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Abstract

Background: Compressive sensing can provide a promising framework for
accelerating fMRI image acquisition by allowing reconstructions from a limited
number of frequency-domain samples. Unfortunately, the majority of compressive
sensing studies are based on stochastic sampling geometries that cannot guarantee
fast acquisitions that are needed for fMRI. The purpose of this study is to provide a
comprehensive optimization framework that can be used to determine the optimal
2D stochastic or deterministic sampling geometry, as well as to provide optimal
reconstruction parameter values for guaranteeing image quality in the reconstructed
images.

Methods: We investigate the use of frequency-space (k-space) sampling based on:
(i) 2D deterministic geometries of dyadic phase encoding (DPE) and spiral low pass
(SLP) geometries, and (ii) 2D stochastic geometries based on random phase
encoding (RPE) and random samples on a PDF (RSP). Overall, we consider over 36
frequency-sampling geometries at different sampling rates. For each geometry, we
compute optimal reconstructions of single BOLD fMRI ON & OFF images, as well as
BOLD fMRI activity maps based on the difference between the ON and OFF images.
We also provide an optimization framework for determining the optimal parameters
and sampling geometry prior to scanning.

Results: For each geometry, we show that reconstruction parameter optimization
converged after just a few iterations. Parameter optimization led to significant image
quality improvements. For activity detection, retaining only 20.3% of the samples
using SLP gave a mean PSNR value of 57.58 dB. We also validated this result with the
use of the Structural Similarity Index Matrix (SSIM) image quality metric. SSIM gave an
excellent mean value of 0.9747 (max = 1). This indicates that excellent reconstruction
results can be achieved. Median parameter values also gave excellent reconstruction
results for the ON/OFF images using the SLP sampling geometry (mean SSIM > =0.93).
Here, median parameter values were obtained using mean-SSIM optimization. This
approach was also validated using leave-one-out.
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Conclusions: We have found that compressive sensing parameter optimization can
dramatically improve fMRI image reconstruction quality. Furthermore, 2D MRI scanning
based on the SLP geometries consistently gave the best image reconstruction results.
The implication of this result is that less complex sampling geometries will suffice over
random sampling. We have also found that we can obtain stable parameter regions
that can be used to achieve specific levels of image reconstruction quality when
combined with specific k-space sampling geometries. Furthermore, median parameter
values can be used to obtain excellent reconstruction results.

Keywords: Compressive sensing, MRI, fMRI, Numerical optimization
Background
Using compressive sensing (CS), we can recover certain noise-free signals and images

exactly from limited numbers of k-space samples. In theory, to reconstruct images from

a limited number of samples, we require that the signal exhibits sparsity and incoher-

ence (lack of correlation) between the sensing basis and the transform basis used for re-

construction. For one-dimensional signals with N samples that are composed of T

"spikes", perfect reconstuction can be obtained from O(T ⋅ log(N)) frequency-domain

samples [1].

When the required conditions are met, perfect reconstruction is possible from a lim-

ited number of samples. For example, for piecewise constant signals, very impressive

results have been obtained from a very limited number of Fourier samples. Unfortu-

nately, such idealized models may not necessarily fit more complex, non-piecewise

smooth images, such as standard magnetic resonance imaging (MRI) images [2]. To

demonstrate the problem, we present a typical functional MRI (fMRI) slice image in

Figure 1. Figure 1 depicts an fMRI data set, containing a brain slice of a patient “at rest”

(OFF) and the same patient while performing a prescribed task or activity (ON). The k-

space data is also depicted, revealing the energy in k-space being concentrated around

the center. The difference image of the ON and OFF images, depicting the region of ac-

tivity within the brain is shown in Figure 1(d).

In what follows, we demonstrate a reconstruction paradigm that explores several k-

space sampling geometries. We consider both stochastic and deterministic Fourier

plane sampling geometries. A limitation of our study is that it is based on retrospect-

ively downsampled data from an original fully-sampled EPI sequence. Thus, for prac-

tical application of our findings for in-vivo experiments, the EPI sampling pattern will

have to be modified to reflect the proposed downsampling patterns. Here, we note that

the use of stochastic geometries that result in non-consecutive EPI phase encoding is

prone to artifacts. This should not lead to problems with the SLP geometry that is

found to perform best in our experiments. On the other hand, this observation can lead

to reconstruction artifacts in stochastic geometries if they are implemented by moving

around k-space randomly. We also note that actual MRI imaging time depends on how

many phase encoding lines are acquired. Random geometries are included to comply

with the conventional (sparsity and incoherence) compressive sensing requirements.



Figure 1 MRI image slices with the corresponding Fourier magnitude Spectra. Here, we
approximate the Fourier magnitude spectra using a 2D FFT. (a) At rest (OFF) brain slice. (b) Active (ON)
brain slice. (c) Log-magnitude 2D FFT of (a). (d) Difference image of both (a) and (b).
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To measure the quality of the reconstructions, we use an optimization process that

solves for the compressive sensing objective function parameters that maximize the

peak signal to noise ratio (PSNR) or the structural similarity index matrix (SSIM)

obtained by each geometry. Here, we note that the structural similarity index matrix

(SSIM) [3] provides for a recent (and arguably far more reliable) image reconstruction

quality metric.

Given the fact that our approach is based on numerical simulations, we avoid making

claims on the actual acquisition times. We do however discuss how the most successful

geometry presented here can be effectively implemented based on [4]. In [4], the

authors describe a fast fMRI imaging method based on a spiral sampling geometry. As

it turns out, the 2D Spiral Lowpass Sampling Geometry (SLP) that ends up performing

the best among all sampling geometries in this paper represents a 2D version of the 3D

kxkykz spiral sampling geometry of [4] in the 2D kxky plane (see Table 1 for SLP plots).

This is clearly demonstrated in Figure 1 of [4]. We note that we perform 2D recon-

structions on a single fMRI slice as described in the section titled “Data Set and fMRI

Activity Detection,” in the “Methods” section.We also study parameter optimization for

the best reconstructed image quality.We investigate the estimation of optimal param-

eter regions that can provide high quality reconstructions (while avoiding outliers). We

investigate the relative impact of each parameter and the regularity of the optimal re-

gion. Therefore, we provide an optimization framework to help determine scanning



Table 1 k-space sampling geometry class examples

% Retained samples 62.5% 48.5% 40.6% 32.8% 28.1% 26.6% 25.0% 21.9% 20.3%

Geometry class

Dyadic Phase Encoded (DPE)

Random Phase Encoded
(RPE)

Random Samples on a PDF
(RSP)

Spiral Low Pass
(SLP)

This table contains all of the geometric sample masks explored in this study. The columns of the table are sorted by the percentage number of samples. The rows of the table indicate a geometry class. We are
interested in comparing the results of geometries across columns, as they can provide insight into the minimum number of samples that can be used that still allow us to obtain an acceptable level of SNR or mean
SSIM index.
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parameters and scanning geometries that should work for the majority of the cases. In

addition to parameter ranges, we also provide specific parameter values based on the

median of all optimal parameter values. This approach is validated using leave-one-out

for optimization of the average SSIM index.

Alternatively, an optimal regularization parameter can be determined by the L-curve

method [5]. Here, the “L” refers to the shape of the curve of plotting the solution norm

versus the corresponding residual norm. The optimal regularization parameter is then

determined by the point that gives the corner of the “L”-shaped plot. At the corner

point of “L”, we have the point that minimizes the solution norm while also minimizing

the residual norm. In this way, the L-curve approach avoids producing a regularization

parameter that overly depends on the noise in the image [5].

We note that our parameter optimization approach is direct over the mean structural

similarity index (SSIM) [3] and the PSNR. Here, we note that the PSNR is related to

the residual error and it appears that the L-curve method could be applied to find

robust estimates of the regularization parameters. However, the emphasis of this paper

is on finding the optimal parameters with respect to the mean-SSIM [3]. We refer to

[6] for a description of the problems associated with the use of the mean-squared error

for digital images. On the other hand, the mean-SSIM provides for a robust metric that

better correlates with human visual perception of the images that are being examined.

Our approach finds the optimal regularization parameters that minimize the mean-

SSIM over a training set of images. Here, we note that each image will produce a differ-

ent set of optimal parameters depending on the noise variance and how the sampling

geometry captures the structure of the activity region. In the section titled “A Fourier

Model for Brain Activity,” we provide a frequency-domain model for brain activity. In

this section, we carefully show how brain activity favors the 2D spiral low pass geom-

etry (SLP) in the sense that it captures most of the image energy within the effective

bandwidth, while it also allows for TV-norm optimization to reconstruct the activity

region.

Estimates of the optimal regularization parameters are determined by taking median

values of the optimal values estimated over the training set. The effectiveness of this

approach is then evaluated over an independent testing set. As we shall describe in the

Results section, the approach works very well giving mean-SSIM values above 0.93 for

the SLP geometry. Furthermore, note that the median is considered to be a robust,

non-parametric statistic that avoids outliers [7]. The median provides for robust esti-

mates of the regularization parameters that maximize the mean-SSIM of the recon-

structed image. Here, we note the conflicting goals. Clearly, the best reconstructions

will require the largest number of k-space samples. Thus, we are interested in deter-

mining the minimum acceptable quality that also yields acceptable reconstruction with

the minimum number of required frequency-domain samples. To this end, we deter-

mine effective PSNR ranges and associate them with different image reconstruction

qualities. For the average SSIM, we consider fixed values (SSIM > 0.75 for good results,

SSIM > 0.90 for excellent results).

