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Abstract

Background: Fiber-based optical spectroscopy has been widely used for biomedical
applications. However, the effect of probe-sample distance on the collection
efficiency has not been well investigated.

Method: In this paper, we presented a theoretical model to maximize the
illumination and collection efficiency in designing fiber optic probes for biomedical
spectra measurement. This model was in general applicable to probes with single or
multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a
fluorescence spectrometer was used to measure the fluorescence of human finger
skin at various probe-sample distances. The fluorescence spectrum and the total
fluorescence intensity were recorded.

Results: The theoretical results show that for single fiber probes, contact
measurement always provides the best results. While for multi-fiber probes, there is
an optimal probe distance. When a 400- μm excitation fiber is used to deliver the
light to the skin and another six 400- μm fibers surrounding the excitation fiber are
used to collect the fluorescence signal, the experimental results show that human
finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm
excitation. The fluorescence intensity is heavily dependent on the probe-sample
distance and there is an optimal probe distance.

Conclusions: We investigated a number of probe-sample configurations and found
that contact measurement could be the primary choice for single-fiber probes, but
was very inefficient for multi-fiber probes. There was an optimal probe-sample
distance for multi-fiber probes. By carefully choosing the probe-sample distance, the
collection efficiency could be enhanced by 5-10 times. Our experiments
demonstrated that the experimental results of the probe-sample distance
dependence of collection efficiency in multi-fiber probes were in general agreement
with our theory.
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1. Background
Optical spectroscopy including reflectance, fluorescence and Raman spectroscopy has

been used for biomedical applications, such as for cervical cancer [1,2], lung cancer [3]

and skin cancer diagnosis [4]. Fiber-based probes have been widely used in biomedical

spectroscopy and biomedical imaging, which provide an effective and flexible optical

interface between the spectroscopic device and the samples to be measured [5-7]. The

fibers have double roles in these systems: (i) delivery of illumination light to the target;
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and (ii) collection and delivery of signal to the spectrometer or detector. These fiber-

based probes are flexible and thus can be miniaturized and put into cavities for endo-

scopic measurement, or inserted into microstructures such as needles. So far, fiber

probes can be made with an outer diameter less than 0.5 mm [5]. The optical probe is

not only limited by size, but also the illumination and collection efficiency. However,

most of the probes reported in literature are lack of optimization in illumination and

collection efficiency, although this is critical for low signal detection such as fluores-

cence and Raman spectroscopy measurement [8,9]. In this paper, we presented a theo-

retical model in designing fiber optic probes for biomedical applications to maximize

the illumination and collection efficiency. This model is applicable to probes with sin-

gle or multiple fibers at an arbitrary incident angle. We investigated a number of

probe configurations and find that contact measurement for such kind of probes is

very inefficient for fiber bundles. By carefully choosing the probe and sample distance,

the collection efficiency can be enhanced by 5-10 fold. Experimental results are also

presented to demonstrate the probe-sample distance dependence.

2. Methods and experiments
2.1 Single fiber probe

We start from a single, bare optical fiber, which can be used as light source delivery

and signal collection. This is the simplest form of optical fiber based probe, but of

important practical usage [8]. When light is incident onto the sample, it will be subject

to specular reflection due to refractive index mismatching at the interface and diffuse

reflection due to scattering. To study the collection efficiency, it can be divided into

two separate processes: (1) implementation of light transport model in the tissue and

(2) light coupling between the tissue and the fiber probe. Light transport in tissue has

been studied [10], which can be modeled using Monte Carlo simulations [11]. We will

focus on the light coupling issues between the tissue and the fiber probe.

Assuming light is illuminated onto a semi-infinite tissue (which is always the case for

in vivo or ex vivo measurement), the total intensity escaping the medium surface is [8],

Iesc = I0Rsp + I0
(
1 − Rsp

)
Rdiffuse (1)

where I0 is the incident light intensity illuminated on the medium surface. Rsp is the

specular reflection of the tissue surface due to index mismatching. Rdiffuse is a dimen-

sionless factor, called the total diffuse reflectance. For contact measurement, the signal

collected by the fiber is given by,

Icollect = I0Rsp + I0(1 − Rsp)
∫
S

∫
S
T(r, r′)dA′dA = I0Rsp + I0(1 − Rsp)Rcollect (2)

where S is the cross section of the fiber core, T(r) is the transport factor from the

fiber through the tissue to a position r on the surface. dA and dA’ indicate the incre-

mental aperture area for delivery and collection. For a single fiber, the collection frac-

tion, f, is defined as [8],

f =
Icollect − I0Rsp

Iesc − I0Rsp
=

Rcollect

Rdiffuse
(3)
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where Iesc represents the light escaped from sample surface (including specular

reflection). The light collected, Rcollect, should be split into two parts: the light that

enters the optical fiber with an angle smaller than the half-angle of the acceptance

angle (Rcore), and the light that enters the optical fiber with an angle larger than the

half-acceptance angle (Rcladding). Rcore is guided to the detector by the fiber core, and

the Rcladding is lost by fiber from fiber cladding. Equation (3) can be reduced as f =

Rcore/Rdiffuse. Both Rcore and Rdiffuse can be determined numerically by Monte Carlo

simulations [11]. This is a reverse problem in that the collection efficiency is deter-

mined by measuring the collected signal divided by the total signal simulated from the

sample surface. In reality, particularly for probe designing, people want to design the

probe so that it can collect as much signal as possible, given the signal (Rdiffuse) from

the surface is known (or constant).

