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Abstract

Background: Fear of frailty is a main concern for seniors. Surface electromyography
(sEMG) controlled assistive devices for the upper extremities could potentially be used
to augment seniors’ force while training their muscles and reduce their fear of frailty.
In fact, these devices could both improve self confidence and facilitate independent
leaving in domestic environments. The successful implementation of sEMG controlled
devices for the elderly strongly relies on the capability of properly determining seniors’
actions from their sEMG signals. In this research we investigated the viability of
classifying hand postures in seniors from sEMG signals of their forearm muscles.

Methods: Nineteen volunteers, including seniors (70 years old in average) and
young people (27 years old in average), participated in this study and sEMG signals
from four of their forearm muscles (i.e. Extensor Digitorum, Palmaris Longus, Flexor
Carpi Ulnaris and Extensor Carpi Radialis) were recorded. The feature vectors were
built by extracting features from each channel of sEMG including autoregressive (AR)
model coefficients, waveform length and root mean square (RMS). Multi-class
support vector machines (SVM) was used as a classifier to distinguish between fifteen
different essential hand gestures including finger pinching.

Results: Classification of hand gestures both in the pronation and supination positions
of the arm was possible. Classified hand gestures were: rest, ulnar deviation, radial
deviation, grasp and four different finger pinching configurations. The obtained average
classification accuracy was 90.6% for the seniors and 97.6% for the young volunteers.

Conclusions: The obtained results proved that the pattern recognition of sEMG
signals in seniors is feasible for both pronation and supination positions of the arm
and the use of only four EMG channel is sufficient. The outcome of this study
therefore validates the hypothesis that, although there are significant neurological
and physical changes occurring in humans while ageing, sEMG controlled hand
assistive devices could potentially be used by the older people.

Background
Improving independent living of seniors and maintenance of their autonomy are compel-

ling research goals for our society. Some simple activities of daily living such as opening

and closing the screw cap of a bottle or turning a tap handle can be difficult tasks for a

senior. By increasing the age, the skeletal muscles lose their strength [1]. In order to do

everyday simple operations, seniors would need using assistive devices that could provide

an additional force for their hand movements and also train their muscles [2].
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A compelling challenge in the development of assistive devices is how to acquire

information from input signals that provide us with the information regarding the

action the user is undertaking. Acquiring the input signals from the neurological activ-

ity of the user would provide us with the desired information. sEMG is a suitable tech-

nique for evaluating and measuring the electrical activity produced by skeletal muscles

and can also provide us with important information regarding neuromuscular disorders

[3]. Using sEMG, we are able to detect the electrical signals generated by muscle cells

when they are neurologically or electrically activated and if we interpret this informa-

tion correctly, it can guide us towards the intention of the user [2,3].

EMG signals have been considered to control prosthetic hands and assistive devices.

Different prosthetic hands have been prototyped including the Smart Hand [4] and the

Cyber Hand [5]. Some EMG driven prostheses have also been commercialised; examples

are the Otto Bock’s Sensor Hand Speed [6] and the iLimb [7]. In the mentioned

researches, the goal was to obtain a prosthetic hand that could perform movements simi-

lar to a human hand. A challenging part in the development of these prosthetic hands is

the design of an intuitive control achieved by detection and interpretation of the user’s

neurological activity [8,9]. Whether used for controlling prosthetic, rehabilitative or assis-

tive devices, sEMG signals should be processed to identify the intention of the user.

One of the main challenges related to the processing and classification of sEMG is

related to the synergistic use of upper extremity muscles. For example, raising the

shoulder to lift the forearm results in forearm signal changes [9]; similarly, contracting

the index finger results in co-contraction of forearm muscles [10-12].

Different pattern recognition techniques have been used for classification of sEMG

[2,3] and identification of hand gestures in young volunteers [13,14]. For example, mul-

tilayer perceptron [15,16], SVM [9,17-20], hidden markov model [21], neural networks

[22], bayesian classifier [23] and fuzzy classifier [24-26] techniques have been proposed.

Multiple features have been investigated including AR model coefficients [22,24,26,27],

mean absolute value [27,28], slope sign changes [29,30], zero crossings [27-29], wave-

form length [29,30] and wavelet packet transform [15,31].

Most of the research has been performed with populations involving young healthy

volunteers and amputees. Little research has however been carried out to assess if

aging prevents a successful sEMG classification, which is needed to control assisted

devices developed to augment force and reduce fear of frailty in the older people. It

should be noted that there are significant neurological and physical changes occurring

in humans while ageing [32]. This study therefore focuses on assessing the viability of

classifying hand postures in seniors.

Methods
Data collection

A custom rig was used to measure hand force and torque exerted by the volunteers. The

rig (see Figure 1) consisted of a force sensor (Futek LCM-300) which measured contrac-

tion force. This sensor was placed between two plastic halves, which formed together a

semi-sphere to enable the volunteers to comfortably hold the rig with their hand. These

two plastic halves were connected to a metallic platform through a torque sensor

(Transducer Techniques TRT-100) that recorded torque produced by the volunteer

while performing ulnar or radial deviation movements.
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Guidelines presented in the sEMG for the non-invasive assessment of muscles

(SENIAM) project [33] were followed to obtain a fine skin contact with the electrodes.

