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Methods: A novel real-time feature extraction method for detecting P300 waves by
combining an adaptive nonlinear principal component analysis (ANPCA) and a
multilayer neural network is proposed. The measured EEG signals are first filtered
using a sixth-order band-pass filter with cut-off frequencies of 1 Hz and 12 Hz. The
proposed ANPCA scheme consists of four steps: pre-separation, whitening,
separation, and estimation. In the experiment, four different inter-stimulus intervals
(ISls) are utilized: 325 ms, 350 ms, 375 ms, and 400 m:s.

Results: The developed multi-stage principal component analysis method applied at
the pre-separation step has reduced the external noises and artifacts significantly.
The introduced adaptive law in the whitening step has made the subsequent
algorithm in the separation step to converge fast. The separation performance index
has varied from -20 dB to -33 dB due to randomness of source signals. The
robustness of the ANPCA against background noises has been evaluated by
comparing the separation performance indices of the ANPCA with four algorithms
(NPCA, NSS-JD, JADE, and SOBI), in which the ANPCA algorithm demonstrated the
shortest iteration time with performance index about 0.03. Upon this, it is asserted
that the ANPCA algorithm successfully separates mixed source signals.

Conclusions: The independent components produced from the observed data using
the proposed method illustrated that the extracted signals were clearly the P300
components elicited by task-related stimuli. The experiment using 350 ms ISI showed
the best performance. Since the proposed method does not use down-sampling and
averaging, it can be used as a viable tool for real-time clinical applications.
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Background

The first recording of the electric field of a human brain was made by the German
psychiatrist Hans Berger in Jena, Germany, in 1924. He named the recorded signals
electroencephalograms (EEGs) [1]. Over the past few decades, this signal has attracted
very considerable interest and attention in the study of cognitive processes in both
clinical [2-9] and research areas [10-16]. Its main advantages are non-invasive measure-
ment, superior temporal resolution, easy implementation, and low cost [17,18]. An
event-related potential (ERP), as a derivative of the EEG, is a measured brain response
directly resulted from a thought or perception. In 1964 and 1965, respectively, two
groups (Chapman and Bragdon [19] and Sutton et al. [20]) independently discovered a
P300 component (a wave peak approximately 300 milliseconds (ms) after a task-rele-
vant stimulus). Recently, a great variety of potential applications of the ERP-based
P300 component have been widely studied [21-26].

Ideally, the EEG machine records, along the scalp, the electrical activities generated
by the firing of neurons within the brain. The present problem is that EEG signals con-
tain the neurons’ activities located in some significant distances away from the sensors
(electrodes). Therefore, given the distance between the electrode and the neuronal
activities, the EEG signal collected at any point on a person’s scalp is a nonlinear mix-
ture of the activities generated over a large brain area. In this paper, the recorded EEG
data are assumed to be a linear mixture of neuronal activities for brevity. Certainly,
dealing with the typical low-amplitude and low signal-to-noise ratio (SNR) potentials,
the removal of other biological signals becomes one of the major challenges in the
study of ERPs. To resolve this problem, down-sampling and averaging methods of EEG
data over multiple trials are usually required. However, the down-sampling method can
cause some signals to become indistinguishable and distorted, which implies an altera-
tion of the original characteristics of the waveform of information. Also, the averaging
method assumes that the signals are long-time stationary and deterministic relative to
the stimulus onset. This assumption might cause the loss of time resolution specifically
for dissimilar trials. Also, the stationarity and determinacy assumption on EEG signals
might not work, because one must consider other factors such as maturation, age, sex,
state-of-consciousness, psychiatric and neurological disorders, etc [27].

In this paper, a more efficient means of feature extraction is developed to cope with
the drawbacks of the down-sampling and averaging method. Previous research has
shown that several aspects of the ERP (especially the latency, magnitude, and topogra-
phy) are highly variable across trials [27,28]. Many techniques [29-33] appeared in
research area to resolve the problem of EEG (specifically for obtaining P300 compo-
nents) are not sufficiently standardized for clinical usage. Moreover, those techniques
usually have been performed off-line. In this paper, a real-time feature extraction
method for P300 components using an adaptive nonlinear principal component analy-
sis (ANPCA) incorporating the multilayer neural network (MNN) is proposed. The
MNN technique has been widely adopted in the fields of information and neural
sciences (i.e., feature extraction, classification, modeling, etc.) [34-39]. The experimen-
tal results in this paper show that the implementation of the proposed method
achieves a very significant statistical improvement in extracting P300 components.