We limit our study to optimizing for the best MRI image reconstructions, and for the

best quality activity maps based on the difference image between the “ON” and “OFF”

MRI images. For detecting activity regions, we focus on the parameters that lead to

highest possible quality in the difference images (activation versus no-activation
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images). Here, we will avoid issues associated with post-processing the difference

images to better delineate between active and inactive regions of the brain. Clearly

though, when the difference image is of the highest possible quality, artifact removal

will simply improve upon our results. Furthermore, for very large average SSIM values

(SSIM > 0.93), reconstruction quality should be considered to be excellent. For the use

of post-processing methods, we refer to the body of work described in [8-15], which

utilize a wide variety of signal detection, correlation analysis, and statistical tests to

infer brain activity in fMRI difference images.
Related Work

CS methods have been developed that resulted in improved spatial resolution from

reduced k-space sampling. The work presented here falls into this category of k-space

undersampling reconstruction methods, and is closely related to that of Lustig, Donoho,

and Pauly [16]. Lustig et al. also provides a general framework for k-space sampling and

reconstruction using CS theory. While the sampling geometries presented here are

designed to satisfy the CS criteria, the random and pseudo-random sampling of k-space

could result in slower acquisition due to scanner programming constraints.

Most of the subsequent literature on CS applications to MRI imaging explores the

merging of CS theory and other fast MRI acquisition techniques, unique k-space sam-

pling methods, and novel reconstruction algorithms. Gamper, Boesiger, and Kozerke

meet the sparsity condition of CS theory by applying the Fourier transformation along

the temporal dimension, assuming that some regions of the filed-of-view change at a

high temporal rate while other parts remain stationary or change slowly. Their methods

show the effectiveness of CS reconstruction for accelerated dynamic (continuous sam-

pling) MRI reconstruction by comparing them to k-t BLAST reconstructions over the

same data sets [17]. Their sampling scheme can be described as randomly skipping

phase-encoding lines in each dynamic frame. Jung et al. developed k-t FOCUSS to pro-

vide a general framework beyond k-t SENSE and k-t BLAST for model-based dynamic

MRI by applying CS theory to randomly sampled reconstruction of the prediction and

residual encoding that are significantly sparse [18].

Recent studies have focused on extending the work in [16] to non-Fourier bases.

Haldar, Hernando, and Liang use tailored spatially selective RF pulses to better satisfy

the incoherence requirement of CS theory [19]. Liu, Zou, and Ying apply CS theory to

parallel reconstruction using sensitivity encoding. Their extension of SENSE to CS is

based upon a reconstruction method using Bregman iteration [20]. Trzakso, Manduca,

and Borisch present a CS method that minimizes the L0 semi-norm using a re-

descending M-estimator functions instead of L-1 norms typically found in CS literature

[21]. The extension of the sparsity measure to multi-scale form allows for rapid recon-

structions compared to the non-trivial solutions described in [17-21].

Methods that exploit the spatial and/or temporal redundancy of k-space data provide a

way of describing another class of k-space undersampling reconstructions. A recent study

by Lindquist et al. describes methods for obtaining a 3D echo-volumnar fMRI imaging se-

quence by sampling the small central portion of k-space at a high temporal rate [4]. The

sampling trajectory is sampled successively across the fourth dimension in a 4D acquisition

instead of successively over each temporal slice, and is constrained to a spiral pattern. Other
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MRI processing techniques that utilize information across slices collected at successive time

intervals can be found in [22-26]. Alternatively, the authors in [27] provide a simple iterative

algorithm, termed deconvolution-interpolation gridding (DING) for reconstructing MRI

image from arbitrarily-sampled k-space. Compared to the Compressive Sensing methods

discussed here, it is important to note that DING does not require regularization, and can

also work with k-space trajectories that are not known a priori. Thus, DING is also suitable

for cases where patient motion occurs during the scan.
Contributions

The primary contributions of this paper can be summarized as follows:

� Comprehensive comparisons of 36 stochastic and deterministic frequency sampling

geometries:
While the theory of compressing sensing suggests the use of stochastic geometries,

we show that superior results can be achieved with deterministic frequency

sampling geometries. Furthermore, we investigate the use of different sampling

rates in order to determine the minimum sampling density that can still provide

acceptable reconstruction results. As a consequence of this research, we provide the

optimal geometry that can lead to the fastest reconstruction time among all

candidate sampling geometries. This represents a contribution over existing

methods that are based on a limited number of mostly stochastic sampling

geometries.

� Optimal reconstruction parameter ranges for guaranteeing a minimum quality in

the reconstruction images:

Current compressive sensing methods do not provide sufficient details on how to

set reconstruction parameters for different applications. As a result, in current

methods, there is no guidance as to which parameter values will provide

reconstruction of sufficient quality. Here, we first provide a direct search

optimization framework that is used to provide parameter ranges that can

guarantee reconstruction of acceptable image quality. In particular, we provide

parameter ranges for reconstruction BOLD fMRI ON & OFF images, as well as

difference images that can be used for activity detection. Here, as evidence for the

need of the proposed approach, we show that a completely different parameter

range is needed for activity detection as opposed to parameters for reconstructing

individual ON and OFF images. Furthermore, we found that the fast, spiral low

pass sampling geometry can reach PSNR levels above 40 dB after a few iterations.

In addition, the spiral low pass sampling geometry gives superior results with all

reconstructions yielding mean SSIM values above 0.93.
Methods
Optimal TV Norm and Wavelet Transform Penalty

In what follows, we provide a summary of the proposed optimization method. As we

describe below, the basic approach involves a nested optimization approach.

Let z denote the original image reconstructed using the entire k-space. Then, let f de-

note the reconstructed image. Here, f is a function of the reconstruction parameters α, β
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(further explained below) and the k-space sampling geometry, indexed by k. We seek to

find the optimal reconstruction parameters and k-sampling geometry as given by

max
α;β;k

A f α; β; kð Þ; zð Þ ð1Þ

where A denotes the accuracy of the reconstructed image. Here, we will consider two

measures of accuracy: (i) the average SSIM index, and (ii) PSNR. To solve (1), we will need

to solve the optimization problem of reconstructing f from a limited number of k-space

samples.

Let Fk denote the k-sampling geometry operator. Let y denote the k-space samples

that are available. In our constrained optimization approach, the reconstructed signal

needs to reproduce the samples as given by

Fk fð Þ � yk kl2≤ ε ð2Þ

where ε denotes a small tolerance value, and :k kl2 denotes the l2 norm. In (2), Fk takes

the 2D discrete Fourier transform of the input image and forces the k-space samples in

y to match the ones available in the k-th sampling geometry.

For reconstructing f, we follow the approach of [16,28] of seeking solutions that are

sparse in the wavelet domain. This leads us to consider a wavelet reconstruction of the

MRI image as given by

f ¼ Ψx ð3Þ

where x denotes the column vector of the wavelet coefficients and Ψ is the wavelet

transform operator that contains the wavelet basis functions along its columns.

For each reconstruction geometry, we seek to find the wavelet coefficients x that satisfy:

min
x

β: xk kl1 þ α:TV Ψxð Þ ð4Þ

such that:

Fk Ψxð Þ � yk kl2≤ ε: ð5Þ

In (4), TV(Ψx) denotes the total variation of the reconstructed signal. In (4)-(5), we
have a constrained optimization problem in three parameters. This is converted to an

unconstrained optimization problem through the use of a Lagrange multiplier as indi-

cated in [16,28]. In what follows, we will consider different values for α, β and use the

software described in [16] to solve (4)-(5) for the optimal wavelet coefficients. We pro-

vide details for parameter optimization in a separate section.

Data set and fMRI activity detection

In blood oxygenation-level dependent (BOLD) fMRI, neural activity is detected by

changes in the T2* relaxation time due to changes in blood oxygenation levels in response

to local activation. All images were acquired on a 3 T Siemens TIM Trio system with a

12-channel radio frequency (RF) coil. The fMRI experiment used a standard Siemens

gradient-echo EPI sequence modified so that it stored real and imaginary data separately.

We used a field-of-view (FOV) = 240 mm, slice thickness = 3.5 mm, slice gap = 1 mm,

number of slices = 32, matrix size = 64 × 64, TE = 29 ms, and TR = 2 s. The fMRI experi-

ment used a block design with periods of 30 s OFF and 30 s ON. The subjects who
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participated in this study tapped the fingers of their right hand during the ON period.

There were five and a half cycles, starting with OFF and ending with the OFF period.

The BOLD fMRI data was then preprocessed to account for motion artifacts and

spatially normalized into the standard Montreal Neurological Institute space. This

spatial normalization was then sub-sampled to 3 × 3 × 4 mm, resulting in 53 × 63 × 46

voxels. An individual slice was then selected that ensured measureable regions of activ-

ity based on the task being performed by the test subjects.

Temporal smoothing also tends to better localize detected activity across all temporal

slices within a single run. Instead of utilizing the temporal information, our reconstruc-

tions are of two individual ON and OFF BOLD images. The less dense collection of

temporal samples provides a worst-case scenario for detecting neural activity. We

detected neural activity in fMRI by calculating the difference image of the recon-

structed ON and OFF images. Individual slices were reconstructed with optimal para-

meters computed for different sampling geometries. At this juncture, the neural activity

detection problem becomes a segmentation problem. The pre-processed sum of

squares imagery was used to generate the k-space data in this study by applying the 2D

Fast Fourier Transform to the multi-coil data.

As such, we will not consider optimization over a variety of different activity detec-

tion algorithms. We do note however that the activity detection algorithms that employ

low-pass filtering will tend to favor zero-filling over interpolation by compressive sens-

ing or any other method. The reason for this is that low-pass filtering attenuates high-

frequency components that are estimated by the interpolation/reconstruction method.

Ultimately, any segmentation for BOLD fMRI images will be governed by the accuracy

of the reconstructed images themselves. Thus, for considering activity detection, we

present the reconstructed difference images for qualitative comparisons. Thus, a more

practical implementation of our approach would be studies involving structural MRI

data, in which the benefit of a reduced acquisition time provides relief of the anxiety

and discomfort patients may experience within an MRI scanner.

A Fourier model for brain activity

In this section, we introduce an analytical model for modeling the activity (ON) image.

As we shall derive in this section, the lower-frequency components can provide for an

accurate model for the Fourier-Energy concentration as well as a low-TV norm image

reconstruction.

To develop a mathematical model for the difference image, we refer to Figure 2.