As shown in Figure 1, if the fiber is not contact with the tissue, the illumination and

collection efficiency must be accounted for. In this case, because the energy from the

fiber surface equals to the energy illuminated on the tissue surface, the intensity on the

tissue surface I0 can be written as,

I0 = Ioutr
2 cos β/(r + d tan θ)2 (4)

where Iout is the intensity out of the fiber surface. r is the radius of the fiber core, d

is the distance from the fiber tip to the tissue surface (center of fiber core to the tissue

surface along optical axis of the fiber). θ is the acceptance angle, determined by the

numerical aperture of the fiber, θ = arcsin(NA/n0). If there is no water or other med-

ium between fiber probe and tissue surface, n0 is refractive index of air n0 = 1. NA is

the numerical aperture of the fiber. For the commonly used fiber with NA = 0.22, the

acceptance angle is 12.7°. b is the tilt angle of the fiber probe. Notice that the intensity

on the sample surface maximizes for normal illumination (b = 0), because the

Figure 1 Diagram of the possible return paths of light from tissue in a single fiber probe (a) and
multi-fiber probe (b). r: radius of the fiber core, d: distance from the probe to the tissue surface. Rsp:
Specular reflectance, Rair: Reflected signal to air (signal loss), Rcore: Collected signal that can transmit in the
fiber, Rcladding: Signal to the fiber cladding (signal loss), q: Acceptance angle of fiber. rc: Size of fiber
cladding, b: probe tilt angle.

Wang et al. BioMedical Engineering OnLine 2011, 10:95
http://www.biomedical-engineering-online.com/content/10/1/95

Page 3 of 8



illumination surface is the smallest for any given probe-sample distance. In equation

(4), we assume the light is uniformly illuminated on the tissue surface.

Note that all the mirror-reflected light from the tissue surface enters the fiber. For

any point on the tissue surface, only the signal which hits the fiber core surface enters

the fiber, and only the signal which has a smaller incident angle than the acceptance

angle can transmit in the fiber. As a first-order approximation, the solid angle, Ω, that

a signal can enter the fiber core is given by,

� = 1 − d′/
√
d′2 + r2 (5a)

where,

d′ = d + (r + d tan θ)
sin β tan β tan θ

cos2β − sin2βtan2θ
(5b)

When the distance from the fiber probe to the tissue surface is 0, all the surface sig-

nal within the illumination area is collected, although some of the light is lost during

propagation when the angle is larger than the acceptance angle. Note that when there

is no tilt angle, b = 0, and d’ = d. As the specular reflection does not provide any

information about the tissue, we assume Rsp = 0 for the following analysis. This is par-

ticularly useful for fluorescence and Raman measurement. Combining equations (1)-

(5), one can obtain the signal that the fiber collects from the tissue surface, given by,

Rcollect =
(r + d′ tan θ)2Iesc

r2Iout
(1 − d′

√
d′2 + r2

) (6)

In Equation (6), Iesc is determined by the tissue properties that can not affected by

the fiber probe. Iout is the illumination intensity from the fiber output which is deter-

mined by the laser power.

The dependence of the collection efficiency of single fiber probes on the probe dis-

tance is shown in Figure 2. It can be seen that contact measurement has the highest

collection efficiency for single fiber probes. The collection efficiency also heavily

depends on the diameter of the fiber core. This dependence is larger for smaller core-

diameter fibers than for larger core-diameter fibers, e. g. the collection efficiency

decreases to 20% of the contact measurement for a 50 μm fiber when the probe dis-

tance is 100 μm, while the collection efficiency decreases down to 20% of the contact

measurement at a longer probe distance (1200 μm) for a 500 μm fiber. The collection

efficiency also depends on the probe-sample angle. For any given probe-sample dis-

tance, the collection efficiency may be increased at a small tilt angle. The collection

efficiency will eventually drop when the tile angle is too large. But this increase or

decrease is minimal comparing with the probe-sample distance. In general, a tolerance

of 15 degrees is acceptable for single-fiber probes.