The main contributions of this paper are the following. (i) The developed multi-stage
principal component analysis (PCA) applied at the pre-separation step reduces external



Turnip et al. BioMedical Engineering OnLine 2011, 10:83 Page 3 of 20
http://www.biomedical-engineering-online.com/content/10/1/83

noises and artifacts significantly, and separates the colored source in the measured
EEG signals. (ii) The designed adaptive rule in the whitening step makes the subse-
quent separation algorithm to converge fast. (iii) The combination of the proposed
ANPCA method and the MNN for feature extraction can identify the P300 compo-
nents in real-time (i.e., without down-sampling and averaging). (iv) Furthermore, the
proposed method can become a viable tool in both research and clinical applications.

Methods

Data acquisition

Figures 1(a) and 1(b) show the overall schematic and block diagram, respectively, of
the proposed real-time feature extraction method. In the experiment, two masters stu-
dents and five Ph.D. students (all males, age 32 + 5 years, none of whom had any
known neurological deficits) have participated. A seven-choice signal paradigm (i.e.,
forward, turn right, turn left, backward, backward right, backward left, and stop) is
used to stimulate the seven subjects. They sit in a comfortable chair in front of a com-
puter monitor located at 60 cm away from their eyes. The subjects are asked to count
silently the number of times of the flashes of a preselected image on the screen while
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Figure 1 The proposed scheme for real-time feature extraction (the seven traffic signals flash one
at a time to evoke P300): (a) the overall scheme, (b) block diagram. The configurations of the ANPCA
algorithm incorporated with the MNN scheme for real-time feature extraction of the independent
components according to the P300 component.
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imagining a car moving in the direction of the flashed signal. Four seconds after a
starting tone, seven different images flash in random order, one image at a time. A
software program (E-Prime 2.0, developer: Schneider, Sharpsburg-USA) is employed
for presenting stimuli.

The left-hand side box in Figure 1(a) shows a g-MOBIlab+ biosignal acquisition
device (Christoph Guger, Austria), with which the EEG signals are recorded continu-
ously and digitized at a 256 Hz sampling rate. Figure 2 depicts the positioning of the
eight electrodes (channels) at Fz, Cz, Pz, Oz, P7, P3, P4, P8 by following the 10-20
International System [40] and the linked-ears reference. The ground electrode is placed
at the center of the forehead. The impedance at each location is kept below 5 kQ. The
participants are supposed not to have any eye and head movements during the EEG
recording. Each subject records four sessions; four different image-flash durations (i.e.,
25 ms, 50 ms, 75 ms, and 100 ms, respectively) followed by a 300 ms blank screen.
Hence, the inter-stimulus intervals (ISIs) in this work range from 325 ms to 400 ms.

Real-time feature extraction

Let M be the number of measured EEG signals and N be the number of unknown
input sources. Then, the measured signal at channel i, x;(k), can be represented as a
linear combination of N unknown mutually statistically independent source signals s;
(k),j = 1,2, .., N, as follows (typically M > N) [41,42].

N
xi(k) = Y agsi(k) + ni(k), 1)
j=1
or in matrix form,

x(k) = As(k) + n(k), )

Figure 2 The eight-electrodes configuration. The standard positions (i.e, Fz, Cz, Pz, Oz, P7, P3, P4, and
P8) prescribed by the 10-20 International System with a linked-ears reference.
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where x(k) = [x1(k), x5(k), ..., x1(k)]’e R is the vector of EEG signals, A € RM * N
with entries a;; is the unknown M x N mixing matrix, s(k) = [s1(k), s2(k), ..., sn(k)] e
RN is the unknown vector of colored source signals, and n(k) € R is the vector of
additive noises. The objective of this work is to estimate both A and s(k). The following
assumptions are made: Individual components of the source vector s(k) are statistically
independent of one another; the matrix A is invertible and has full rank; each compo-
nent in s(k) is a stationary; and the noise vector (k) is white with Gaussian distribu-
tion. The P300 extraction is made in the following steps: pre-separation, whitening,
separation, and estimation without ignoring the additive noise signal (k).
Pre-separation step
The pre-separation step uses a multi-stage PCA to separate the sources and also to
reduce external noises and artefacts from the measured signal vector. The eigenvalue
decomposition of the correlation matrix R,, of the measured signal x(k) is given by [42]