There are four regions of interest: (i) the stimulated brain region (ON region) which is

characterized by larger image intensity values, (ii) the brain background region that

corresponds to regions that are not activated, (iii) the periphery of the brain that, and

the region outside the brain. This leads to the following approximation for the spatial-

domain brain image:

f x; yð Þ≈
fb x; yð Þ; x; yð Þ is on the brain background;
fON x; yð Þ; x; yð Þ is on the stimulated region;
fp x; yð Þ; x; yð Þ is on the periphery of the brain; and
0; x; yð Þ is outside the brain:

8>><
>>:

ð6Þ
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Figure 2 Image model for On activity. In this image, we show a mesh-plot of difference image #2
shown in Figure 3(b).
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Alternatively, since the different functions do not overlap, we write:

f x; yð Þ ¼ fb x; yð Þ þ fON x; yð Þ þ fp x; yð Þ ð7Þ

Thus, our objective in reconstructing the MRI image is to effectively reconstruct the
stimulated region that differentiates fON (.) from the rest. From Figure 2, we provide

models for each function using a rectangular approximation for each function. The use

of a rectangular approximation allows us to develop a model that is separable in the x-

y coordinate system. The assumption allows us to provide analytical models and evalu-

ate the properties of the resulting Fourier expansions for (7). Also, note that we can

always express images as a sum of separable functions (e.g., via the use of the singular

value decomposition or the 2D Fourier Transform).

First, we define the 1-D rectangular function rect (.) in terms of its width W and cen-

ter C using:
rect x;C;Wð Þ ¼ 1; C �W=2 ≤ x ≤ C þW=2;

0; otherwise:

�

ð8Þ
As mentioned earlier, for simplicity, let us assume that the brain, its periphery, and
stimulated regions are all defined over rectangular regions using:
fb x; yð Þ ¼ rect x;C1;W1ð Þ:rect y;C2;W2ð Þ: Aþ a: cos ω1xð Þ cos ω2yð Þ½ �;

fON x; yð Þ ¼ rect x;C3;W3ð Þ:rect y;C4;W4ð Þ: Bþ b: cos ω3xð Þ cos ω4yð Þ½ �;

fp x; yð Þ ¼
Xi¼4

i¼1

di:rect x;C3þ2i;W3þ2ið Þ:rect y;C4þ2i;W4þ2ið Þ: cos ω3þ2ixð Þ: cos ω4þ2iyð Þ;

ð9Þ

where A≫a, B≫b, A, B≫di for i = 1, …, 4. Here, note that the background region is of

image intensity given by A while the stimulated region is characterized by larger image

intensity B>A. Over the main brain region, fb is given by

Aþ a: cos ω1xð Þ cos ω2yð Þ;
where we have A≫a, to signify that the oscillatory components are much smaller than
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the average image intensity. Similarly, B≫b for the stimulated region. We can verify

that both of these assumptions are valid by visual inspection of the corresponding

regions in Figure 2.

We next take the Fourier-Transform of our model in (7) using:

F ωx;ωy
� � ¼

Zþ1

�1

Zþ1

�1
fb x; yð Þ þ fON x; yð Þ þ fp x; yð Þ� �

exp �jωxx� jωyy
� �

dxdy:

To derive the final expression, note that the Fourier transform of the rectangular
function is given by:

R ωx;C;Wð Þ ¼ F rect x;C;Wð Þf g
¼ 2 sin ωx:W=2ð Þ

ωx

: exp �jCωxð Þ
¼ W=2: sinc ωx:W= 2πð Þð Þ: exp �jCωxð Þ;

ð10Þ

where sinc (ωx) = sin(πωx)/(πωx), and F{.} denotes the Fourier-transform operation.

Given the Fourier transform of the rectangular function in (10), the Fourier transform

of its product with the cosine function simply produces two copies as given by:

F rect x;C;Wð Þ: cos ω1xð Þf g ¼ 1
2
R ωx � ω1;C;Wð Þ þ R ωx þ ω1;C;Wð Þ½ �: ð11Þ

Using (11), we can now evaluate the Fourier Transform of our model of the brain re-

gion as given by

Fb ωx;ωy
� � ¼ A:R ωx;C1;W1ð Þ:R ωy;C2;W2

� �
þa:R ωx � ω1;C1;W1ð Þ:R ωy � ω2;C2;W2

� �
þa:R ωx � ω1;C1;W1ð Þ:R ωy þ ω2;C2;W2

� �
þa:R ωx þ ω1;C1;W1ð Þ:R ωy � ω2;C2;W2

� �
þa:R ωx þ ω1;C1;W1ð Þ:R ωy þ ω2;C2;W2

� �
ð12Þ

From (12), we note that the first term A ⋅ R(ωx;C1,W1) ⋅ R(ωy; C2,W2) dominates the

rest of the terms assuming that ω1, ω2 ≫ 0. To see this, note that the spread of the sinc

(.)-function copies will not contribute significantly around the DC region, where the

first term is concentrated. By inspection of Figure 2, it is easy to see that the assump-

tion that ω1, ω2≫ 0 seems to hold. On the other hand, in the case of ω1,ω2 ≈ 0, it is easy
to see that the first term still dominates since A≫ a. A similar argument applies for the

Fourier transform of the stimulated regions described by fON (.). In addition, note that the

contributions from the periphery are limited since A,B≫ di for i = 1, …, 4, for i = 1, …, 4,

(refer to Figure 2 for verification). Based on these observations, we have that the Fourier

Transform of the model is dominated by:

F ωx;ωy
� � ¼ Fb ωx;ωy

� �þ FON ωx;ωy
� �þ Fp ωx;ωy

� �
≈Fb ωx;ωy

� �þ FON ωx;ωy
� �

≈A:R ωx;C1;W1ð Þ:R ωy;C2;W2
� �þ B:R ωx;C3;W3ð Þ:R ωy;C4;W4

� �þ . . . ;

ð13Þ

which allows us to focus on the Fourier transforms of the rectangular regions asso-

ciated with the brain background region and the stimulated brain region. From

(10) and (13), we note that we have the sum of two products of sinc (.) functions.

Clearly, if we can identify the sinc (.) -function with the largest frequency-domain
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spread, we can capture most of the energy in (13). From the scaling property of

the Fourier Transform, it is easy to see that the sinc (.) function with the smallest

spatial-domain spread will result in the largest frequency-domain spread. Since the

brain region will be larger than just the stimulated region, it is natural to assume

that one of the widths associated with the stimulated region will be the smallest.

Thus, without loss of generality, we assume that W4 >W1,W2,W3. Furthermore, as-

suming that the effective spread of the sinc(.) -function extends to the three zero-

crossings on either side, we have that ωspread ⋅W4/2 = 3π gives that ωspread = 6π/W4.

This argument can be generalized to multiple stimulated-regions. The smallest re-

gion gives the "effective" low-frequency spread as given by:

ωeffective�spread ¼ 6π=Wsmallest ð14Þ

where Wsmallest refers to the smallest stimulated region that we wish to recover in

the Fourier domain. The concept of width can easily be extended to non-

rectangular regions.

Now, assuming that these low-frequency components can be captured by the

frequency-sampling geometry, the inverse Fourier Transform of (13) yields:

freconstructed x; yð Þ≈ A:rect x;C1;W1ð Þ:rect y;C2;W2ð Þ
þB:rect x;C3;W3ð Þ:rect y;C4;W4ð Þ

ð15Þ

In (15), it is important to note that we have a function that has a very small

TV-norm. In fact, it is an ideal case since we expect that the TV-optimized recon-

struction will be well represented by the right-hand-side of (15). The observation

here is that we can use the low-frequency components to capture most of the

Fourier-transform energy of the ideal model as well as provide for a good

initialization for optimization for low TV.

The expectation that the effective Fourier magnitude frequency spread is centered

around the low-frequencies is also verified experimentally in two activity images as

shown in Figure 3. From Figures 3(c) and 3(d), it is quite clear that most of the

energy is concentrated around the lower-frequency portion of the spectrum. The

log-magnitude plots of 4(e) and 4(f ) show the attenuation of the spectrum at

higher frequency magnitudes. Our discussion in this section clearly shows that the

low-frequency components of Figures 3(c) and 3(d) also capture the elevated image

intensity levels associated with activated brain regions.

The k-Space downsampling geometries

We consider both deterministic and stochastic sampling geometries. For deter-

ministic geometries, we consider the spiral low-pass and dyadic downsampling

along the phase encoding direction. Stochastic methods are based on random

sampling.

First, we consider geometries that restrict down sampling in the phase-encoded dimen-

sion only. Here, we wish to compare k-space sampling geometries in just the phase-

encoded dimension to k-space undersampling in both dimensions around the center.

As noted in the literature review, the central region of k-space is essential in obtaining

reconstruction performance that is acceptable. Almost all non-CS reconstruction of k-
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space undersampling included the center of k-space in the data that was sampled. A dyadic

sampling geometry class was developed that considers sparse sampling along the phase-

encoded dimension of k-space. All geometries of this class are shown in the first row of

Table 1. This geometry includes samples from a collection of contiguous frequency encoded

vectors centered over the center of k-space. The width of the central region can be varied to

generate a number of unique masks that are members of this mask class. Nine unique

geometries are generated based on a central region that sample 1/2, 1/3, 1/4, 1/6, 1/8, 1/10,

1/12, 1/16, and 1/32 of the phase encoded samples. Beyond the bounds of the central region

of the geometry, additional frequency encoded vectors are sampled every 2nd, 4th, 8th, etc.

phase encoded sample until the entire support of the fully sampled k-space has been

included. The dyadic characteristic of the gap size between subsequent high-frequency sam-

ples was intentionally designed to sample more densely near the center of k-space, and in

hopes that such sampling in k-space might coincide with the wavelet transform our recon-

struction method utilized. This class will be referred to as the dyadic phase encoded (DPE)

geometry class in the remainder of this paper.

