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Abstract

Background: Electrical Impedance Tomography (EIT) is used as a fast clinical
imaging technique for monitoring the health of the human organs such as lungs,
heart, brain and breast. Each practical EIT reconstruction algorithm should be
efficient enough in terms of convergence rate, and accuracy. The main objective of
this study is to investigate the feasibility of precise empirical conductivity imaging
using a sinc-convolution algorithm in D-bar framework.

Methods: At the first step, synthetic and experimental data were used to compute
an intermediate object named scattering transform. Next, this object was used in a
two-dimensional integral equation which was precisely and rapidly solved via
sinc-convolution algorithm to find the square root of the conductivity for each pixel
of image. For the purpose of comparison, multigrid and NOSER algorithms were
implemented under a similar setting. Quality of reconstructions of synthetic models
was tested against GREIT approved quality measures. To validate the simulation
results, reconstructions of a phantom chest and a human lung were used.

Results: Evaluation of synthetic reconstructions shows that the quality of
sinc-convolution reconstructions is considerably better than that of each of its
competitors in terms of amplitude response, position error, ringing, resolution and
shape-deformation. In addition, the results confirm near-exponential and linear
convergence rates for sinc-convolution and multigrid, respectively. Moreover, the
least degree of relative errors and the most degree of truth were found in
sinc-convolution reconstructions from experimental phantom data. Reconstructions
of clinical lung data show that the related physiological effect is well recovered by
sinc-convolution algorithm.

Conclusions: Parametric evaluation demonstrates the efficiency of sinc-convolution
to reconstruct accurate conductivity images from experimental data. Excellent results
in phantom and clinical reconstructions using sinc-convolution support parametric
assessment results and suggest the sinc-convolution to be used for precise clinical
EIT applications.
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Background
Electrical impedance tomography is a new non-invasive imaging technique in which

the conductivity distribution inside a body is reconstructed via knowledge of injected

current patterns and resulted induced voltages through finite number of electrodes

placed on its surface [1]. This modality has many medical applications including

monitoring heart and lung functions [2,3], breast cancer detection [4] and diagnosis of

pulmonary edema and diagnosis of the pulmonary embolus [5].

Reconstructing the conductivity images in EIT involves solving forward and inverse

problems [1]. The solution of the forward problem is the potential distribution inside

the body given the map of conductivity distribution. The inverse problem is to find the

unknown conductivity map inside the body using finite sets of injected current patterns

and measured voltages on the electrodes surrounding the body.

Algorithms for solving the forward problem of EIT use Finite Element Methods

(FEM), Boundary Element Methods (BEM) and Finite Difference Methods (FDM)[1].

Existing approaches for solving the inverse problem of EIT include:

1. Linearized iterative methods such as Calderon’s method [6], back-projection [7,8]

and NOSER [9], which are not able to reconstruct conductivity distributions with high

variations [10].

2. Non-linear iterative methods such as equation error formulation [11], output least

square [12], statistical inversion [13] and Newton–Raphson methods [14], which are

accurate but suffer from the low convergence rate and high computational complexity [10].

3. Layer stripping methods [15] which are sensitive to noise and are weak in

reconstruction of non-symmetric conductivities [10].

4. Direct algorithms such as D-bar [16] and Block method [17] which solve the full

nonlinear inverse problem without any iteration in the conductivity domain and do

not require any intermediate estimation of the conductivity from a forward model.

Block method gains considerably from the homogeneity of conductivity distribution

for particles inside each block of the body [17]. The problem of high computational

burden faced in this method can be resolved by the method of modified equations

[18]. Recently, a non-iterative linear inverse solution is introduced in [19] that raises

the efficiency of this method via reduction in its computational complexity.

D-bar method is a new direct methodology, which was firstly introduced in the

constructive proof of Nachman [16]. This method uses the properties of the D-bar operator

of inverse scattering [20] to solve the full non-linear inverse conductivity problem on the

planar domains with two degrees of derivatives. An overview of this method is provided in

the following section. The reader can refer to [16] for more details. Note that, the quality of

the reconstructed conductivity images by the D-bar method is highly affected by approxi-

mate numerical solution to a weakly singular integral equation, named D-bar [21-23].

Concerning the efficiency of the solution to D-bar equation, two different numerical

methods, namely product integrals (PI) and multigrid (MG) are considered. PI-based

methods to solve D-bar equation require O(N6) arithmetic computations on N-point

grids which is huge even for advanced ultra-fast computers [21,23,24]. In addition, high

error rates, reported in the reconstructed conductivity images of experimental phantoms

using these methods [21] convinces the inefficiency of them for practical EIT.
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The complexity and high rates of error of PI-based methods inspired the adaptation of

MG methods [25] for solving D-bar integral equation. Although MG methods solve D-bar

integral equation with a remarkable speed and decrease the computational burden from O

(N6) to O(N4 log N) incorporating Fast Fourier Transform (FFT), the convergence rate of

these methods may not reach ultra-linear levels [22]. Recently, Mueller [26] has employed

MG solution of D-bar equation to reconstruct physical tank and human chest conductivity

images. In addition to the presence of visual artifacts such as blurring, the position, size

and orientation of the organs are not correctly reconstructed by MG.

These considerable drawbacks in aforementioned methods motivated us to present an ef-

fective computational algorithm based on sinc-convolution method to solve D-bar equation

with higher accuracy and lower computational burden [27]. But, for an EIT algorithm to be

practically used, some numerical and experimental proficiency tests are required to show

its actual efficiency [10].