Ry = E{x(k)x" (k)} = vaAVT, 3)

RMXN

where 4 € is a pseudo-diagonal matrix. On the basis of the largest eigenva-

lues, the spatial whitening procedures can be written as
i(k) = Bx(k) = A; PVIx(k), (4)
where 4; = diagid;, Ay, .., A} with A; 2 A, 2 .. 2 Ay and V) = {3, vo,..05} € RVM,
Therefore, the PCA is performed for a new vector of signals, which is defined [41,42]
x(k) = x(k) + X(k — 1), (5)

where 7 is an arbitrary time delay. The covariance matrix of the vector x(k) is

expressed as

R = Rz(0) = E{ X(k)x" ()}

= 2Rz(0) + Rx(7) + RI (1), (6)

where Ry; = Rz(0) = E{ X(k)x'(k)} = HRsH' = I, under the assumption that H = BA
is orthogonal and Rgs = 7 and
R:(t) = E{x(k)x" (k — 7)} = HR,(z)H". )
Hence, the matrix decomposition can be written
Riz = HD(t)H' = V3 A;V2, 8)
where D(7)is a diagonal matrix expressed as
D(t) = 21 + Ry(z) + R (1), )

with diagonal elements d;;(r) = 2(1+E{s;(k)s;(k-7)}) If the diagonal elements are dis-
tinct, the eigenvalue decomposition is unique. Thus, the mixing matrix and the input

vector x(k), respectively, can be estimated as A = B*Vx and
x(k) = VIx(k) = VIBx(k). (10)

Assume that the process x(k) € CM comprises a zero-mean sequence whose covar-

iance matrix is defined as in (3), and that we are going to extract its complex-values

Page 5 of 20
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eigenvectors v; and corresponding principal components (PCs) in real-time. Employing
a self-supervising principle and hierarchical neural network architecture, the PCs(x;)
are extracted sequentially as

M
Xi=vix= Zv,-pxp(t). (11)

p=1
The vector v; should be determined in such a way that the reconstructed vector
X = vfx; will reproduce the input vector x(t) according to a suitable optimization. For

this purpose, let us define a complex-valued instantaneous error vector as
ei(t) = [en(t), ea(t), ..., em(t)]"
= x(t) — x(t) = x(t) — vix(t) (12)
= (1 - vaf")x(t) = ef (1) + jel 1)
where [ is the identity matrix, eR(t) and e!(t) are the real part and imaginary parts of

the error vector e;(£), respectively, and j = «/—1. In order to find the optimal value of

the vector v;, we can define the following standard 2-norm cost function.
1 RI2 2
5 (lef 15+ 11l12)
1 [ - 2
I
(S @r).
p=1 p=1

Ei(vi)

(13)

where eﬁ, is the pth element of ef The minimization of the cost function (13),
according to the standard gradient descent approach for the real and imaginary parts

of the vector v; = 1} +jv/, leads to a set of differential equations as

dv?; _ _ﬁ‘aEi(vi)
dt Lol
N (14)
(E1+x ZE2+XZ ),
h=1 h=1
dvy, _ p 0Ei(n)
de 7 a
p
o " (15)
TICED )
h=1 h=1
. 1 . R R e
where B; > 0 is the learning rate, f, =eipxi + el x; Ey = ey vy — e v,
1 R B R R L .
E4 = eﬁ) —e x v Ey = ep - e{pxi’ X=X +]x’ and e;, = e o+ J€iy Combining (14) and

(15) and taking into account that v, évf jvl!p, the adaptation law for updating the

parameters is obtained as

dvzp (t) =Bi (t) (x, (t)elp (t)+

(1) Zth Vih(t)eih(t)> ,

(16)
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which can be written in matrix form as

dv; v
dt = Bi|xie} + x*v,-Tei], (17)

for any v,(0) = 0, B;(¢) > 0. Since the second term in (17), which can be written
x*viTei =x*(1— viHui)?c,-, tends quickly to zero as v!'y; tends to 1 with t—>« it can be
neglected. The adaptation law in (17) can be further simplified to

dl/i - - -
= Bixie] = Bixi[x — vi x;]*

dt (18)