We also consider two additional geometry classes which attempt to increase the incoher-

ence between the sensing and transform bases by introducing an element of randomness in

how the samples were selected. The first class, which is referred to as the random phase

encoded (RPE) geometry class, samples frequency-encoded vectors along random phase

encoded samples. This sampling method was selected as a comparison to the dynamic CS

MRI in [20]. In two images, single fMRI study, such sampling would not expect to provide

acceptable reconstruction due to the possibility of excluding a portion of the central region

of k-space. Each of the random phase encoded geometries contains the same number of

samples as one of the dyadic phase encoded geometries. Due to the one-to-one geometry

correspondence across classes, there are nine total geometries in the RPE class. All of the

random phase encoded geometries are shown in the second row of Table 1.

The second geometry class that incorporates randomness into the sampling scheme

can be described as random sampling along a 1-D probability distribution function

across the phase encoded samples at each frequency-encoded sample. This geometry

class will be referred to the random sampling PDF (RSP) class.

The motivation of this geometry is from [16], but we alter the distribution to be repli-

cated at each frequency-encoded sample instead being defined over both k-space

dimensions. We use a fifth-order polynomial of the form

f u; vð Þ∝ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v2

p� 	5
; 0 < u1;u2≤U� 1; 0 < v1; v2≤V� 1 ð16Þ

where U and V are the number of k-space samples in the frequency and phase encoded

dimension. This function mathematically defines the probability density function on

which the random samples are being selected. Our motivation for this geometry was to

attempt a compromise between the inclusion of the center of k-space and also impart-

ing incoherence into the CS problem through a pseudo-random sampling geometry.

Representative geometries of the RSP class are depicted in the third row in Table 1.

Lastly, we include a geometry class that restricts k-space sampling in both the phase

encoded and frequency-encoded dimensions. Here, we generate the nine geometries by

a sampling along Cartesian spiral emanating from the center of k-space. Such sampling

geometries are more typical of the classical k-space undersampling reconstruction



Figure 3 Fourier transforms for On activity images. (a) On activity image #1. (b) On activity image #2.
(c) Magnitude of Fourier Transform of image #1. (d) Magnitude of Fourier transform of image #2. (e) Log-
magnitude of the Fourier transform of image #1. (f) Log-magnitude of the Fourier transform of image #2.
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techniques found in literature. This class is referred to as the spiral low pass (SLP)

geometry class (see Table 1).

Optimization of CS penalty parameters

Parameter optimization is performed using two separate approaches. In the first approach,

we want to estimate the optimal parameter ranges for α, β that can provide a certain level

of image quality. This first approach is based on maximizing the PSNR in the reconstruc-

tion images. Our second approach is more direct. It is based on maximizing the average

SSIM index. In our second approach, we want to recommend specific parameter values

for each sampling geometry. The second approach is validated using leave-one-out.
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Both approaches assume that we can find optimal parameters when ground truth is

available. When ground truth is not available, our expectation is that our training sets

will reflect the new datasets that will be collected. To initialize optimization, we first

zero pad the images from the original size of 53 × 63 to be of size 64 × 64. We then

use the 2D FFT to generate k-space data for our experiments. A baseline reconstruc-

tion is obtained by applying the inverse-Fourier transform to the k-space undersam-

pling matrix. This initial reconstruction will exhibit the aliasing artifacts that the work

presented in the introduction seeks to suppress. We then use the Nelder-Mead search

algorithm to estimate optimal reconstruction parameters of (1) [29]. Here, we note that

the Nelder-Mead algorithm does not require that we evaluate the derivatives. It belongs

to the class of direct search methods [30]. This approach is used to generate a collec-

tion of optimal parameter values α, β associated with each image.

Then, in our first approach, we estimate the optimal parameter ranges for α, β that

can provide a certain level of image quality. To understand how this works, note that

minimum image quality requirement can be expressed as a minimum requirement for

the PSNR level. We then determine the reconstructed images that exceed the minimum

level. The optimal parameter region can then be estimated from the range of values of

α, β that correspond to these images. To avoid outliers, the optimal regions need only

be met by 75% of the total number of the considered images. We also consider the

complexity of each optimal parameter region based on the inner and outer bounding

boxes. The inner bounding box is the largest rectangle that can be totally contained in-

side the optimal parameter region. On the other hand, the outer bounding box repre-

sents the smallest rectangle that contains the optimal parameter region. A detailed

example of our first approach is also provided in the results section.

Our second approach is more direct. Our goal is to provide specific recommenda-

tions for α, β that can be expected to exceed a minimum level of image quality. For this

direct approach, we use the average SSIM index value to determine the required level

of image quality. We consider an image with an average SSIM index value above 0.9 to

represent excellent reconstruction quality. In this second approach, the image recon-

struction quality is estimated using a leave-one-out method. In leave-one-out, we con-

struct training sets consisting of all but one of the ON/OFF image pairs. We then

report the reconstruction image quality on the remaining ON/OFF image pair that

serves as our testing set. The method is then applied over all image pairs. Here, we use

the median parameter values estimated over each training set for reconstruction of the

testing set. In this approach, we report our results for each image serving as a member

of the testing set. Furthermore, for simplicity, we provide the median parameter values

over the entire dataset. Also, for completeness, we also provide optimal parameter

values for each image pair. This allows the readers to see if the discrepancy between

the median and the optimal parameter values will affect the reconstructed image

quality.
Results
We provide optimization results independently for the ON, the OFF images, as well as

for the difference image. Here, we consider optimization of the difference image for ac-

tivity detection.
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In Figure 4, we use the Shepp-Logan phantom for testing with the classical TV

optimization method of [1], as well as for the proposed Wavelet optimization frame-

work based on [16]. As expected, we can see from Figure 4(d) that the standard TV

method performs very well here. We get perfect reconstruction from just 22 radial lines

shown in Figure 4(b). The stochastic sampling geometries also perform better than the

deterministic geometries on this example. For example, at the highest sampling density,

random sampling on PDF gives reconstructions well over 90 dB that are 30 dB above

any reconstruction achieved by the SLP geometries. However, please note that this ex-

ample is unrealistic in the sense that it does not capture the complexity of the activity

region in fMRI.

For all sampling geometries, we provide optimal PSNR results for ON and OFF

images in Figure 6. The PSNR values obtained by simply zero-filling the missing k-pace

samples are displayed for comparison. A brief inspection reveals the PSNR values for
Figure 4 Example of a simple CS reconstruction problem. (a) The Shepp-Logan phantom test
image. (b) The sampling geometry from which Fourier coefficients are sampled along 22 approximately
radial lines. (c) The zero-filling result, where non-sampled coefficients are set to zero and an inverse Fourier
transformation is applied. (d) Reconstruction obtained using CS methods. The reconstruction is an exact
replica of the image in (a). We also tested all sampling geometries of Table 1 on this image. For sampling
geometries using 20.3% of the total samples, reconstructions gave values well-above 40 dB (50-60 dB)
which are excellent (e.g., see Figure 5). It is interesting to note that stochastic geometries perform
significantly better than deterministic geometries at higher sampling rates. For example, random sampling
on PDF gave over 90 dB reconstructions while the SLP geometry gave reconstructions of less than 60 dB.
Again, all of these reconstructions are excellent. The lack of perfect-reconstruction for our geometries
comes from the use of Wavelet transform in our method. As it is well-known, and also demonstrated here,
the standard TV-norm is the best fit for this example.
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the DPE and SLP geometry classes are higher than the RPE and RSP geometry classes.

The dyadic phase encoded geometry class exhibited the most consistency between

PSNR values across images for the same geometry, but had a lower average PSNR value

across images than the spiral low pass geometry class. The random classes exhibited a

greater improvement over zero-filling, but did not achieve reconstructed images as ac-

curately as the deterministic classes (for the same number of samples). In terms of

PSNR, the spiral low pass sampling geometry gave the best results. Furthermore, for

PSNR > 40 dB, most reconstructions were found to be of excellent quality.

To determine the minimum acceptable reconstruction quality, we consider PSNR

values from 20 dB to 45 dB (see Figure 5). For a given sampling geometry and a

required image quality, all parameter regions were intersected to determine the max-

imum number of images that achieve the desired reconstruction quality for a single

range of parameters. Thus, for each quality level, we can have a maximum of 24

images, indicating that the same optimal region provided this minimum quality for all

of them. To avoid outliers, we consider an optimization region to be successful in

meeting the image quality criterion if 75% or more of the images maintain a level above

what is required. We also provide bounding box results in Table 2.
Figure 5 Reconstruction image quality assessment. The top row contains reconstructions from
various SLP sampling geometries, not necessarily using the optimal reconstruction parameters. The bottom
row contains reconstruction from the RSP sampling geometry class. (a) and (e) are the original ON images.
(b) and (f) are marginal reconstructions of 28.35 and 24.22 dB, respectively. (c) and (g) are acceptable
reconstruction of 34.97 and 39.64 dB. (d) and (h) are excellent reconstructions of 48.35 and 56.69 dB,
respectively.



lanigraMlanigirO
(< 30 dB) 

Acceptable
( ≥ 30 dB, < 40 dB) 

Excellent 
( ≥ 40 dB) 

Figure 6 Optimal PSNR values for CS reconstructions for each sampling geometry for both ON and OFF images. The optimal reconstructions are represented by the ‘o’ symbol. For
comparison, the ‘+’ symbol represents the PSNR achieved by simply zero-filling the missing k-space samples. The plots are also partitioned in to PSNR values that demonstrated excellent
reconstruction (PSNR > 40 dB), adequate reconstruction (PSNR < 40 dB, but > 30 dB) and inadequate reconstruction (PSNR < 30 dB). (a) The results of sampling k-space with the DPE geometry class.
(b) The results of the RPE geometry class. (c) The results of the RSP geometry class. (d) The results of the SLP geometry class.
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Table 2 Optimal parameter regions for achieving different image quality bounds