The aim of this study is to assess the feasibility of empirical conductivity image

reconstruction via sinc-convolution algorithm in the D-bar framework of EIT. A regular

EIT algorithm evaluation requires a standard test methodology which is followed by some

experimental reconstructions. In this study, the approved parametric test methodology of

[2] is used to evaluate sinc-convolution algorithm based on the reconstructions of a specific

synthetic model. The employed scenario is described subsequently. After parametric

evaluation of the sinc-convolution, two sets of boundary data are used to qualitatively asses

the reconstructions of sinc-convolution. Indeed, these experiments validate the parametric

evaluations and show real potency of the sinc-convolution for clinical EIT. For the purpose

of comparison, two other algorithms including MG and NOSER are implemented.

The paper is organized as follows. In the immediately following section, steps of the

D-bar algorithm of Nachman are reviewed. Next, the sinc–convolution algorithm for

solving D-bar integral equation is described. After establishing synthetic models and

explaining phantom and clinical measurements, computations of performance figures

are described. The parametric evaluation results of sinc-convolution, MG and NOSER

are followed by their experimental reconstructions of a phantom tank and a human

lung data.

Methods
The EIT problem on a two-dimensional simply connected region Ω is modeled by the

generalized Laplace equation as

r: γ xð Þru xð Þð Þ ¼ 0; x ¼ x1; x2ð Þ 2 Ω; ð1Þ

where γ(.) and u(.) represent the conductivity of the domain and the electric potential,

respectively. The Dirichlet boundary condition

u xð Þ ¼ f xð Þ; x ¼ x1; x2ð Þ 2 @Ω; ð2Þ

represents the known voltage distribution, f, on the boundary of the Ω, resulted from

injecting a known current density, g, on the boundary that corresponds to Neumann

boundary condition

g xð Þ ¼ γ xð Þ @u
@ν

; x ¼ x1; x2ð Þ 2 @Ω: ð3Þ
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Here, v denotes the outward normal on the boundary @Ω. The voltage-to-current

map takes the given voltage distribution f on the boundary to current density distribu-

tion g. This mapping is also called Dirichlet-to-Neumann mapping and is denoted by

Λγ in EIT literature [10].

Actually, the inverse conductivity problem as stated firstly by Calderon [6] is to

uniquely determine the unknown conductivity distribution γ from the knowledge of

Λγ. There have been extensive efforts to find and prove the uniqueness of the solution

to this problem including the work of Nachman [16], Brown-Uhlmann [28] and

recently Astala [29] for two-dimensional inverse conductivity problem. All of these

researches are based on the D-bar method of inverse scattering [30].

Methods: D-bar method of EIT

The essence of the D-bar method of EIT is to transform the conductivity equation to

Schrödinger equation and use the D-bar approach of inverse scattering to solve the

resulting equation. For more details about the theory, the reader is referred to [16].

Here, we only review D-bar equations from the constructive proof of Nachman [16] for

solving inverse conductivity problem on a simply connected two-dimensional region

with two derivatives.

Change of the variable Ψ=γ1/2μ and q=Δγ1/2/γ1/2 and assuming that γ is a constant

γbest in the neighborhood of the boundary transforms the conductivity equation (1) to

Schrödinger equation in whole R2 [16]

�Δþ qð ÞΨ x; kð Þ ¼ 0; x 2 R2: ð4Þ

Note that, in the D-bar method a point x=(x1,x2)2Ω may be identified as a point
x=x1+ix2 where i2=-1 in complex plane. Also the complex parameter k=k1+ik22C may

be identified as a point k=(k1,k2)2R2. Using the assumption that γ is a constant, γbest in

the neighborhood of the boundary or equivalently q=0 outside the boundary, leads to

another Schrödinger equation [16]

�Δþ qð Þγ1=2 xð Þ ¼ 0; x 2 R2: ð5Þ

The key idea behind the proof of Nachman is that since two equations (4), (5) have

same compact potentials q, the unique solution of equation (4) can be used to find the

unique solution to equation (5). That is γ1/2(x) =ψ(x, k), for x2R2. The unique solution

ψ(x, k) to equation (4) is called exponentially growing solution which was first intro-

duced by Faddeev [31]. This solution is asymptotic to eikx for large |x| or large |k|.

Defining the function [16]

μ x; kð Þ ¼ e�ikxψ x; kð Þ; ð6Þ

which is asymptotic to 1 and considering aforementioned key idea in the Nachman’s

proof [16], the conductivity γ(x) can be computed as

γ xð Þ ¼ lim
k!0

μ x; kð Þ
� �2

: ð7Þ
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In the constructive proof of Nachman, an intermediate none-physical function named

scattering transform of q(x) is defined as [16]

t kð Þ ¼
Z
R2

ei
�k�xq xð Þψ x; kð Þdx; ð8Þ

which plays an important role in relating the measurement data and the conductivity

distribution γ(x). Note that, in equation (8), k̄ and x̄ are respectively the complex

conjugates of k and x. By simplifying the equation (8), the scattering transform is

related to the Dirichlet-to-Neumann map using the formula [16]

t kð Þ ¼ γbest

Z
@Ω

ei
�k�x Λγ � Λ1
� �

ψ :; kð Þdσ xð Þ: ð9Þ

Here, Λγ denotes the voltage-to-current density map when Ω has the conductivity

distribution γ and Λ1 denotes the voltage-to-current density map for homogenous con-

ductivity γ=1. Using the large |x| asymptotic behavior ψ(x, k)|@Ω� eikx, an approximation

to scattering transform of equation (9), namely texp(k) is introduced [23] in the form

t exp kð Þ ¼ γbest

Z
@Ω

ei
�k�x Λγ � Λ1
� �

eikxdσ xð Þ: ð10Þ

As shown in [32], as a regularization, the approximate computation of scattering
transform texp(k) should be restricted to a disk of radius R in the complex plane and

should be set to zero outside the disk. Therefore, the approximate scattering transform

tR
exp(k)is defined as a compactly support function by [23]

tR
exp kð Þ ¼ γbest

R
@Ω

e i�k�x Λγ � Λ1
� �

e ikxdσ xð Þ; kj j ≤ R:

0; kj j > R

(
ð11Þ

The t expR kð Þapproximation is used in some D-bar reconstructions using numerically

simulated data [23,24,33], experimentally collected data on phantom tank [21] and

human chest data [34].