= ﬁiviTx[I — vivf{]x*,

where (.)* denotes a complex conjugate. In discrete time, the adaptation law in (18)
can be written

l/i(k + 1) = l/i(k) + ﬁ,(k)?c,(k)ES, (19)

where g = [ (k) - u(k)s, ()}
Whitening step
The whitening step uses the PCA to transform the data into an appropriate space and
to reduce the redundancy of the observed data. The separated input vector x(k) is whi-

tened in the second step by applying the following transformation.
u(k) = P(k)x(k), (20)

where u(k) is the whitened k vector, and P is the whitening matrix, which is deter-
mined using the neural learning approach. The objective is to find a simple adaptive
algorithm for estimating the whitening matrix P, such that the covariance matrix of
the whitened signals u(k) will be a diagonal matrix, that is, R, = E{uu™} = diag{dy, Ao,
v AN} = Iny and will be mutually uncorrelated if all of the cross-correlations are zero,
that is, r;; = E{u;u;} = 0, for all i = j, with non-zero autocorrelations rj; = E{uiz} =A; > 0.

Therefore, the minimization function can be formulated in the following 2-norm.

1 N M
W)=, D00 (Bluiwg} — Aidy)?
i=1 j=1 (21)

1 2
= |E@u’y —In|".
) ~ 14|
To derive an adaptive learning algorithm, the following transformation

T
E{uu"} = E{Pxx P"}
= E{PAss" (PA)") (22)
= BRB" = BB,
is used, where B = PA is the global transformation matrix from s to z. Without loss

of generality, Ry = Efss™} = Iy is assumed. By substituting (22) into (21), the optimiza-

tion criterion can be written as

L(W) = iHBBT ~ Iy’
1 T T (23)
=, U1(BB" = IN)(BB" — In)].

Page 7 of 20



Turnip et al. BioMedical Engineering OnLine 2011, 10:83 Page 8 of 20
http://www.biomedical-engineering-online.com/content/10/1/83

Applying the standard gradient descent approach and the chain rule, the derivative of
(23) is obtained as

dB
0" n(Ix —BB")B = n(Iny — Ru)B. (24)

Taking into account that B = PA and assuming that A varies very slowly in time (i.e.,
dA/dt=0), we have

dp
0" n(In — Ruy)P. (25)

Using the simple Euler formula, the corresponding discrete-time adaptive learning

algorithm can be written as
P(k + 1) = P(k) + n(k)(Iy — R®,)P(k), (26)

where 7n(k) is the learning parameter to be adjusted according to
n(k) =1/ {S/(n(k -1))+ ||u(k) H;}, and ¢ is the forgetting factor (i.e., 0 <¢ < 1). The
covariance matrix R, can be estimated as

N-1
R, = (uu") = ;Z u(k)u(k)", (27)
k=0
where u(k) = P(k)x(k).
Separation step
The separation of the whitened signals u(k) is the third step of the proposed algorithm,
which is accomplished by applying the nonlinear principal component analysis (NPCA)
learning rule. The multichannel linear separation transformation is given in the follow-

ing form.
y(k) = W (R)u(k), (28)

where W(k) is the separation matrix, whose values are updated through the NPCA
learning rule. If the independent signals are zero-mean, the generalized covariance
matrix of f{y;) and g(y;) (fly;) and g(y;) are different and odd nonlinear activation func-
tions such that fly) = y* and g(y) = tanh(y)) is a non-singular diagonal matrix Ry = Eff
(y)gT(y)}-E{f(y)}Eth(y)}. On the basis of the independence criterion, the nonlinear cov-
ariance matrix is given as [41,43]

Re = {f(ng" @) + 1 (29)

where f1y) = [fn), f92), - fyn)]" and g(y) = [g1), €02), .. A)]7, provided that Eff
(y2)} = 0 or E{g(y,)} = 0. To satisfy these conditions for arbitrary distributed sources, the

nonlinearities are selected as fi(y;) = ¢:.(3:), g(y:) = y; or fi(y)) = i, &(¥:) = ¢:«(y;), where
¢i(y;) are suitably designed nonlinear functions, defining g(y) as an odd function and f
(y) = g(»)-y. Therefore, similarly to (21)-(26), a real-time implementation algorithm can
be derived as