Geometry class Threshold Inner bounding box

Min α Max α Min β Max β

DPE 62.5% 45 dB 8.0808e-05 2.8687e-04 2.5758e-04 3.9697e-04

DPE 48.5% 40 dB 1.4949e-04 2.5253e-04 2.3434e-04 3.9697e-04

DPE 32.8% 35 dB 2.1111e-04 3.0404e-04 3.8990e-04 4.9293e-04

DPE 21.9% 30 dB 4.2424e-04 6.3030e-04 2.8081e-04 3.2727e-04

SLP 62.5% 45 dB 2.5253e-04 4.2424e-04 1.4141e-04 1.8788e-04

SLP 40.6% 40 dB 1.4949e-04 2.8687e-04 7.1717e-05 2.1111e-04

SLP 20.3% 35 dB 8.0808e-05 1.4949e-04 4.8485e-05 9.4949e-05

SLP 20.3% 30 dB 1.2121e-05 1.4949e-04 2.5253e-05 9.4949e-05

Geometry class Threshold Outer bounding box

Min α Max α Min β Max β

DPE 62.5% 45 dB -2.2222e-05 3.8990e-04 1.8788e-04 4.6667e-04

DPE 48.5% 40 dB 4.6465e-05 3.2121e-04 1.6465e-04 5.1313e-04

DPE 32.8% 35 dB 1.1818e-04 3.7374e-04 1.4949e-04 5.9596e-04

DPE 21.9% 30 dB 1.4141e-04 3.9697e-04 2.5253e-04 7.3333e-04

SLP 62.5% 45 dB 4.6465e-05 4.5859e-04 7.1717e-05 3.0404e-04

SLP 40.6% 40 dB 2.8687e-04 4.2424e-04 2.0202e-06 3.0404e-04

SLP 20.3% 35 dB -2.2222e-05 2.5253e-04 -2.1212e-05 1.8788e-04

SLP 20.3% 30 dB -5.6566e-05 2.5253e-04 -2.1212e-05 2.5758e-04

This table provides bounding box parameters that are needed for achieving different performance levels.
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Our experiments reveal that the DPE and SLP geometry class outperform the RPE

and RSP classes. It was expected that the RPE class exhibit poor reconstruction, since

the geometries do not contain sufficient samples from the center of k-space. And only

a single geometry, the RSP geometry including 62.5% of samples resulted in a suggested

operating parameter space for achieving “acceptable” reconstruction.
Figure 7 Parameter Optimization over an entire fMRI image data set for the 48.5% DPE
geometry for image quality level at 40 dB. (a) Parameter region plot indicating the number of images
that were reconstructed with >40 dB image quality level (max = 24). (b) Parameter region where 75% of
the images exhibited image quality >40 dB (c) Inside and outside bounding boxes meant to
characterize the complexity of the optimization region.



Jeromin et al. BioMedical Engineering OnLine 2012, 11:25 Page 20 of 36
http://www.biomedical-engineering-online.com/content/11/1/25
On the other hand, the DPE class achieved excellent reconstruction from two geom-

etries (62.5% and 48.5%) and the SLP class achieved excellent reconstruction from the

three geometries that retained the most number of k-space samples (60.5%, 48.5%, and

40.6%). When lower-quality reconstructions are acceptable, we can use sampling geom-

etries that use fewer k-space samples. Twelve additional DPE geometries were found to

satisfy the parameter space threshold and intersection procedure. All eighteen (nine

each from the ON and OFF imagery) SLP geometries that were included in this experi-

ment satisfied our requirement for acceptable reconstruction.
Figure 8 Optimal results for fMRI activity detection for the SLP geometry using 20.3% of the
samples. (a) The plots of each difference image set PSNR values. (b) The plots of the mean SSIM index
values for each difference image set. The results of the individual slice optimal CS reconstructions are
shown, along with the results of the optimal difference image CS reconstructions and the zero-filled
reconstruction results.
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The combined parameter plots over all images indicate the number of images that

meet the quality criteria. We present an example in Figure 7 for the 48.5% DPE geom-

etry. Figure 7(c) depicts the inner and out bounding regions, where 75% of the images

meet the quality requirements. The complexity of this optimal region is reflected in an

area ratio of 5.71, indicating that the area of the outer box is 5.71 times larger than the

inner bounding box.

For activity detection, we also compared the difference images of the original ON

and OFF samples, the CS reconstructed ON and OFF samples, and also the reconstruc-

tion values of zero-filling the missing k-space samples. Based on our investigations, we

have found that it was possible to obtain excellent reconstruction results with very fast

k-space sampling geometries. In what follows, we present our best results, obtained

with the SLP geometry using only 20.3% of k-space.

Here, it is interesting to note that activity detection required optimization of the

reconstructed difference image. Separate optimization of the ON/OFF images did not

translate into any improvements over simple zero filling (see Figure 8). On the other

hand, optimization of the difference images led to significant increases in PSNR and

SSIM over zero-filling for eleven of the twelve samples. The mean values for the opti-

mal difference image parameters were 57.58 dB and 0.9747 for the PSNR and mean

SSIM measurements, respectively. The plots in Figure 6 show the PSNR and mean

SSIM values for each difference image for the optimal CS reconstruction for each slice

difference image, the optimal difference image CS reconstruction, and the zero-filled

difference image. For activity detection, after removing outlier points, 75% of the opti-

mal parameter region was bounded by:

αmin ¼ 2:407e� 7; αmax ¼ 2:881e� 5; βmin ¼ 9:638 e� 8;
βmax ¼ 1:084 e� 4:

We also present results from parameter optimization based on maximizing the mean
SSIM index value. For each sampling geometry and image pair, we present the best

mean SSIM index in Tables 3, 4, 5, 6. The corresponding α, β values are shown in

Tables 7, 8, 9, 10, 11, 12, 13, 14. Overall, the SLP geometry gave the best results. The

mean SSIM results achieved by the SLP geometry are given in Table 3. The optimal α-

values are given in Table 8 and the optimal β-values are given in Table 12.

For each sampling geometry, we provide the median α, β-values in the last column of

Tables 7, 8, 9, 10, 11, 12, 13, 14. The recommendation to use the median α, β-values

for reconstruction was validated using leave-one-out. Here, note that the mean SSIM

values reported in Tables 3, 4, 5, 6 are based on performing the image reconstruction

using the median values from the training set of the remaining 11 image pairs. There is

thus a mismatch between the median α, β values and the optimal values that can only

be estimated when the entire image is available. Yet, despite this mismatch, we find that

the second approach worked very well. For example, all of the SLP reconstructions for

20.3% sampling gave average SSIM index values above 0.93.

We next discuss the relationship between PSNR and mean SSIM values. Numerically,

an SSIM value of 1 corresponds to an infinite value for the PSNR. Furthermore, an

SSIM value of 0 corresponds to a negative infinity value for PSNR. Ideally, an increase

in the SSIM index will also correspond to an increase in PSNR. We have verified this

fact for the mean-SSIM values of Table 4 and their corresponding PSNR values. On the



Table 3 Dyadic phase geometry: Mean SSIM results (OFF & ON) over each image pair and median over all pairs

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image10 Image11 Image12 Median

62.50 0.9938 0.9935 0.9890 0.9932 0.9937 0.9928 0.9880 0.9933 0.9922 0.9921 0.9949 0.9931 0.99315

48.50 0.9839 0.9806 0.9721 0.9803 0.9842 0.9781 0.9748 0.9749 0.9773 0.9784 0.9844 0.9817 0.97935

40.60 0.9661 0.9696 0.9512 0.9657 0.9633 0.9558 0.9575 0.9608 0.9596 0.9613 0.9668 0.9658 0.9623

32.80 0.9347 0.9428 0.9207 0.9358 0.9452 0.9027 0.9223 0.9371 0.9331 0.9223 0.9518 0.9422 0.93525

28.10 0.9032 0.9277 0.8863 0.9020 0.9173 0.8918 0.9163 0.9068 0.9024 0.8963 0.9268 0.9206 0.905

26.60 0.8758 0.9097 0.8612 0.8865 0.8928 0.8537 0.8440 0.8918 0.8922 0.8678 0.9068 0.8987 0.88915

25.00 0.8798 0.8957 0.8379 0.8891 0.8815 0.8705 0.8799 0.8935 0.8764 0.8666 0.8990 0.8972 0.8807

21.90 0.8452 0.8624 0.8087 0.8569 0.8394 0.8409 0.8507 0.8559 0.8483 0.8380 0.8649 0.8653 0.8495

20.30 0.7779 0.7816 0.7852 0.7822 0.7928 0.6842 0.6782 0.8073 0.8019 0.7844 0.8179 0.8110 0.7848

Average SSIM values are computed using the leave-one out method. The median parameter values of the 12 training sets are set to the median values of the 11 images in the training set and then tested on the
remaining image pair. The table shows the results from the testing phase.
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Table 4 Spiral Low Pass geometry: Mean SSIM results (OFF & ON) over each image pair and median over all pairs

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image 11 Image 12 Median

62.50 0.9923 0.9938 0.9916 0.9936 0.9942 0.9929 0.9897 0.9934 0.9931 0.9941 0.9952 0.9945 0.9935

48.50 0.9888 0.9877 0.9878 0.9891 0.9889 0.9870 0.9801 0.9891 0.9869 0.9884 0.9908 0.9850 0.9881

40.60 0.9856 0.9829 0.9824 0.9848 0.9860 0.9824 0.9726 0.9860 0.9820 0.9841 0.9867 0.9791 0.9835

32.80 0.9789 0.9762 0.9727 0.9784 0.9811 0.9741 0.9679 0.9815 0.9761 0.9804 0.9828 0.9698 0.9773

28.10 0.9697 0.9659 0.9624 0.9703 0.9773 0.9649 0.9574 0.9728 0.9671 0.9731 0.9767 0.9682 0.96895

26.60 0.9660 0.9616 0.9541 0.9674 0.9748 0.9632 0.9552 0.9681 0.9637 0.9699 0.9718 0.9652 0.9656

25.00 0.9639 0.9567 0.9528 0.9643 0.9716 0.9600 0.9497 0.9657 0.9585 0.9687 0.9713 0.9640 0.96395