It is shown by Nachman [16] that the connection between the scattering transform

and the μ(x, k) is provided by D-bar equation as

�@kμ x; kð Þ ¼ 1

4π�k
t expR kð Þe�k xð Þ �μ x; kð Þ������

; ð12Þ

where e�k xð Þ ¼ exp �i xk þ �x�k
� � ¼ exp �2i x1k1 þ x2k2ð Þ:ð�

This equation has a unique

solution that satisfies two-dimensional singular D-bar integral equation [16]

μ x; sð Þ ¼ 1þ 1
4π

Z
R2

t expR kð Þ
s� kð Þ�k e�k xð Þ �μ x; kð Þ������

dk: ð13Þ

In [27] a novel sinc-convolution algorithm is introduced for solving D-bar equation of
(13). This sinc-convolution algorithm is based on using collocation to replace two-

dimensional D-bar convolution equation by a system of algebraic equations. Separation of

variables in the proposed method allows elimination of the formulation of huge full

matrices and therefore reduces the computational complexity drastically. In addition, sinc-

convolution method converges exponentially with a rate of O e�c
ffiffiffi
N

p� �
. An overview of

this algorithm is presented in the following. The reader is referred to [27] for more detail.
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Methods: numerical solution of D-bar equation via sinc-convolution

Here, the iterative sinc-convolution algorithm to solve the D-bar integral equation (13)

is reviewed. The computational steps of sinc-convolution algorithm are enlisted in

Table 1. As a matter of fact, the sinc-convolution method is used to replace the integral

equation (13) by a system of algebraic equations.

Recall from the previous section that the support of scattering transform may be

embedded in a disk of radius R. In the first step of the sinc-convolution algorithm the

required bounds of two-dimensional convolution integral are determined as

[− 2R, 2R] × [− 2R, 2R]. This provides the required knowledge to define the sinc-points

via definition of region-related mapping functions in the next step of algorithm. In the

second step of algorithm, the two-dimensional convolution integral in the right-hand-side

of equation (13) is decomposed into four two-dimensional convolution integrals ri, i=1, .., 4.

Third step of the sinc-convolution algorithm forms the required matrices for iterative

solution of the D-bar equation. In the fourth step, a special “Laplace transform” of the

kernel of the D-bar equation should be computed. This transform is used in the iterative

computations of the sinc-convolution [27].

As clearly indicated in the fifth step of the sinc-convolution algorithm in Table 1, the

separation-of-variables procedure of Table 2 is used to compute all four two-dimensional

convolution integrals ri, i=1, .., 4. This feature of the sinc-convolution allows computing a
Table 1 The sinc-convolution algorithm

Step Operation

1 Specify the bounds of D-bar integral equation

μ x; kð Þ ¼ 1þ r kð Þ
π ; where r kð Þ ¼ R2R

�2R

R2R
�2R

t expR e�k xð Þ
4�k s�kð Þ

�μ x; kð Þ��������
dk1dk2; k ¼ k1 þ ik2 2 C; k 6¼ 0:

2
1. Decompose convolution integral r ¼P4

i¼1
ri

2. Define mapping functions φ1 zlð Þ ¼ φ2 zlð Þ ¼ φ zlð Þ ¼ ln zlþ2R
2R�zl

� �
; l ¼ �M; . . . ;N:

3. Compute sinc points zl ¼ φ�1 lhð Þ ¼ 2R �1þelhð Þ
1þelhð Þ ; l ¼ �M; . . . ;N:

4. Compute derivative of the mapping functions at sinc points φ0 zlð Þ ¼ 4R
2Rþzlð Þ zl�2Rð Þ

3
Use sinc matrices I�1

mi
s; tð Þ ¼ Rs�t

0

sin πzð Þ
πz dz þ 0:5; for s; t ¼ �M; ::;N;

A1 ¼ hI�1
m D

1
φ0 zlð Þ
� �

¼ X1S1X�1
1 ;

A2 ¼ h I�1
m

	 
T
D

1
φ0 zlð Þ
� �

¼ X2S2X�1
2 :

4 Compute the special “Laplace Transform” of the convolution kernel g kð Þ ¼ 1
k ; k ¼ k1 þ ik2 2 C

G u; vð Þ ¼
Z1
0

Z1
0

g k1; k2ð Þe
�

k1
u
þ k2

v

� �
dk1dk2

¼ � v
π

�π
2

v
u

� �
þ ln

v
u

� �
1þ v

u

� �2 þ i
u
π

�π
2

u
v

� �
þ ln

u
v

� �
1þ u

v

� �2 ; where Re
u
v

� �
> 0; Re

v
u

� �
> 0:

5 Iteratively

1. Compute each ri ; i ¼ 1; ::; 4; using the separation-of-variables procedure of Table 2.

2. Solve equation μ kð Þ ¼ 1þ 1
π r1 þ r2 þ r3 þ r4ð Þ to find μ(k).



Table 2 Computing r2 using the separation of variables procedure

Step Operation

1 Form the array ui;j
	 


ui;j ¼ t expR zð Þe�z xð Þ
4�z �μ zð Þ����� ; where z ¼ zi; zj

� �
for i; j ¼ �M; . . . ;N:

2 Successively form the arrays

bþ:;j ¼ X�1
1

u:;j

tþi;: ¼ X�1
2

bþi;:

3 Form the products t�i;j ¼ G s1
i
; s 2

j

� �
tþi;j

4 Successively form the arrays

bi,.
−= X2ti,.