According to these guidelines, the skin was cleaned with an alcohol swab and electro-

des were placed at the locations shown in Figure 2. sEMG electrodes were attached to

the volunteers’ forearms using medical adhesive bands that made the electrodes’ active

faces adhere the skin.

sEMG signals were recorded from the following four muscles in order to detect

movement of wrist and fingers [34]: Extensor Digitorum (ED), Palmaris Longus (PL),

Flexor Carpi Ulnaris (FCU) and Extensor Carpi Radialis(ECR). Function of each muscle

is summarized in Table 1. sEMG signals were acquired through a Noraxon system

(Myosystem 1400L). A data acquisition board from National Instruments (USB-6289)

was used in this study for acquiring both the sEMG signals and the data obtained

Figure 1 Custom rig.
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from the custom rig used to measure hand force and torque. Since the EMG signal has

usable energy in the 0-500 Hz range [35], the acquired sEMG signal was digitized at

1024 samples per second and stored on a computer through an application developed

in LAbVIEW software. The developed LabVIEW application also had a graphical inter-

face to enable volunteers visualizing force they were exerting during the tests. For each

participant, the maximum force exerted to the rig was used to define the participant’s

maximum voluntary contraction (MVC). According to [36], the applied force should

not exceed 40-50% of the MVC in order to prevent upper extremity musculoskeletal

injuries. For this reason, all the protocols were defined to prevent exceeding this limit.

Protocol

12 seniors (70 years old on average) and 7 young volunteers (27 years old on average)

participated in this study. The Office of Research Ethics, Simon Fraser University

approved this study and each senior signed a consent form. Each volunteer followed

the eight predefined protocols summarized in Table 2. These protocols were defined

to simulate simple activities of daily living involving the wrist and fingers such as

opening and closing the screw cap of a jar or grasping an object. The identified proto-

cols considered a combination of several hand movements including grasping, finger

pinching, wrist ulnar/radial deviation and forearm pronation/supination. Each volun-

teer started at rest position as shown in Figure 3-a.

In protocol A, as shown in Figure 3-b, the volunteer was asked to squeeze the cus-

tom rig with maximum force in pronation position of the arm for two times. The

recorded maximum force was used to define MVC for squeezing.

In protocol B, as shown in Figures 3c-d, the volunteer was asked to apply maximum tor-

que in ulnar and radial deviation for two times (pronation position of the arm). Maximum

torques for ulnar and radial deviations were used to identify ulnar/radial MVCs.

In protocol C, the volunteer was asked to squeeze the custom rig at 50% of her/his

MVC for 5 seconds (pronation position of the arm). The volunteer repeated this proto-

col three times. Using the graphical interface of the developed LabVIEW application,

the volunteer had visual feedback for the force applied to the custom rig.

Figure 2 Location of surface electrodes on the forearm.

Table 1 Muscle function

Muscle Function

FCU Assists in wrist flexion with ulnar deviation

PL Assists in wrist flexion

ED Assists in extension of four fingers and the wrist

ECR Assists in extension and radial abduction of the wrist
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In protocol D, the volunteer was asked to alternate radial and ulnar deviation for 5

seconds at 50% of MVC (pronation position of the arm). The volunteer repeated this

procedure three times.

In protocol E, as shown in Figures 3e-h, the volunteer pinched the force sensor

firstly with thumb and index finger, secondly with thumb and middle finger, thirdly

with thumb and ring finger, and finally with thumb and little finger (pronation posi-

tion of the arm). The pinching was repeated two times for each combination of

fingers.

In Protocols FC, FD and FE (see Figures 4a-h), each volunteer started at rest position

and repeated protocols C, D and E but with their arm in supinated position. Figure 5

presents the output recorded by the force and torque sensors for one of the volunteers

following protocols A, B, C and D. Figure 6 presents a sample output of the force and

torque sensors related to protocols E, FC, FD and FE.

Protocols A and B (see Table 2) were followed to record the maximum torque pro-

duced by the user. Protocols C, D, E, FC, FD, and FE were instead used to generate

data for the formation of the different hand gesture classes summarized in Table 3.

Specifically, protocols C, D and E enabled extracting data for classification purpose in

the pronation position of the arm (classes 2-8 in Table 3) whereas protocols FC, FD

and FE were used to extract data for classification in the supination position of the

arm (classes 9-15 in Table 3).

Feature extraction and classification

The proposed sEMG signal classification scheme is presented in Figure 7. As shown in

this figure, signals recorded from the Noraxon measurement system were processed in

MATLAB R2009a for feature extraction in order to reduce the dimensionality of the

raw sEMG input.

Pattern recognition accuracy is influenced by the selection of extracted features and

features cannot be extracted from the individual samples as the structural detail of the

signal is lost [37]. In fact, the features need to be calculated by segmenting the raw

sEMG signal and calculating a set of features from each segment. For this reason, the

Table 2 Protocols

Protocols Definitions Arm
position

Protocol A Apply maximum force by squeezing the custom rig two times. Pronation

Protocol B Apply maximum torque for radial deviation two times and then apply maximum
torque for ulnar deviation two times.