21.90 0.9512 0.9478 0.9342 0.9543 0.9630 0.9468 0.9427 0.9523 0.9456 0.9556 0.9606 0.9531 0.95175

20.30 0.9424 0.9356 0.9244 0.9442 0.9586 0.9285 0.9300 0.9385 0.9316 0.9467 0.9545 0.9503 0.94045

The results are based on the leave one out method. See Table 3 for details.
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Table 5 Random sampling on PDF geometry: Mean SSIM results (OFF & ON) over each image pair and median over all pairs

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 0.9917 0.3613 0.9946 0.9915 0.9965 0.4869 0.8859 0.4286 0.8429 0.9873 0.8771 0.9968 0.9366

48.50 0.8839 0.7967 0.3797 0.9873 0.8862 0.7779 0.9661 0.8454 0.8591 0.4017 0.8990 0.9863 0.8715

40.60 0.9538 0.5490 0.9520 0.9526 0.9626 0.7717 0.7206 0.9405 0.9593 0.9579 0.9668 0.9618 0.9532

32.80 0.9302 0.8089 0.4618 0.8772 0.8536 0.3084 0.4843 0.4917 0.9077 0.3930 0.6974 0.9397 0.75315

28.10 0.7025 0.8010 0.4048 0.4846 0.9073 0.6879 0.7178 0.7995 0.4558 0.6144 0.8163 0.5519 0.6952

26.60 0.7432 0.4272 0.4323 0.5289 0.7348 0.7207 0.3768 0.8983 0.4436 0.5258 0.8413 0.4048 0.52735

25.00 0.5855 0.9114 0.6392 0.5203 0.4872 0.5883 0.2242 0.8795 0.3602 0.5417 0.9151 0.5172 0.5636

21.90 0.4465 0.8086 0.4637 0.5236 0.4568 0.5584 0.5955 0.7593 0.8266 0.5380 0.7414 0.5028 0.5482

20.30 0.7635 0.4661 0.3008 0.5635 0.5954 0.6655 0.5174 0.5689 0.4259 0.4993 0.5045 0.8082 0.54045

The results are based on the leave one out method. See Table 3 for details.
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Table 6 Random phase encoding geometry: Mean SSIM results (OFF & ON) over each image pair and median over all pairs

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image 11 Image 12 Median

62.50 0.4977 0.7761 0.8038 0.7710 0.9385 0.3035 0.3178 0.5755 0.8920 0.5611 0.9340 0.7678 0.7694

48.50 0.7205 0.4283 0.4978 0.4190 0.5157 0.3792 0.4124 0.4222 0.5150 0.7992 0.6382 0.4757 0.48675

40.60 0.8368 0.4455 0.6163 0.3631 0.5303 0.2675 0.6773 0.6491 0.6260 0.6262 0.5328 0.7319 0.62115

32.80 0.7470 0.4417 0.5449 0.5325 0.5322 0.2600 0.2553 0.7156 0.4721 0.5817 0.5961 0.3384 0.53235

28.10 0.3020 0.5741 0.3409 0.3296 0.3299 0.2593 0.4213 0.7007 0.3138 0.6112 0.4863 0.3430 0.34195

26.60 0.2954 0.4523 0.5428 0.4348 0.4034 0.2812 0.2324 0.6164 0.3333 0.4492 0.5069 0.4524 0.442

25.00 0.6157 0.4613 0.3285 0.4298 0.3138 0.2766 0.6734 0.4857 0.4460 0.6840 0.3523 0.3663 0.4379

21.90 0.5199 0.2968 0.3911 0.3072 0.4502 0.2662 0.2366 0.4205 0.3047 0.3096 0.5264 0.4307 0.35035

20.30 0.3137 0.2704 0.4546 0.3005 0.4328 0.3067 0.2069 0.3503 0.2660 0.4082 0.2628 0.3512 0.3102

The results are based on the leave one out method. See Table 3 for details.
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Table 7 Optimal alpha values for dyadic phase encoding geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 5.187*1E-04 4.382*1E-04 4.185*1E-04 6.067*1E-04 2.487*1E-04 5.630*1E-04 4.282*1E-04 4.180*1E-04 3.834*1E-04 2.264*1E-04 2.934*1E-04 1.333*1E-04 4.18*1E-04

48.50 4.872*1E-04 7.729*1E-04 3.677*1E-04 4.199*1E-05 7.021*1E-04 3.698*1E-04 2.637*1E-05 3.794*1E-04 1.545*1E-04 5.969*1E-05 6.555*1E-04 3.687*1E-04 3.69*1E-04

40.60 4.577*1E-04 2.174*1E-04 6.738*1E-04 1.573*1E-04 3.090*1E-04 2.712*1E-04 2.207*1E-04 1.597*1E-04 1.580*1E-04 2.485*1E-04 7.190*1E-04 9.229*1E-05 2.35*1E-04

32.80 1.446*1E-04 2.568*1E-04 5.670*1E-04 1.686*1E-04 1.308*1E-04 3.551*1E-04 3.744*1E-04 1.821*1E-04 4.293*1E-04 1.641*1E-04 4.952*1E-04 7.518*1E-04 3.06*1E-04

28.10 4.738*1E-04 2.575*1E-04 1.294*1E-04 1.245*1E-04 9.180*1E-05 4.849*1E-04 1.502*1E-04 3.984*1E-04 4.354*1E-04 5.536*1E-04 6.348*1E-05 4.926*1E-04 3.28*1E-04

26.60 5.961*1E-04 2.208*1E-04 2.764*1E-04 8.724*1E-05 2.422*1E-04 1.694*1E-03 3.760*1E-04 1.450*1E-04 1.747*1E-04 2.461*1E-04 3.492*1E-04 1.405*1E-04 2.44*1E-04

25.00 1.576*1E-04 2.046*1E-04 1.709*1E-05 1.746*1E-04 3.734*1E-04 5.181*1E-04 2.947*1E-04 5.724*1E-04 5.362*1E-04 1.410*1E-04 3.343*1E-04 3.248*1E-04 3.10*1E-04

21.90 2.257*1E-04 6.291*1E-04 1.065*1E-04 1.095*1E-04 2.912*1E-04 5.319*1E-04 2.600*1E-04 1.323*1E-04 4.067*1E-04 6.829*1E-04 9.795*1E-04 3.029*1E-04 2.97*1E-04

20.30 1.563*1E-05 2.289*1E-04 1.435*1E-05 1.641*1E-04 −2.664*1E-05 2.285*1E-04 3.615*1E-04 1.240*1E-04 1.230*1E-04 3.426*1E-05 1.007*1E-05 7.462*1E-06 7.86*1E-05

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 8 Optimal alpha values for spiral low-pass geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 6.742*1E-05 2.440*1E-04 3.171*1E-04 3.987*1E-04 2.606*1E-04 2.529*1E-04 2.591*1E-04 1.550*1E-04 1.728*1E-04 4.957*1E-04 3.440*1E-04 1.499*1E-04 2.56E-04

48.50 1.805*1E-04 1.322*1E-04 2.967*1E-04 1.799*1E-04 2.294*1E-04 3.108*1E-04 1.297*1E-04 2.942*1E-04 2.484*1E-04 4.276*1E-04 4.420*1E-04 1.798*1E-04 2.39E-04

40.60 2.994*1E-04 1.038*1E-06 2.844*1E-04 1.086*1E-04 2.632*1E-04 2.026*1E-04 3.734*1E-04 2.843*1E-04 6.503*1E-04 7.424*1E-05 1.903*1E-04 2.900*1E-04 2.74E-04

32.80 2.261*1E-05 9.766*1E-07 2.617*1E-04 1.784*1E-05 1.651*1E-04 7.080*1E-05 6.673*1E-05 1.561*1E-04 1.329*1E-05 4.016*1E-05 9.338*1E-05 5.145*1E-05 5.91E-05

28.10 5.980*1E-06 0.0E + 00 7.971*1E-05 1.282*1E-06 2.110*1E-05 8.163*1E-05 2.121*1E-04 9.640*1E-06 3.081*1E-06 1.708*1E-05 5.890*1E-06 1.438*1E-06 7.81E-06

26.60 3.779*1E-06 −2.441*1E-07 8.136*1E-05 9.766*1E-07 2.803*1E-05 1.820*1E-04 3.906*1E-06 7.959*1E-06 9.220*1E-06 1.842*1E-05 6.043*1E-06 4.747*1E-05 8.59E-06

25.00 3.829*1E-06 0.0E + 00 1.626*1E-04 3.052*1E-08 9.683*1E-05 1.134*1E-04 6.404*1E-05 4.971*1E-05 5.096*1E-06 1.678*1E-05 5.286*1E-06 4.147*1E-05 2.91E-05

21.90 1.008*1E-05 3.052*1E-08 2.252*1E-05 4.578*1E-08 9.543*1E-05 7.703*1E-05 1.178*1E-04 3.884*1E-05 3.132*1E-05 1.179*1E-05 1.053*1E-05 2.166*1E-05 2.21E-05

20.30 5.893*1E-06 −5.341*1E-08 1.347*1E-05 2.441*1E-07 9.809*1E-06 3.146*1E-05 3.906*1E-06 4.454*1E-05 6.435*1E-05 3.173*1E-05 1.164*1E-05 4.158*1E-05 1.26E-05

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.

