
In sparse-view imaging, reducing the extensive computation time of the CS-based

image reconstruction is a great technical challenge for its application to clinical prac-

tice [11]. Repetitive forward and backward projections account for most of the com-

putations in the CS-based image reconstruction. Recent innovations in fast iterative

image reconstructions based on graphic processing units (GPUs) have shown that

sparse-view imaging may gain clinical applications in the near future [29,30]. The

computing cost of the CS-based image reconstruction is known to be higher than

that of ART, which largely depends on the number of iterations to solve the

minimization problem. Therefore, convergence speed of the CS-based image recon-

struction is a crucial factor for its use in clinical practice. Recent development of a

fast CS-based reconstruction algorithm based on the Barzilai-Borwein formulation

has reduced the number of iterations to the extent that the CS-based image recon-

struction could be used for real-time IGRT [13].

The computing cost of the proposed method, so called SAS-CS, has been found to

be similar to that of the conventional CS-based reconstruction in that SAS-CS needs

similar number of iterations. In addition to the repetitive forward and backward projec-

tions, SAS-CS needs additional non-iterative computations for the bone component

subtraction from the measured sinogram. But, the computing cost for the bone seg-

mentation is minimal as compared to that of the iterative computations. In fact, we

have observed that SAS-CS slightly accelerates the convergence of the minimization. It

seems that excluding the bone components from the measured projection data in the

first iteration (step 5) of SAS-CS accounts for the convergence acceleration. In the sec-

ond iteration (step 7) in which the bone components are also taken into account, the

number of iterations similar to the one in step 5 suffice for further refinement of the

reconstructed image in most cases. But we still need to speed up the computation for

practical use of the proposed method. Recently developed fast algorithms, such as the

adaptive-steepest-descent projection onto convex sets (ASD-POCS) [14,19] or the

Barzilai-Borwein formulation-based algorithm [13], may be used for our future studies

to reduce the computation time.

Conclusions
In conclusion, the proposed method can suppress streak artifacts stemming from

high-intensity objects in sparse-view CT imaging without significant increase of

computing cost as compared to CS- or ART-based reconstructions. Experimental

results obtained from the micro-CT imaging of a laboratory rat have demonstrated

efficacy of the proposed method in suppressing bone-induced streak artifacts in

sparse-view CT imaging.
Table 2 RRMEs and SIs in the rat abdomen images and rat pelvic floor images

Reconstruction
methods

Rat abdomen case Rat pelvic floor case

RRME SI RRME SI

ART 0.0077 0.4959 0.0108 0.4480

CS 0.0051 0.3790 0.0046 0.2573

SAS-CS 0.0043 0.3567 0.0031 0.2300

Three iterative reconstruction methods, ART, CS, and SAS-CS, are compared for the 100-view imaging.
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