−

r2i;j ¼ X1b�:;j
Note 1: r2i;j are the approximations of r2 at sinc points (zi, zj).

Note 2: In this procedure list, we used the notation b.,j= (b−M,j, . . ., bN,j)
T.

Similar notations are used for u.,j and ti,.
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two-dimensional convolution integral ri, i=1, .., 4, by only some one-dimensional vector

operations.

Here, the algorithm for computing r2 is summarized and listed in Table 2. Note that, in

the sinc-convolution method, as fully explained in [27], the separation of the variables of

all four two-dimensional integrals in the D-bar equation may be done analogously.

Sum of these integrals reassembles the r matrix in the right-hand-side of the

discrete-form D-bar equation as:

μ ¼ 1þ 1
π
r: ð14Þ

Here, μ= [μij]m×m for m=M+N+ 1 with elements μij= μ(zi, zj). That is, the elements
of this matrix are actually the values of the solution at sinc points. The 1on the right

hand side of the equation (14) denotes a vector of size m2 of 1’s. The equation (14) is

solved by means of an iterative solver such as GMRES [35]. It is worth noting that since

GMRES can only work with real-linear operators, the real and imaginary parts of the

solution matrix, μ, must be kept separate [35].

Methods: computational steps of D-bar reconstruction

To use both of the aforementioned datasets in the D-bar algorithm, the steps of the

flowchart in Figure 1 must be followed. According to that flowchart, one may need to

approximately compute the discrete form of the voltage-to-current map from the finite

measurement data and then approximately compute the scattering transforms.

Computing the discrete dirichlet-to-Neumann map

In this study, known patterns of current are injected through the electrodes surrounding

the body and the induced voltages on the same set of the electrodes are measured. Hence,

the primary step in reconstruction is to construct the discrete version of the voltage-to-

current density map in the form of a matrix from the injected current and measured volt-

age values. In this study, the method introduced by Isaacson in section 3 of [21] to



Figure 1 The flowchart of the D-bar reconstruction algorithm. Set up and measurement stages
produce measurement data which is required for computing voltage-to-current map. The acquired
mapping is used in D-bar algorithm to reconstructs the conductivity image.
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construct the voltage-to-current density matrix from the boundary measurements on a

phantom chest is followed. This computational method is used in all experimental D-bar

reconstructions such as [26,34,36]. The reader is referred to [21] for analytical derivation of

this approximation. Here, we briefly summarize that to fix the notations. Let

� L= the number of electrodes

� A= the area of an electrode, which is uniform in this study

� Δθ= the angle in radian between each electrode

� r = radius of the circular domain (in this study the radius of the tank).

In our study, L-1 trigonometric current patterns with amplitude M are used. The j-th

current pattern on the l-th electrode is defined by [21]



8

Abbasi and Naghsh-Nilchi BioMedical Engineering OnLine 2012, 11:34 Page 9 of 22
http://www.biomedical-engineering-online.com/content/11/1/34
Tj
l ¼

M cos jθlð Þ; j ¼ 1; . . . ;
L
2
� 1

M cos πlð Þ; j ¼ L
2

M sin j� L
2

� �
θl

� �
; j ¼ L

2
þ 1; . . . ; L� 1

:

>>>>><
>>>>>:

ð15Þ

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL j
� �2r
Let tl
j denote the vector of normalized currents tj ¼ T

∥Tj∥ , where ∥Tj∥ ¼
i¼1

Tl .

Also let Vl
jdenote the voltage measured on the l-th electrode corresponding to j-th

current pattern Tj and normalized so that
PL
i¼1

V j
l ¼ 0; j ¼ 1; . . . ; L� 1. Then, the voltages

v j that would result from the normalized current patterns are given by vj ¼ V j

∥Tj∥.

Let the (u(.),w(.))L denote the discrete inner product defined by

u :ð Þ;w :ð Þð ÞL ¼
XL
1

�u θlð Þ������
w θlð Þ: ð16Þ

Then the entries of the discrete Neumann-to-Dirichlet map Rγ,r are approximated by [21]

Rγ;r m; nð Þ ¼ tml
A
; vnl

� �
L

; where m; n ¼ 1; . . . ; L� 1: ð17Þ

Finally, by computing [21]
Lγ;r ¼ Rγ;r
�1; ð18Þ

one can obtain the discrete approximation of the Dirichlet-to-Neumann map Λγ. Using

the analytical method introduced in [21], the discrete current-to-voltage map R1,r is

approximated by the diagonal matrix

R1;r m; nð Þ ¼ 1
A

1
m
; m ¼ n and m; n ≤ L=2:

1
m� L=2

; m ¼ n and m; n > L=2

0; otherwise:

:

8>>><
>>>:

ð19Þ
Similarly, the discrete approximation of the Λ1 is obtained by [21]

L1;r ¼ R1;r
�1: ð20Þ

Finally, computing [21]
δLγ;r ¼ Lγ;r � L1;r; ð21Þ

gives the discrete approximation to (Λγ−Λ1) .