Jerom
in

et
al.BioM

edicalEngineering
O
nLine

2012,11:25
Page

27
of

36
http://w

w
w
.biom

edical-engineering-online.com
/content/11/1/25



Table 9 Optimal alpha values for random sampling on PDF geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 2.704*1E-04 3.669*1E-04 3.817*1E-04 3.978*1E-04 2.543*1E-04 4.777*1E-04 3.090*1E-04 2.522*1E-04 4.710*1E-04 5.479*1E-04 2.637*1E-04 2.531*1E-04 3.38*1E-04

48.50 1.672*1E-03 2.404*1E-03 2.460*1E-03 1.266*1E-03 0E + 00 2.185*1E-03 1.924*1E-03 1.627*1E-03 1.606*1E-03 8.298*1E-04 1.865*1E-03 1.848*1E-03 1.76*1E-03

40.60 1.098*1E-03 2.381*1E-03 1.467*1E-03 2.400*1E-03 4.761*1E-06 −5.186*1E-05 1.389*1E-03 1.380*1E-03 1.284*1E-03 2.162*1E-03 1.273*1E-03 3.481*1E-03 1.38*1E-03

32.80 1.201*1E-03 0E + 00 1.190*1E-03 1.107*1E-03 1.484*1E-03 1.959*1E-03 1.928*1E-03 1.174*1E-03 1.759*1E-03 1.375*1E-03 1.003*1E-03 2.092*1E-03 1.29*1E-03

28.10 3.753*1E-03 9.521*1E-06 4.616*1E-03 9.082*1E-04 2.677*1E-03 −6.645*1E-05 1.673*1E-03 1.933*1E-03 2.526*1E-03 1.460*1E-03 2.445*1E-03 3.229*1E-03 2.19*1E-03

26.60 1.980*1E-03 1.522*1E-03 1.535*1E-03 1.040*1E-03 1.393*1E-03 5.993*1E-04 6.140*1E-04 8.419*1E-04 1.679*1E-03 1.061*1E-03 1.171*1E-03 1.469*1E-03 1.28*1E-03

25.00 8.867*1E-04 4.137*1E-04 1.997*1E-03 1.074*1E-05 6.785*1E-04 1.424*1E-03 2.551*1E-03 1.506*1E-03 4.349*1E-04 7.230*1E-04 4.732*1E-04 1.346*1E-03 8.05*1E-04

21.90 1.003*1E-03 1.731*1E-03 1.562*1E-03 2.544*1E-03 1.717*1E-03 1.979*1E-03 1.400*1E-03 2.576*1E-04 2.223*1E-03 9.923*1E-04 9.351*1E-04 2.016*1E-03 1.64*1E-03

20.30 1.388*1E-03 2.289*1E-03 2.344*1E-05 1.739*1E-03 3.741*1E-03 2.142*1E-03 2.476*1E-03 1.484*1E-03 −6.022*1E-05 −2.979*1E-05 1.257*1E-03 1.934*1E-03 1.61*1E-03

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 10 Optimal alpha values for random phase encoding (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 3.432
*1E-04

5.724
*1E-04

1.449
*1E-04

2.051
*1E-04

−3.137
*1E-05

7.519
*1E-04

4.396
*1E-04

4.749
*1E-04

−5.880
*1E-06

2.859
*1E-04

7.813
*1E-06

6.028
*1E-04

3.15
*1E-04

48.50 −1.633
*1E-06

4.126
*1E-04

−2.972
*1E-05

−6.086
*1E-05

−1.590
*1E-05

−1.863
*1E-04

−1.957
*1E-04

4.404
*1E-04

−5.236
*1E-05

−2.679
*1E-04

7.813
*1E-06

5.633
*1E-04

−2.28
*1E-05

40.60 9.952
*1E-04

4.536
*1E-04

2.723
*1E-04

2.109
*1E-04

2.979
*1E-05

2.140
*1E-04

1.763
*1E-04

4.544
*1E-04

5.251
*1E-04

4.368
*1E-04

−6.852
*1E-05

8.507
*1E-04

3.55
*1E-04

32.80 5.493
*1E-07

−4.938
*1E-04

−6.073
*1E-06

−1.334
*1E-04

−5.382
*1E-05

5.497
*1E-04

2.771
*1E-05

−7.382
*1E-05

−4.323
*1E-05

−4.177
*1E-04

−3.918
*1E-05

−5.866
*1E-04

−4.85
*1E-05

28.10 −3.632
*1E-05

2.559
*1E-04

−3.033
*1E-05

−1.074
*1E-05

−3.271
*1E-05

4.256
*1E-04

7.668
*1E-04

1.416
*1E-04

−7.233
*1E-06

3.029
*1E-06

−1.099
*1E-05

6.348
*1E-06

−2.10
*1E-06

26.60 −3.906
*1E-06

1.526
*1E-07

−3.009
*1E-05

−3.311
*1E-05

−4.181
*1E-05

2.896
*1E-05

2.068
*1E-03

−4.675
*1E-05

−5.447
*1E-06

−3.906
*1E-06

5.127
*1E-06

−7.563
*1E-05

−4.68
*1E-06

25.00 −1.844
*1E-04

−4.150
*1E-06

−1.160
*1E-04

−4.858
*1E-05

8.374
*1E-05

1.191
*1E-03

6.500
*1E-04

1.036
*1E-04

9.277
*1E-06

2.930
*1E-06

−7.629
*1E-08

−1.639
*1E-05

1.43
*1E-06

21.90 9.766
*1E-07

7.047
*1E-04

1.367
*1E-05

1.121
*1E-03

3.906
*1E-06

2.021
*1E-03

6.571
*1E-03

9.662
*1E-04

1.068
*1E-06

9.479
*1E-05

1.271
*1E-03

7.481
*1E-04

7.26
*1E-04

20.30 1.318
*1E-04

2.374
*1E-05

2.148
*1E-05

6.586
*1E-05

2.138
*1E-04

5.205
*1E-06

1.572
*1E-06

1.978
*1E-05

6.895
*1E-06

4.661
*1E-04

4.562
*1E-05

4.753
*1E-04

3.47
*1E-05

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 11 Optimal beta values for dyadic phase encoding geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 1.084*1E-03 2.698*1E-04 4.536*1E-04 −7.898*1E-05 2.957*1E-04 3.546*1E-04 1.299*1E-04 5.352*1E-04 3.703*1E-04 6.006*1E-04 5.883*1E-04 2.869*1E-04 3.62*1E-04

48.50 5.988*1E-04 2.676*1E-04 3.268*1E-04 3.989*1E-04 5.205*1E-04 5.235*1E-04 3.940*1E-04 3.740*1E-04 5.166*1E-04 1.891*1E-04 2.092*1E-04 3.794*1E-04 3.87*1E-04

40.60 9.831*1E-04 2.217*1E-04 1.020*1E-03 1.729*1E-04 5.130*1E-04 2.909*1E-04 −5.859*1E-05 4.841*1E-04 5.129*1E-04 4.080*1E-04 7.499*1E-04 5.183*1E-04 4.99*1E-04

32.80 4.906*1E-04 4.087*1E-04 4.010*1E-04 7.449*1E-04 7.143*1E-04 4.673*1E-04 1.331*1E-03 5.408*1E-04 1.058*1E-03 7.070*1E-04 6.733*1E-04 4.987*1E-04 6.07*1E-04

28.10 8.401*1E-04 2.506*1E-04 4.290*1E-04 4.456*1E-04 6.025*1E-04 2.600*1E-04 5.224*1E-04 5.955*1E-04 2.392*1E-04 1.120*1E-03 6.011*1E-04 1.297*1E-03 5.59*1E-04

26.60 2.075*1E-03 3.907*1E-04 3.184*1E-04 2.024*1E-03 5.989*1E-04 1.206*1E-03 7.061*1E-04 2.813*1E-04 4.880*1E-04 6.309*1E-04 6.032*1E-04 7.237*1E-04 6.17*1E-04

25.00 5.646*1E-04 3.037*1E-04 3.977*1E-04 6.276*1E-04 6.339*1E-04 2.351*1E-04 1.793*1E-04 9.519*1E-04 4.954*1E-04 4.382*1E-04 9.376*1E-04 7.264*1E-04 5.30*1E-04

21.90 1.004*1E-03 1.034*1E-03 1.033*1E-03 2.980*1E-04 9.097*1E-04 9.206*1E-04 1.079*1E-03 7.043*1E-04 −9.717*1E-05 1.310*1E-03 1.435*1E-03 7.850*1E-04 9.62*1E-04

20.30 4.453*1E-04 6.589*1E-04 3.739*1E-04 5.820*1E-04 1.353*1E-03 4.033*1E-04 8.078*1E-04 7.510*1E-04 5.616*1E-04 1.066*1E-03 2.823*1E-04 2.136*1E-04 5.72*1E-04

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 12 Optimal beta values for spiral low-pass geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 2.929*1E-04 4.407*1E-04 5.365*1E-04 3.320*1E-04 5.587*1E-04 4.524*1E-04 4.398*1E-04 4.448*1E-04 1.932*1E-04 8.479*1E-04 4.432*1E-04 1.973*1E-04 4.42*1E-04

48.50 4.101*1E-04 3.171*1E-04 2.837*1E-04 3.176*1E-04 5.204*1E-04 4.530*1E-04 4.610*1E-04 5.018*1E-04 4.352*1E-04 9.829*1E-04 6.130*1E-04 2.600*1E-04 4.44*1E-04

40.60 5.247*1E-04 2.430*1E-04 2.495*1E-04 4.220*1E-04 5.691*1E-04 2.830*1E-04 7.014*1E-04 3.369*1E-04 7.813*1E-04 1.039*1E-04 3.052*1E-04 1.489*1E-04 3.21*1E-04

32.80 3.198*1E-05 3.418*1E-06 2.612*1E-04 2.844*1E-04 2.844*1E-04 3.682*1E-04 3.340*1E-04 2.250*1E-04 2.093*1E-05 5.343*1E-05 1.320*1E-04 1.717*1E-04 1.98*1E-04

28.10 9.243*1E-06 7.813*1E-06 4.480*1E-05 7.660*1E-06 3.377*1E-05 3.461*1E-04 3.067*1E-04 1.434*1E-05 1.066*1E-05 1.429*1E-05 7.380*1E-06 5.000*1E-06 1.25*1E-05

26.60 9.680*1E-06 9.888*1E-06 5.209*1E-05 7.324*1E-06 4.948*1E-05 6.414*1E-04 9.766*1E-06 1.607*1E-05 6.538*1E-06 1.148*1E-05 5.924*1E-06 1.136*1E-04 1.07*1E-05