W(k+1) = W(k) — u(k)f (v(k)) g'yW (k), (30)
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where g’y = (f'y(k)-y” (k). Since the separation matrix W(k) is assumed to be ortho-
gonal (i.e, W (k)W(k) = I), the real-time adaptation rule can be rewritten as

W(k+1) = W(k)+ p(k)f (v(k)) Wo W (k), (31)

where y(k) is the separated signal and the output of the second step, W, = (u” (k)-f'y
(k)), u(k) is the learning parameter (it is adjusted according to
,4@:14ymum—1n+Mwwﬂ“Mhmem@amgﬁamo<y<uamuomamp
tably chosen nonlinear function that is usually selected to be odd in order to ensure
both stability and signal separations. These nonlinear functions require the use of
high-order statistics (HOS). In the present study, f(.)was chosen as f(t) = tanh(z).
Finally, since f(t) = dg(t)/dt, g(t) = In[cosh(z)].

Estimation step
The final step is the estimation of the independent component basis vector of the mix-
ing matrix A(k). The estimate of the observed data is given by

k(k) = Q(R)y(k). (32)

Comparing (32) with (2), and since §5(k) = y(k) (i.e., 5(k) is the estimated source sig-
nal s(k)), it can be concluded that A(k) = Q(k) Therefore, the columns of the matrix Q
(k) are the estimates of the columns of the matrix A(k). Since Q(k) is the estimation

matrix, its values (similarly to (26)) are updated through the adaptation law as
Q(k+1) = Q(k) + a(k)Qey" (k), (33)

where Q, = [X(k) — Q(k)y(k)] The quality of the source estimate in y(k) can be mea-
sured using the zero-forcing solution. Such a solution attempts to adapt the demixing
matrix such that

anmam=¢a (34)

where C(k) = W(k)P(k)V(k), @ is a (M x M) permutation matrix with one unity entry
in any row or column, and D is a diagonal nonsingular scaling matrix. In this case, it

becomes

N
yi(k) = djsi(k) + Y bu(k)mi(k), (35)
I=1
for some non-replicative assignment j—i for 1 <i < N and 1 <j < M Thus, each ele-
ment of y(k) is the sum of a single unique source in s(k) and a noise term. In each simu-
lation run, the performance index (PI) is evaluated using the following equation [44].

N
1 1
PI(k) = M — C,+C , 36
(k) M_1< 2;(a+ w) (36)
2 2
max [cj(k)| max [c(k)|
where ¢, = S= - = , ¢;j denotes the (i, j)th element of the

» Cp =
M 2 M 2
2t ()| il lei(R)|
matrix in C(k), corresponding to the jth independent component (IC) in the desired
subset of sources. This dimensionless performance metric measures the deviation of
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the combined system from a diagonally scaled permutation matrix (i.e., 0 < PI(k) < 1
for all matrices C(k), PI(k) is one when the sources maximally mixed in the outputs,
and PI(k) is zero when the desired subset of the ICs is perfectly separated). The first
term in (36) gives the error of the separation of the output component y;(k) in (35)
with respect to the sources and the second term measures the degree of the desired
IC, ¢, appearing multiple times at the output. The integration of the four steps is
called the adaptive nonlinear principal component analysis (ANPCA) method. In order
to improve the flexibility, efficiency, and performance of blind signals separation or
extraction, the proposed ANPCA scheme is run upon a multilayer neural network.
The multiple layers of neurons with nonlinear transfer functions allow the network to
learn both linear and nonlinear relationships between input and output vectors.
Furthermore, this allows us to combine second-order statistics (SOS) and the HOS
algorithm to extract features having different statistical properties, existing at various
layers, and originating from various sources. The synaptic weights in each layer are
updated by employing the algorithm described above.