Computing the scattering transform t expR kð Þ
The series formulation for scattering transformt expR , firstly derived by Isaacson in [21] and

used in practical implementations of the D-bar including [21,26,34,36,37], is also used in

this study. The reader is referred to [21] for analytical derivation and exact formulation of

this approximate computation of the scattering transform. For each point z of the grid

defined in k-plane, the approximated scattering transform is computed as [21]:



  0 1!
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t expR zð Þ � γbest
LrΔθ
2A

XL=2�1

m¼1

XL=2�1

n¼1

am �zð Þan zð Þ δLm;n þ δL
mþ

L
2
; nþ L

2

þ i δL
m;nþ

L
2

� δL
mþ

L
2
; n

@ A

þ
ffiffiffi
2

p
 XL=2�1

n¼1

aL
2

�zð Þan zð Þ δLL
2
;n

þ iδLL
2
; nþ L

2

0
@

1
A

þ
ffiffiffi
2

p
 XL=2�1

m¼1

am �zð Þa
L
2

zð Þ δL
m;
L
2

� iδLL
2
þm;

L
2

0
@

1
Aþ 2aL

2

�zð ÞaL
2

zð Þ δL1
2
;
1
2

!0
@

1
A;

ð22Þ
where

an zð Þ ¼
izð Þn
n!

; n ≥ 0

0 n < 0:

(
ð23Þ

The method of computing γbest, the best constant conductivity fit to measured data,
is found in Appendix A.

Reconstruction of the conductivity

To reconstruct the conductivity γ(x) at each point x in the x-plane, first the D-bar

equation of (13) is solved using the sinc-convolution method with different

discretization levels in k-plane enlisted in the second column of Table 3 to find μ(x, k)

and then the solution is evaluated to equation (7) at k= 0.

Methods: models

Two sets of synthetic data, resulted from simulated experiments were used to parametric-

ally evaluate the efficiency of the sinc-convolution based algorithm as well as other two

methods. In addition, a dataset extracted from an EIT experiment on a phantom chest was

used to validate the results of that assessment. Moreover, an EIT dataset measured on a

human chest was used to illustrate the potency of the sinc-convolution in clinical applica-

tions. Note that, in all simulations and experimental reconstructions complete electrode

model (CEM) [38,39] was used to represent the current density of electrodes. The meshing

process was performed using NETGEN [40]. The type and number of mesh elements and

nodes in forward and inverse solution of each simulation and experiment are enlisted in

Tables 3 and 4, respectively. In each case, the forward problem mesh is finer than that used

to solve the inverse problem. As a result, the forward problem is solved accurately;

Meanwhile, this difference of meshes avoids the so-called “inverse crime” [10].

Simulated models

Chest model A virtual chest phantom representing thoracic region of human body

including two elliptical and one circular domain, respectively corresponding lungs and

heart was used to evaluate the convergence rate of sinc-convolution, MG and NOSER.
Table 3 Mesh/grid statistics used for forward models

MODEL Number of nodes Number of elements

Thoracic region/Phantom tank/neonate chest 790 1422

Rotating circular target 3281 6400



Table 4 Mesh/grid statistics used in inverse solutions

MODEL Mesh/Grid Number of nodes Number of elements

Thoracic region/Phantom
tank/Rotating circular target

Uniform grid 4096 3969

Neonate chest Delaunay Mesh 8257 16256
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The second column of Table 5 includes the conductivity values of objects inside this

numerically simulated chest phantom, as depicted in Figure 2.

As shown in Figure 2, data collection was simulated by 32 finite-sized boundary electro-

des for current injection and voltage measurement like ACT3 system [42]. That is, 32

electrodes were arranged counter clockwise, with equally spaces on the boundary of a disk

and the first electrode in the position of 3O’clock. The system could inject trigonometric

current patterns [38,43] and measure voltages on all 32 electrodes simultaneously. The

magnitudes of the injected current patterns were chosen to 1 mA. The simulated boundary

values, along with the conductivities of the second column of Table 5, were used to solve

the forward problem represented by equations (1) and (2) via FEM and as a result extract

the boundary voltages.
Rotating circular target A numerical model including a circular target with a diameter

equal to 0.05 of the diameter of its container tank was used to evaluate the accuracy of

sinc-convolution reconstructions via calculating some approved parameters. This model is

introduced in [2] to evaluate the performance of EIT algorithms. In this model, the

conductivity of the target is twice of the homogenous background conductivity.

Simulation data was generated from nine displacements of the target, starting from the

medium center and progressing radially outward. The circular medium was surrounded

by 16 electrodes. The amplitude of the injected current patterns was 1 mA. Simulated

boundary values, were used to solve the forward problem represented by equation (1) and

as a result extract the boundary voltages. In this study, to show the effect of measurement

noise on the accuracy of under-test algorithms, a uniform noise with amplitude of 0.1 mA

was added to resulted boundary data.

Experimental and clinical data

Chest phantom A boundary dataset extracted from real measurements was acquired from

the EIDORS [41] website (http://eidors3d.sourceforge.net/data_contrib/jn_chest_phantom/

jn_chest_phantom.shtml). The dataset is gathered by J. Newell, and D. Isaacson [21] in an

experiment on a phantom chest consisting of agar heart and lungs in saline tank of radius

15 cm with 32 equally-spaced boundary electrodes of size 1.6 cm height and 2.5 cm width.
Table 5 Conductivity values of organs inside chest phantoms

Object Conductivity of simulated chest (mS m-1) Conductivity of experimental chest (mS m-1)

Background 1000 424

Heart 1500 750

Lungs 500 240

http://eidors3d.sourceforge.net/data_contrib/jn_chest_phantom/jn_chest_phantom.shtml
http://eidors3d.sourceforge.net/data_contrib/jn_chest_phantom/jn_chest_phantom.shtml


Figure 2 The two-dimensional numerical model of thoracic region. Elliptical regions are used to model
the lungs and the circular region is used to model the heart. 32 equally spaced electrodes on the boundary
inject current patterns and measure induced voltages.
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Figure 3 shows the configuration of this experimental phantom. The conductivity values of

the objects and the saline are included in the third column of Table 5.