25.00 7.717*1E-06 7.813*1E-06 9.662*1E-05 9.750*1E-06 1.960*1E-04 2.863*1E-04 7.765*1E-05 8.038*1E-05 5.798*1E-06 1.576*1E-05 6.060*1E-06 9.034*1E-05 4.67*1E-05

21.90 1.051*1E-05 9.750*1E-06 1.438*1E-05 5.714*1E-06 2.244*1E-04 1.726*1E-04 1.944*1E-04 7.759*1E-05 7.979*1E-05 1.394*1E-05 1.187*1E-05 4.749*1E-05 3.09*1E-05

20.30 8.590*1E-06 7.473*1E-06 7.542*1E-06 3.784*1E-06 3.100*1E-05 8.866*1E-05 1.953*1E-06 1.166*1E-04 1.164*1E-04 5.748*1E-05 1.123*1E-05 9.008*1E-05 2.11*1E-05

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 13 Optimal beta values for random sampling on PDF geometry (SSIM optimization)

Sample rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 3.879*1E-04 4.778*1E-04 3.463*1E-04 2.347*1E-04 2.575*1E-04 5.832*1E-04 3.699*1E-04 2.552*1E-04 6.620*1E-04 6.740*1E-04 2.959*1E-04 3.955*1E-04 3.79*1E-04

48.50 2.957*1E-03 4.742*1E-03 4.121*1E-03 1.513*1E-03 5.078*1E-04 3.129*1E-03 2.873*1E-03 3.145*1E-03 2.784*1E-03 1.926*1E-03 2.829*1E-03 3.197*1E-03 2.92*1E-03

40.60 2.834*1E-03 3.961*1E-03 3.234*1E-03 4.632*1E-03 4.970*1E-04 4.112*1E-04 2.602*1E-03 3.376*1E-03 1.889*1E-03 3.994*1E-03 2.581*1E-03 4.480*1E-03 3.03*1E-03

32.80 2.285*1E-03 2.578*1E-04 2.069*1E-03 2.080*1E-03 2.182*1E-03 2.415*1E-03 2.275*1E-03 2.245*1E-03 3.317*1E-03 3.334*1E-03 1.757*1E-03 2.649*1E-03 2.26*1E-03

28.10 4.355*1E-03 4.886*1E-04 6.020*1E-03 2.377*1E-03 3.631*1E-03 7.985*1E-04 2.793*1E-03 2.806*1E-03 4.510*1E-03 3.320*1E-03 3.175*1E-03 4.770*1E-03 3.25*1E-03

26.60 2.809*1E-03 2.626*1E-03 3.631*1E-03 1.898*1E-03 1.739*1E-03 5.134*1E-04 1.089*1E-03 1.712*1E-03 3.226*1E-03 1.510*1E-03 1.889*1E-03 2.007*1E-03 1.89*1E-03

25.00 2.474*1E-03 9.774*1E-04 4.994*1E-03 6.392*1E-04 1.381*1E-03 3.023*1E-03 4.750*1E-03 2.253*1E-03 7.196*1E-04 2.347*1E-03 1.936*1E-03 3.353*1E-03 2.30*1E-03

21.90 2.254*1E-03 2.776*1E-03 2.575*1E-03 5.158*1E-03 2.319*1E-03 2.012*1E-03 1.015*1E-03 3.837*1E-04 3.279*1E-03 1.706*1E-03 2.336*1E-03 2.642*1E-03 2.33*1E-03

20.30 2.022*1E-03 4.004*1E-03 3.867*1E-04 3.612*1E-03 4.730*1E-03 2.663*1E-03 1.801*1E-03 2.231*1E-03 5.073*1E-04 3.918*1E-04 2.242*1E-03 3.168*1E-03 2.24*1E-03

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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Table 14 Optimal beta values for random phase encoding (SSIM optimization)

Sample Rate Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image 10 Image11 Image 12 Median

62.50 7.155*1E-04 7.113*1E-04 5.765*1E-04 8.666*1E-04 5.501*1E-04 −1.006*1E-03 −6.614*1E-04 −2.959*1E-04 3.854*1E-05 5.893*1E-04 0.000 6.427*1E-04 5.63*1E-04

48.50 1.199*1E-05 1.786*1E-03 2.434*1E-04 4.558*1E-04 1.400*1E-04 1.468*1E-03 1.243*1E-03 1.103*1E-03 2.851*1E-04 1.590*1E-03 0.000 1.707*1E-03 7.79*1E-04

40.60 2.279*1E-03 8.726*1E-04 9.424*1E-04 5.586*1E-04 4.216*1E-04 −3.205*1E-04 −4.021*1E-04 1.538*1E-03 1.124*1E-03 7.060*1E-04 1.046*1E-03 1.522*1E-03 9.08*1E-04

32.80 2.561*1E-04 4.782*1E-03 5.028*1E-05 8.742*1E-04 5.847*1E-04 −7.650*1E-04 −1.547*1E-04 4.421*1E-04 2.294*1E-04 3.368*1E-03 2.354*1E-04 4.703*1E-03 3.49*1E-04

28.10 5.722*1E-04 2.451*1E-04 1.896*1E-04 9.717*1E-05 1.935*1E-04 8.850*1E-05 9.451*1E-04 −7.617*1E-05 5.061*1E-05 6.785*1E-05 8.459*1E-05 4.883*1E-07 9.28*1E-05

26.60 9.766*1E-06 7.360*1E-04 1.344*1E-04 2.263*1E-04 3.434*1E-04 5.932*1E-04 1.190*1E-03 5.092*1E-04 2.915*1E-05 9.766*1E-06 −4.639*1E-06 3.732*1E-04 2.85*1E-04

25.00 1.500*1E-03 3.746*1E-04 1.015*1E-03 8.685*1E-04 6.149*1E-04 1.737*1E-03 1.722*1E-03 1.105*1E-03 3.997*1E-04 5.024*1E-04 2.420*1E-04 8.242*1E-04 8.46*1E-04

21.90 7.324*1E-06 1.136*1E-03 −3.906*1E-06 6.226*1E-04 1.953*1E-06 7.024*1E-04 −3.088*1E-03 1.023*1E-03 7.736*1E-06 −1.375*1E-04 2.603*1E-03 1.717*1E-03 3.15*1E-04

20.30 −4.746*1E-05 8.667*1E-06 3.418*1E-05 4.228*1E-05 8.818*1E-05 −9.306*1E-06 −9.048*1E-06 5.127*1E-06 6.141*1E-06 −4.362*1E-04 2.938*1E-05 −3.554*1E-04 5.63*1E-06

The optimal values are shown for each image pair. The median value for each sampling geometry is also shown. In the leave one out method, the median values were only computed over the training sets. See
Table 3 for details.
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other hand, this property does not hold for individual images. For example, image #2

for sampling at 20.30% has a PSNR value that is above the median, while its SSIM value

is below the median. In such cases, the SSIM trend is considered to be superior to the

PSNR. Overall though, all of the SLP reconstructions gave mean SSIM values above

0.93. Thus, the SLP geometry reconstructions are considered to be excellent.

Discussion
We have found that parameter optimization achieved significant image quality

improvements using a relatively small number of iterations. Typically, five iterations

were required to improve PSNR by over 10 dB from the initial values of α = 0, β = 0

and achieve reconstructions that were within 5% of the optimal quality value.

We take a closer look at the α and β ranges for select geometries from the DPE and

SLP classes. We selected both the DPE and SLP geometries with the least number of

samples that still provided reasonable performance regions in the optimal quality

regions for 30 dB, 35 dB, 40 dB, and 45 dB. Examining the range of the parameters pro-

vides a more detailed description of the parameter space, and which constraint in (3) is

essential for acceptable reconstructions. The minimum and maximum parameter values

that define the vertices of the inner and outer bounding boxes are listed in Table 2.

Three instances in the above table stand out because the minimum alpha and/or beta

parameters are negative. These values are a by-product of the interpolation and intersec-

tion method used to calculate the parameter ranges. When negative parameter values

were inserted into the optimization algorithm, the reconstruction algorithm breaks down.

In these cases, we replace the negative value with zero to achieve an acceptable result.

It is imperative that our discussion turn to the effect of a zero parameter value for either

constraint in the reconstruction problem. Typically, the effect of α = 0 is a more prominent

presence of high-frequency errors in the spatial domain, as well as a higher amount of

artifacts from the sampling geometry. Conversely, the effect of β = 0 is a loss of high-

frequency spatial components in the spatial domain reconstruction. In this case, the TV-

norm tends to drive the solution to result whose finite difference in each dimension is

minimized. While removing one of the penalty terms in the CS objective function may re-

sult in a usable reconstruction, our observations indicated that this case will not be optimal.

When both parameters are zero, the proposed optimization framework breaks down.

It is possible to achieve acceptable image quality when one of the two parameters is

zero, but not both. While completely removing one of the penalty terms in (3) may re-

sult in acceptable reconstructions in terms of PSNR, an increased PSNR can be

achieved by using the (non-zero) optimal values.

For activity detection, we have found that optimization of the difference image led to

excellent results. In particular, the SLP geometry gave excellent average SSIM values of

0.9747 (max = 1). The use of the leave-one-out validation with mean SSIM optimization

also verified the fact that the SLP family of geometries gives the best result. Further-

more, recommended parameter values for the SLP geometries are given by the median

values of Tables 8 and 12.

Conclusions
In conclusion, we have found that CS parameter optimization can dramatically improve

fMRI image reconstruction quality. Furthermore, deterministic SLP scanning geometries
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(similar to the 3D geometries of [4]) consistently gave the best image reconstruction

results. The implication of this result is that less complex sampling geometries will suffice

over random sampling, provided the TV-Norm and Transform penalty parameters are

selected from the range of values we have calculated in our proposed methodology. We

have also found that we can obtain stable parameter regions that can be used to achieve

specific levels of image reconstruction quality when combined with specific k-space sam-

pling geometries. More importantly, median parameter values can be used for obtaining

excellent reconstructions. This observation has been validated using leave-one-out and

optimization based on the mean SSIM index.
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