Results

Preparatory to an analysis of the features of P300 components from EEG signals in
real-time, actual signals were recorded in an eight-channel (Fz, Cz, Pz, Oz, P7, P3, P4,
and P8) configuration. Figure 3 shows the observed EEG signals with background sig-
nal amplitudes of around 300 micro volts. Figure 4 shows the pre-processed signals
with amplitudes of around 25 micro volts, which were filtered using a sixth-order BPF
with cut-off frequencies of 1 Hz and 12 Hz. One way of gaining further insights into
EEG signals is by introducing ANPCA techniques. The present model of EEG analysis
consists of four main steps: pre-separation (learning rate 8 of 0.6), whitening (forget-
ting factor 1 of 0.01), separation (forgetting factor y of 0.002), and estimation (learning
rate o of 0.3). In this algorithm, the pre-separation and the whitening steps enable fas-
ter adaptation at the separation step. The performance of the component separation of

Channels
o o o (@] o O M
- w -~ N N N N

el
[==)

0 I 1
0 0.5 1 1.5

600 . volts Time (s)

Figure 3 The measured raw EEG signals. The EEG signals recorded continuously and digitized at a 256
Hz sampling rate using a g-MOBIlab* biosignal acquisition device.
A
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Figure 4 The pre-processed EEG signals that were band-passed. The EEG signals were pre-processed
using a sixth-order BPF with cut-off frequencies of 1 Hz (i.e, to remove the trend from low frequency
bands) and 12 Hz (i.e, to remove unimportant information from high frequency bands).

the ANPCA algorithm in the output was evaluated using (36). The evolutions of PI(Ni)
for six different run of the proposed method generated from the data with 350 ms ISI
is given in Figure 5. It can be seen that the algorithm takes between four and ten
epochs to converge. Depending on the simulation run, the performance factor varies
from -22 dB to -33 dB, due to random differences in the source signals. The robust-
ness of the ANPCA was evaluated by comparing its separation performance with sug-
gested algorithms (i.e., NPCA [45], Nonstationary Source Separation-Joint
Diagonalization (NSS-JD) [42], Joint Approximate Diagonalization of Eigen-matrices
(JADE) [46], and Second-Order Blind Identification (SOBI) [47]) as shown in Figure 6.
Figures 7, 8, 9, and 10 show the real-time-extracted signals from eight-electrode of the
P300 component using the ANPCA algorithm using ISI of 325 ms, 350 ms, 375 ms,
and 400 ms, respectively. The P300 amplitudes of individual subject, taken from Fz

0 T T
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T 25 gl
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Figure 5 Evolutions of PI(Ni) for six different runs of the ANPCA algorithm using 350 ms ISI. The
performance of the ANPCA algorithm in (31) was evaluated using (35), where W(0) = I. A single block of N
= 7000 samples has been used to compute all coefficient updates for six run, where X(k + Ni) = x(k)
for all integer values i > 0 and i < k < N-1.
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Figure 6 Comparison of separation performance indices: the proposed method (ANPCA) vs. other
algorithms (NPCA, NSS-JD, JADE, and SOBI). To evaluate the robustness of the ANPCA against
background noise, the separation performance indices of the ANPCA is compared with others well known
algorithms (i.e., NPCA, NSS-JD, JADE, and SOBI algorithms).

electrode, for ISI of 325 ms, 350 ms, 375 ms, and 400 ms, respectively, is shown in
Figure 11 (a) P300 amplitude upon a single stimulus and (b) P300 upon multiple sti-
muli. By averaging the eight extracted signals from the eight-electrode, the P300 com-
ponents were not detected in some periods as indicated in Figure 12. This signal was
averaged using the 350 ms ISI data. Comparative plots of the classification accuracies
along seven stimuli for all subjects (subjects 1-7) are provided in Figure 13. The best
classification accuracy was achieved using ISI 350 ms. The average value of the classifi-
cation accuracies upon seven block stimuli for all of the subjects is given in Table 1.
The classification using ISI 350 ms gave the the higher average value with smallest
standard deviation.
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Figure 7 Extracted P300 components in real time (325 ms ISI). For the ISI of about 325 ms, it was found
that the amplitude of the P300 component was higher than for the other ISI but noisier than for the higher ISI.
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and non-target amplitudes were clearer and easier to distinguish than for the other ISI.