Neonate chest data A clinical EIT dataset collected by Heinrich et.al using Gottingen

Goe-MF II device on a spontaneously breathing neonate [3] was found in EIDORS[44]

website (http://eidors3d.sourceforge.net/data_contrib/if-neonate-spontaneous/index.shtml).

This data set includes 220 frames of measured voltages on 16 electrodes using adjacent

protocol. As shown in Figure 4, in this measurement the neonate had been lying in prone

position with the head turn to the left.

Methods: Performance measures

Convergence rate versus grid size in k-plane

Convergence rate (CR) versus grid size in k-plane, is an important parameter showing

the computational efficiency of EIT algorithms in D-bar framework. This calculation is

motivated by [22] and calculated using reconstructions of synthetic thoracic region.

Let us denote the true conductivity as γtrue and denote the approximate solution with

a grid of size Ni, i= 1, . . ., 5 in k-plane as γi. The supremum norm of the solution error

may be defined as [22]:

Ei ¼ sup γtrue � γ i
�� ��: ð24Þ

http://eidors3d.sourceforge.net/data_contrib/if-neonate-spontaneous/index.shtml


Figure 3 The experimental chest phantom including agar heart and lungs in a saline tank [41]. Agar
heart and lungs are suspended in a saline bath. 32 boundary electrodes inject current patterns and
measure induced voltages on the boundary of the tank.
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Then, the convergence rate (CR) is defined as [22]:

CRi ¼ Ei

Eiþ1
: ð25Þ

Note that, to compare sinc-convolution with other non D-bar algorithms such as
NOSER, following performance measures are considered.
Figure 4 The configuration of clinical EIT experiment on a neonate chest [44]. The spontaneously
breathing neonate is in prone position with the head turned to left. The first electrode is placed at the
front of chest and electrodes 5, 9 and 13 are placed on left, back and right side of the chest respectively.
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Accuracy measures versus target positions

Based on the approved test methodology introduced in [2], a scenario is arranged to

parametrically evaluate sinc-convolution algorithm. As described below, in this scenario

the reconstructions of the rotating circular target are used to calculate a set of accuracy

measures that describe the quality of reconstruction algorithms.

Preliminarily, a one-fourth amplitude set γq is computed preliminarily based on

reconstructions of circular target. This set contains all image pixels [γ]i, greater than

one-fourth of the maximum amplitude:

γq

h i
i
¼ 1; if γ½ �i ≥

1
4
max γð Þ

0; otherwise:

(
ð26Þ

A one-fourth threshold could guarantee to detect most of the visually significant effects

in reconstructed conductivity images. The center of gravity of γ and γq are computed and

the distances from the medium center to them are calculated as rt and rq respectively.

Then the following performance measuring parameters are calculated.

� Amplitude response (AR) measures the ratio of image pixel amplitude in the target

to that in the reconstructed image. For a circular target of area At with conductivity

σtin a medium with conductivity σr [2]

AR ¼
P

k γ½ �k
At

σ t�σr
σr

� � ð27Þ

In this study, this parameter is normalized so that it AR= 1 for a circular target
with σ t
σr

� �
¼ 2 in the center of medium.

� Position error (PE) represents the extent to which reconstructed image truly

represents the position of the circular target in the medium. This parameter is

computed as [2]:

PE ¼ rt � rq: ð28Þ
� Ringing (RNG) measures the degree of opposite sign area surrounding the main

reconstructed target area. For a circle C centered at center of gravity of γq, the ringing

could be obtained by [2]:

RNG ¼ Aout

Ain
: ð29Þ

� Resolution (RES) is a measure of the smallest visible object within the
reconstructed image. This parameter is be defined as [2]:

RES ¼
ffiffiffiffiffiffi
Aq

A0

s
; ð30Þ

where Aq and A0 denote the number of pixels in γq and entire reconstructed image

respectively.

� Shape deformation (SD) measure quantifies the fraction of γq which did not fit

within a circle of an equal area. This parameter is computed as [2]:



Xh i
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SD ¼ k=2C
γq

kP
k

γq

h i
k
;

ð31Þ

where C denotes a circle centered at COG of γq with an area equivalent to Aq.
Results and discussion
All three methods were implemented within MATLAB and computations were per-

formed in a Laptop with 2.4 GHZ CPU and 2 GB RAM. The methods were separately

applied to the datasets extracted from aforementioned simulated and real models. To

fairly compare the quality of reconstructed conductivity images, iteration parameters

were set in a common range for all methods. In addition, same-size grids in k-plane

were used in implementation of sinc-convolution and MG.

The following two steps were used to evaluate the quality of sinc-convolution images.

First, the synthetic reconstructions were evaluated via efficiency parameters of the

preceding section. Next, reconstructions of physical and clinical models were used to

validate the parametric assessments.
Results of simulations

Convergence rate

The supremum of reconstruction errors and the required computation times for recon-

structions of the synthetic chest phantom using MG and sinc-convolution with differ-

ent levels of discretization in k-plane were measured according to equation (24) and

then enlisted in third and fourth columns of Tables 6 and 7.

Comparing corresponding accuracies of the reconstruction methods, one can notice

that in each case the accuracy of the sinc-convolution method is much better than that

of the MG, especially in reconstructions with large grids in k-plane.