2.2 Multi-fiber probe

For multi-fiber probes, the analysis is similar to those of single fiber probes. But

because no specular reflection is collected in multi-fiber probes, Rsp = 0. So the collec-

tion fraction in Eq. (3) can be rewritten as,
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f =
Icollect
Iesc

=
Rcollect

Rdiffuse
(7)

For contact measurement, the illumination area and the collection area are not over-

lapped. In this case, the signal is purely diffuse reflectance signal. Based on the distance

of fibers, signal at different depth in the tissue can be acquired [5]. When increasing

the probe distance from the tissue surface, the illumination and collection area may be

overlapped. The overlapped area over the total illumination area are given by,

Scollect
Sillumi nation

=
4
π
arccos

r + rc
r + d′ tan θ

− 2(r + rc)

π(r + d′ tan θ)2

√
(r + d′ tan θ)2 − (r + rc)

2 (8)

Combining equations (1), (4-5) and (7-8), one can obtain the signal that the fiber col-

lects from the tissue surface in a multi-fiber probe, written as

Rcollect =
(r + d′ tan θ)2Iesc

r2Iout cos β
(1− d′

√
d′2 + r2

)×
4 arccos

r + rc
r + d′ tan θ

(r + d′ tan θ)2 − 2(r + rc)
√
(r + d′ tan θ)2 − (r + rc)

2

π(r + d′ tan θ)2
(9)

In equation (9), Iesc is determined by the tissue properties that can not be affected by

the fiber probe. Iout is the illumination intensity out of the illumination fiber, which is

determined by the laser power. r is the radius of the fiber, d’ is the equivalent fiber

probe distance defined by equation (5b), rc is the distance between the illumination

fiber and the collection fiber. θ is determined by the fiber NA. In the above analysis,

we assume both the illumination and collection have same numerical apertures.

The collection efficiency of multi-fiber probes is shown in Figure 3. It can be seen

that there is an optimal probe distance in multi-fiber probes. For a 100- μm fiber, the

optimal probe distance is around 20 μm; for a 1000 μm fiber, the optimal probe dis-

tance is 700 μm. Comparing with contact measurement, the improvement of multi-

fibers is over 5 fold. As shown in equation (9), the collection efficiency also depends

on the distance between illumination and collection fiber. In the above analysis, the

distance between illumination and collection fibers is assumed to be 10 μm. Figure 3b

shows the collection efficiency of multi-fiber probes at different illumination and col-

lection angle. It can be seen that the collection efficiency is increased, because there is

more overlap of illumination area and collection area for a tilted multi-fiber probes.

Figure 2 Collection efficiency of single fiber probes with a core-diameter of 50, 100, 200 and 500
μm at normal illumination (a) and collection efficiency of single fiber probes with core-diameter of
200 μm at different illumination angles (b). In the above calculation, the fiber NA = 0.22 was used.
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2.3 Fluorescence measurement

In order to verify the analysis, we measured the fluorescence of a human finger skin in

vivo using a multi-fiber probe configuration. The experiment is schematically shown in

Figure 4. A laser with l = 450 nm was used. The light was collimated, filtered by a

band-pass filter (450 ± 1 nm) and coupled into a 400- μm delivery fiber. The light is

delivered to the skin at a probe-sample distance of d. The laser power on skin is 2.5

mW, well below the ANSI standard. The fluorescence signal is collected by another six

400- μm fibers surrounding the excitation fiber. The collected fluorescence signal was

collimated and filtered by a long pass filter (470 nm LP) and delivered to the spectro-

meter (USB2000+VIS-NIR, Ocean Optics, FL, USA). The probe distance can be

adjusted so that the fluorescence at different probe distance can be recorded.

3. Results and discussions
Here we were using multi-fiber probes, so in this model, Rsp = 0. The measured fluor-

escence of human finger skin and its probe-sample distance dependence are shown in

Figure 5. It can be seen that human finger skin has very strong fluorescence between

475 nm and 700 nm under 450 nm excitation, probably due to a combination of kera-

tin, collagen and elastin [12]. The fluorescence intensity is heavily dependent on the

Figure 3 Collection efficiency of multi-fiber probes at normal illumination-collection (a) and at
different illumination-collection angles (b). In this simulation, the fiber NA is assumed as 0.22 NA =
0.22. rc = 10 μm. Note that there is an optimal probe distance for multi-fiber probes. This optimal probe
distance depends on the diameter of fiber. The signal can be increased by 5 fold if the probe is positioned
at the optimal probe distance, compared with contact measurement. In (b) the diameter of the fiber is
assumed to be 200 μm.

d

BPL

Tissue

Fiber
Probe

L L LP L

SpectrometerLaser

Figure 4 Schematic drawing of the experimental setup. L: lens, BP: band-pass filter, LP, long pass filter.
d: probe distance.
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probe-sample distance. There is an optimal probe-sample distance that has the maxi-

mum collection efficiency. In our experiments, we found 2 mm is the optimal probe

distance for our probe. This distance is higher than the theoretical value as shown in

Figure 3(a). We believe that the difference between theory and experiment might be

due to the multiple scatterings of the excitation light and fluorescence signal in the

skin tissue. Currently we are working on Monte Carlo model [11] to combine our the-

ory with light transport properties in tissue to improve the prediction of optimal

probe-sample distance, which will be the subject of a future publication.

4. Conclusions
In summary, we studied the collection efficiency of fiber probes in biomedical spectro-

scopy and biomedical imaging. It was found that for single fiber probes, contact mea-

surement always provides the best results. While for multi-fiber probes, there is an

optimal probe distance. This optimal distance depends on the diameter of the fiber,

and the distance between illumination and collection fibers. Tilted probes may also

increase the collection efficiency but not as much as probe-distance effect. For normal

illumination and collection, signals can be improved by 5 fold at the optimal distance

than contact measurement.
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