Discussion

The ability to measure and classify single-trial responses in real-time from specific
brain regions has important theoretical and practical implications for both clinical and
research applications. In this study, the amplitude of the background signal was around
300 micro volts as shown in Figure 3. Since the amplitude of the P300 component is
very small (around 1.5 micro volts) compared with that of the background, the pre-
processing filtering is required. These EEG signals were filtered using a sixth-order
BPF with cut-off frequencies of 1 Hz (i.e., to remove the trend from low frequency
bands) and 12 Hz (i.e., to remove unimportant information from high frequency
bands), respectively. However, as shown in Figure 4, the signals nonetheless were cor-
rupted by noises with background signal amplitudes of around 25 micro volts.
Although there were some noticeable improvements, classification of the signals with
respect to the given stimulus remained difficult. Therefore, an ANPCA-algorithm-
based multilayer neural network model that can be used to analyzed complex P300
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Figure 9 Extracted P300 components in real time (375 ms ISl). For the ISI of about 375 ms, it was
found that in some sessions the non-target amplitudes were higher than the target ones.
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Figure 12 The averages of eight-electrode data in Figure 8 (350 ms ISl): P300s are not detected in
some periods. By averaging, the amplitude of a target gets bigger compared to that of a non-target, if
the signal is long time stationary. But, this will fail for dissimilar trials as indicated with the ellipse mark (i.e,
solid circle for the target and dash circle for the non-target).

component from EEG signals in real-time is proposed. The MNN model with back-
propagation training algorithm has five layers: the input and output layers have the
same number of units N; the first and third layers are nonlinear (a sigmoid function as
a universal approximation), and the second and fourth layers are linear. Layer 2 con-
tains M units, that is, as many as there are nonlinear PCs. The activations of the neu-
rons in Layer 2 are the nonlinear PCs of the input data. The back-propagation
algorithm with an adaptive learning rate and momentum was used to train the neural
networks. The values of the learning rate and the momentum were estimated by trial
and error until no further improvement in the performance index could be obtained.
The parameter values chosen were 0.3 and 0.8, respectively. The networks were trained
before the EEG signals are recorded for one session. The time length for the training
was range from 15.925 s to 19.6 s for each ISL

Figure 5 shows the evolution of PI(Ni) for six different simulation runs in one imple-
mentation of the proposed method. The performance of the ANPCA algorithm in (30)
was evaluated using (36) with W(0) = I. A single block of N = 7000 samples has been
used to compute all coefficient updates for six run, where x(k + Ni) = (k) for all inte-
ger values i > 0 and i < k < N-1. As it can be seen, the algorithm took between four
and ten epochs to converge. Depending on the simulation run, the performance factor
varies from -22 dB to -33 dB, due to random differences in the source signals. The
accuracy of the method generally improves for increasing values of block length N. It
can be confirmed that the ANPCA algorithm successfully separates the mixture of
source signals. To evaluate the robustness of the ANPCA against background noise,
the separation performance indices of the ANPCA were compared with the suggested
algorithms (i.e.,, NPCA, JADE, NSS-JD, and SOBI). The accuracy of the recovered inde-
pendent components compared to the sources was measured according to the specified
performance function in (36). Figure 6 shows the overall performance of all algorithms.
For data iterations longer than 5000 iterations, the performance index was not much
better, but was more and more time consuming. The quality of separation increases
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Figure 13 Comparison of classification accuracies along seven stimuli (four ISls, seven subjects): ISI
350 ms was the best out of four. All subjects achieved an average classification accuracy of 100% after
three blocks of stimulus presentations were averaged (i.e, 8 s). In this regard, the subject intention will be
recognized after eight seconds of the first given stimulus.

dramatically after 1500 length of iterations for the proposed method (ANPCA) and
after 4000 length of iterations for other algorithms. It’s clear that the proposed method
present the shortest iteration time performance index about little over 0.03 (an accep-
table level for separation). Upon this, it is asserted that the ANPCA algorithm success-
fully separates mixed source signals. The same accuracy level of separation was
achieved after 4000 iterations by using other algorithms.
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Table 1 Average value of the classification accuracies upon seven stimuli

Subjects ISI 325 ISI 350 IS1 375 ISI 400
S1 87.755 87.755 89.796 81.633
S2 89.796 89.796 87.755 85.714
S3 85.714 91.837 85.714 85.714
S4 81.633 87.755 85.714 83.673
S5 79.592 87.755 85.714 87.755
S6 79.592 87.755 85.714 83.673
S7 91.837 89.796 89.796 85.714
Average 85.131 £ 4959 88.921 £ 1.607 87.172 £ 1941 84.839 + 1.992