Next, for each discretization level in Tables 6 and 7, the corresponding CR values

were computed using the corresponding accuracies according to equation (25), and

then enlisted in the fifth column of Tables 6 and 7. Comparing the corresponding con-

vergence rates of the reconstruction algorithms shows that while the sinc-convolution

method has a near-exponential convergence rate in reconstructing the conductivity

distribution of the synthetic chest phantom, the MG method only converges with a

linear rate, which is considered very slow. This result confirms the stated exponential

convergence rate of sinc-convolution [45] as well as the linear convergence rate of

MG [22].

Moreover, observing the computation times of sinc-convolution and MG in the

fourth column of Tables 6 and 7, one may note that to obtain a low accuracy solution

to the D-bar equation, the computational complexity of these two methods are

approximately same, albeit, sinc-convolution method performs a fraction of time bet-

ter than MG. However, to obtain a high accuracy solution, MG performs very poor.

For example, while the sinc-convolution method converges to the approximate con-

ductivity with accuracy of 10-3 in 1871 seconds, the MG can only achieve low accur-

acies not better than 10-2 in 3290 seconds, which is considered as a very poor



Table 6 Convergence rates and computation times of MG

i Discretization level in k-plane Ei Solution Time (s) CRi

1 16 0.51309 61.12 1.82

2 32 0.28191 81.21 1.70

3 64 0.16582 152.33 2.03

4 128 0.08164 577.29 1.92

5 256 0.04252 3290.01 -
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performance. Now, it is predictable that to reconstruct higher resolution conductivity

images in k-plane, the performance of the sinc-convolution would be finer than that of the

MG.

Accuracy

The plots in Figures 5 illustrate different performance figures of each algorithm as

functions of radial distance of the moving circular target from the medium center.

� The amplitude response of all three methods increase from the center of medium

toward the boundary. Remarkable oscillations appear in the amplitude response of MG

and NOSER respectively when the target is in the midway point and closest point to

the boundary. Despite these two methods, the amplitude response of sinc-convolution

is approximately uniform. This consistency guarantees that the same value of

conductivities in different parts of the body contribute equally to the conductivity

images produced by sinc-convolution.
� For position error, the plots show that when the target moves from the center to

the boundary, the PE in MG, NOSER and sinc-convolution increases from −0.3, -0.1

and −0.1 to 0.2, 0.2, and 0.5 respectively. It is clear that the variance of PE in sinc-

convolution curve is the closest one to zero. Therefore, the positions of objects are

expected to be well recovered in the images reconstructed by sinc-convolution

algorithm.

� The ringing plots indicate that for all three reconstruction algorithms, this artifact

is increased as the target moves from the center of medium toward the boundary. The

curves show that, for each position of the target, the maximum RNG is found in the

image reconstructed by NOSER.

� Resolution plots show that the resolution of the NOSER and sinc-convolution are

more uniform and considerably less than that of MG. It is clear that the RES of sinc-
Table 7 Convergence rates and computation times of sinc-convolution

i Discretization level in k-plane Ei Solution Time (s) CRi

1 16 0.44347 56.32 1.80

2 32 0.24637 65.27 3.51

3 64 0.07019 121.07 5.12

4 128 0.01370 339.93 9.84

5 256 0.00139 1871.32 -



Figure 5 The evaluation of the performance of algorithms using performance figures. Plots
correspond to AR, PE, RNG, RES, and SD of sinc-convolution, MG and NOSER.
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convolution is fractionally lower than NOSER. Therefore, one may expect to observe

most of the conductivity details in sinc-convolution reconstructions.

� Shape deformation plots show that the SD of the target in sinc-convolution

reconstructions is considerably less than that in images produced by each of other two

algorithms. The optimum points for shape deformation in all three methods are near

the boundary electrodes.

Aforementioned results evince the suitability of the sinc-convolution algorithm for

experimental impedance imaging. In the following, reconstruction of experimental

phantom tank via sinc-convolution is presented and compared with that of MG and

NOSER.

Results of experiments

Chest phantom

Figure 6 illustrates reconstructions of the phantom tank using all three methods,

derived on 64 × 64 grids in z-plane. Note that, this experimental model is reconstructed

by product integrals (PI) method in [21] and MG method in [37].



Figure 6 The experimental reconstructions of chest phantom. The resolutions of the images are
64 × 64. (a) The absolute reconstructed conductivity images using sinc-convolution. (b) The absolute
reconstructed conductivity image using MG algorithm. (c) The absolute reconstructed conductivity image
using NOSER algorithm.
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The relative errors in reconstructing heart and lung, using under-test methods are

enlisted in the second and third columns of Table 8, respectively. For the purpose of

comparison, same parameters for the reconstruction results in [21,37] were computed

and then enlisted in fourth and fifth rows of Table 8. It is clear that the relative errors

in sinc-convolution reconstructions are the least.

Let define degree of truth (DT) of reconstructions as:

DT ¼ Max γrec
� ��Min γrec

� �
Max γð Þ �Min γð Þ ; ð32Þ

where γrec and γ respectively denote the reconstructed and true conductivity. For each

reconstruction experiment in the first column of Table 8, the corresponding DT is

computed using equation (32) and then enlisted in the fourth column of Table 8. Com-

paring DT values show that the range of the conductivity distribution of the chest

phantom is well recovered in sinc-convolution reconstruction.

It is clear that the representative results of this experiment in Figure 6, confirm the

parametric results of Figure 5. The sinc-convolution reconstruction contains a number

of sensible features, as described below.