The ICs that were produced from the observed data using the ANPCA algorithm (for
IST of about 325 ms, 350 ms, 375 ms, and 400 ms) are shown in Figures 7, 8, 9, and
10. Although the signals were still corrupted by noises (manifested as the high ampli-
tudes of non-targets in some sessions), the behaviours of the extracted signals clearly
represented the P300 components. The observed signal was of the P300 event-related
potential signal form. For the ISI of about 325 ms (Figure 7), it was found that the
amplitude of the P300 component was higher than for the other ISI, as shown in Fig-
ure 11 (a), but noisier than for the higher ISI. As noted in Figure 7, the non-target
amplitudes were roughly similar to the target amplitudes. For the ISI of about 350 ms
(Figure 8), the target and non-target amplitudes were clearer and easier to distinguish
than for the other ISI. For the ISI of about 375 ms (Figure 9), it was found that in
some sessions the non-target amplitudes were higher than the target ones. For the ISI
of about 400 ms, it was found that none of the channels showed similar behavior, as
indicated in Figure 10. In this case the assumption of long stationary segment for aver-
aging method will cause loss of the time resolution. Figures 7, 8, 9, and 10 show that
the extracted signal amplitudes decreased (i.e., from the Fz to the P8 channel) as the
distance of the electrodes increased. Figure 11(a) plots the amplitudes of the P300
component for four different ISIs (Fz channel) upon a single stimulus (scale of 700
ms) and indicate that the short ISI could increase both a target and a non-target
amplitudes. Figure 11(b) plots the amplitudes of the P300 component for four different
ISIs upon multiple stimuli (scale of 60 s) and indicate the peak shifting of the P300
component with respect to the various ISIs. The experiment using 350 ms ISI showed
the best performance. Figure 12 displays the averages of the signals extracted from the
eight-channel with ISI 350 ms. By averaging, the amplitude of a target gets bigger com-
pared to that of a non-target, if the signal is long time stationary. But, this will fail for
dissimilar trials, as indicated in Figure 12 (i.e., solid circle for the target and dashed cir-
cle for the non-target). This is one of the main reasons why the proposed method does
not use the averaging scheme.

Comparative plots of the classification accuracies for the seven subjects were pro-
vided in Figure 13. All subjects achieved an average classification accuracy of 100%
after three blocks of stimulus presentations were averaged (i.e., 8 s). In this regard, the
subject intention was be recognized after eight seconds of the first given stimulus.
Shown alongside the average value of the classification accuracies upon seven block sti-
muli for all of the subjects, in Table I, are the corresponding 85% confidence intervals.
According to Table 1, the experiment with ISI 350 ms provides the highest average
classification accuracies (88.921%) and smallest standard deviation (1.807) over all
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subjects. By contrast, ISI 400 ms showed the worst classification accuracies (84.839%).
However, the worst standard deviation (4.959) was given by the experiment with ISI
325 ms. These results reflect the fact that the best performance was obtained through
the experiment with ISI 350 ms.

Routine P300 component of EEG signals has been widely used in the clinical circum-
stances [21-26]. In this context, the use of physiological signals rather than behavioral
responses of patient are often advisable, albeit challenging. Overall, the P300 compo-
nent has sparked considerable interest as a clinical-application diagnostic tool. The
most efficient method of implementing the diagnostic tool is through real-time detec-
tion. The amplitude of different waveforms at a single point can also be displayed in a
similar format. This type of display provides a more objective analysis of the EEG
activity compared to a subjective visual analysis by a physician. Simultaneous video
monitoring of the patient during the EEG recording is becoming more popular. It
allows the physician to closely correlate EEG waveforms with the patient’s activity and
may help produce a more accurate diagnosis.

Conclusions

The applicability of the proposed ANPCA method for extracting the P300 waves
included in the EEG signals for real-time without down-sampling and averaging of the
original signals was demonstrated. The separation performance factor of the ANPCA
varied from -22 dB to -33 dB due to the randomness of source signals. In comparison
with other algorithms (i.e., NPCA, NSS-JD, JADE, and SOBI), the ANPCA presented
the shortest iteration time with performance index about 0.03. Since all the computa-
tions are done in real time, the ANPCA can be used as a viable tool for clinical

applications.
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