� The overall size, position, and the orientation of the organs in the image produced

by sinc-convolution are more accurate than that in Figures 6(c) and 6(d) produced by

MG and NOSER.
� The sinc-convolution image recovers the separation between the two lungs well

while MG and NOSER images do not; MG algorithm overestimates that distance and

NOSER underestimates it.

� The distortion and blurring of the heart and lungs which are respectively evident in

the MG and NOSER images are not appeared respectively in the sinc-convolution

image.
Table 8 Maximum and minimum values of the chest phantom reconstructions

Algorithm Relative error of maximum Relative error of minimum Degree of truth

MG 11 9 88%

NOSER 41 28 27%

Sinc-convolution 5 3 94.0

PI method [21] 12 23 93.1

MG with shape modeling [37] 7 7 93.0
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� The degree of ringing artifact in sinc-convolution image of Figure 6(b) is less than

that in MG image of Figure 6(c) and NOSER image of Figure 6(d).

As can be seen, the representative results of this experiment agree very well with

accuracy assessment plots in Figure 5. Therefore, the suitability of sinc-convolution for

accurate phantom reconstructions is acknowledged.

Neonate chest

Two-dimensional conductivity images of the spontaneously breathing neonate chest

are reconstructed using all three methods. The results are depicted in Figure 7. Note

that, in these images anterior is at the top and right side of the neonate chest is recon-

structed on the left side of the images. Images in the left, middle and right columns of

Figure 7 correspond to 45th, 70th and 173th frames of data. These images illustrate the

conductivity distribution of the neonate’s thoracic region in three end-inspirations.

It is worth noting that tidal volumes in the neonate’s left lung were reported less than

those in his right lung [3]. That is, the conductivity of right lung is expected to be less than

that of left one in reconstructed images. Comparing reconstructed images depicted in

Figure 7, it is clear that this fact is well recovered in sinc-convolution results. In addition,

the sinc-convolution reconstructions seem physiologically most accurate, demonstrating

conductivity contrast of heart and lungs and recovering the approximate position of

organs with least degree of ringing and deformation. It is evident that the reconstructions

of other two methods are relatively distorted. One can easily notice an excellent agree-

ment between numerical results obtained via parametric assessments and the quality

of reconstructed images in Figure 7. As a result, the high degree of blurring in MG

images may be caused by its low resolution and amplitude response. Similarly, the
Figure 7 The two –dimensional reconstructions of neonate chest. First, second and third columns
contain reconstructions of 45th, 70th and 173th frames of measured data. Top row: The reconstructed
conductivity images using NOSER. Middle row: reconstructed conductivity image using MG algorithm.
(c) Bottom row: reconstructed conductivity image using sin-convolution algorithm.
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high degree of deformation of lungs and considerable ringing around them in NOSER

images are previously predicted by SD and RNG curves of this method in Figure 5.

Note that, since exact information about the conductivity distribution inside the

neonate’s chest is not available, no parametric evaluation and comparison could be

planned. However, the representative results of this experiment and their correspondence to

parametric evaluations confirm the feasibility of precise clinical EIT reconstruction using

sinc-convolution.

Conclusions
The feasibility of accurate practical conductivity image reconstruction via use of sinc-

convolution algorithm in D-bar framework was investigated in this study. In the mean-

time, the performance of this algorithm was compared with two practical methods

including, multigrid and NOSER. In this regard, a two-fold scenario was employed. In

the first step, the quality of sinc-convolution reconstructions from noisy boundary data

collected on specific synthetic models were evaluated against GREIT agreed accuracy

parameters. Results show that the amplitude response and resolution of images are

relatively better in sinc-convolution reconstructions. In addition, the effect of the

distortions like position error, ringing and shape deformation is considerably reduced

in the images produced by sinc-convolution method. Moreover, comparing the conver-

gence rate of the sinc-convolution with that of MG shows that the new sinc-

convolution method is computationally more efficient than its D-bar based competitor.

In the second step, conductivity images of an experimental phantom chest were

reconstructed using all three methods. Excellent agreement between their qualities and

parametric assessment results support the sinc-convolution suitability for experimental

EIT. As a complementary experiment, two-dimensional conductivity images of the chest

cross-section of a spontaneously breathing neonate were reconstructed using all three

methods. A watchful comparison shows that the related physiological problem is best

revealed in sinc-convolution images. In addition, position, size and orientation of organs

are well recovered in sinc-convolution images.

These reasons, suggest the sinc-convolution as an efficient algorithm for precise clinical

EIT applications.

Appendix A: Computing γbest
The best constant conductivity approximation to the measured boundary data can be

computed according to the following formula, which is found in [9,21].

Let ρ denote the resistivity (the reciprocal of the conductivity), then for a medium of

homogenous resistivity, the voltage on the l th electrode from the kth current pattern is

proportional to the voltage arising from a constant distribution of one. That is

Vk
l ρð Þ ¼ ρVk

l 1ð Þ: ðA:1Þ

Let {Ul
k} denote the set of measured voltage data and Vl

k(ρ) the calculated voltage on
the electrodes. To find the best constant resistivity fit to the data, one must solve the

minimization problem
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min
ρ

XL�1

k¼1

XL
l¼1

ρVk
l 1ð Þ � Uk

l

� �2
: ðA:2Þ

The solution ρbest to this minimization problem is given by

ρbest ¼

PL�1

k¼1

PL
l¼1

Vk
l 1ð ÞUk

l

� �
PL�1

k¼1

PL
l¼1

Vk
l 1ð Þ� �2 : ðA:3Þ

The best constant conductivity is then γ ¼ 1 .
best ρbest
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