Pronation

Protocol C Apply 50% MVC force while squeezing for three seconds. Repeat for three times. Pronation

Protocol D Apply 50% MVC torque for alternate radial and ulnar deviation for three seconds.
Repeat for three times.

Pronation

Protocol E Pinch two times with a comfortable force using thumb and index finger, then
two times using thumb and middle finger, then two times using thumb and ring

finger and finally two times using thumb and little finger.

Pronation

Protocol FC Apply 50% MVC force while squeezing for three seconds. Repeat for three times. Supination

Protocol FD Apply 50% MVC torque for alternate radial and ulnar deviation for three seconds.
Repeat for three times.

Supination

Protocol FE Pinch two times with a comfortable force using thumb and index finger, then
two times using thumb and middle finger, then two times using thumb and ring

finger and finally two times using thumb and little finger.

Supination
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recorded data was segmented into 250 ms intervals corresponding to 256 samples in

each segment and features were extracted from each segment. Then, for the next fea-

ture extraction, the segment window was incremented by 125 ms including 128

samples.

Figure 3 Hand gestures and motions chosen for classification in the pronation position of the arm.
(a) rest, (b)grasp, (c) ulnar deviation, (d) radial deviation, (e)finger pinching: index finger, (f) finger pinching:
middle finger, (g) finger pinching: ring finger, (h) finger pinching: little finger.
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Figure 4 Hand gestures and motions chosen for classification in the supination position of the
arm. (a) rest, (b) radial deviation, (c) ulnar deviation, (d) grasp, (e) finger pinching: index finger, (f) finger
pinching: middle finger, (g) finger pinching: ring finger, (h) finger pinching: little finger.

Tavakolan et al. BioMedical Engineering OnLine 2011, 10:79
http://www.biomedical-engineering-online.com/content/10/1/79

Page 7 of 16



Figure 5 Forces and torques representing predefined protocols A, B, C and D. (a) Protocol A, (b)
Protocol B, (c) Protocol C and (d) Protocol D.

Figure 6 Forces and torque representing predefined protocols E, FC, FD and FE. (a) Protocol E, (b)
Protocol FC, (c) Protocol FD and (d) Protocol FE.
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Waveform length, time windowed RMS and AR models were used to extract six

features for each of the four sEMG channels. Specifically, waveform length and RMS

provided one feature each, whereas AR models provided four features in total as

explained in the following paragraphs.

The waveform length, which measures the waveform complexity in each segment,

was computed as:

y =
N∑
r−1

|�tr| =
N∑
r−1

|tr − tr−1| (1)

where tr is the amplitude of the rth sample and N is the number of samples.

The time windowed RMS value of the raw sEMG signal was used in order to provide

information regarding the amplitude of the signal. This feature is mathematically pre-

sented as:

mrms =

√
m2

1 +m2
2 + . . . +m2

n

n
(2)

Table 3 Class Definition

Class Number Class definition

1 Rest

2 Pronation arm position: grasp

3 Pronation arm position: radial deviation

4 Pronation arm position: ulnar deviation

5 Pronation arm position: finger pinching - index finger

6 Pronation arm position: finger pinching - middle finger

7 Pronation arm position: finger pinching - ring finger

8 Pronation arm position: finger pinching - little finger

9 Supination arm position: grasp

10 Supination arm position: radial deviation

11 Supination arm position: ulnar deviation

12 Supination arm position: finger pinching - index finger

13 Supination arm position: finger pinching - middle finger

14 Supination arm position: finger pinching - ring finger

15 Supination arm position: finger pinching - little finger

Figure 7 The proposed sEMG signal classification scheme.
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where mi is the amplitude of the ith sample in the time domain, and n is the number

of samples. In our case n was equal to 256.

The last feature used in this study was based on AR models. AR models can be

defined as a linear combination of previous samples and noise. The mathematical

representation of current value is given by (3):

tn =
p∑
i=1

qPi tn−i + wn (3)

where w is the additive noise and {q for i = 1, ..., p } are AR model coefficients. Four

AR model coefficients were selected as adequate for modelling EMG signals as

discussed in [38].

Six seconds of data per person per protocol was extracted. In order to train and test

the pattern recognition model, the gathered data was divided into training and testing

sets (see Figure 7) [39]. The testing set was limited to 3807 data segments, namely 90%

of the gathered data, as the use of a higher number of segments did not significantly

improve the classification accuracy. The remaining 10% of the gathered data, corre-

sponding to 423 data segments, was used as testing set.

SVM [40] was chosen as classifier in this study. SVM was selected among all the

other possible pattern recognition tools, as it is a well-known robust classifier, which

has extensively and successfully been used to process bio-information signals [41-43].

In addition, SVM works well in high dimensional spaces and has shown good classifi-

cation results in many practical applications [44-49].

In its general formulation, the SVM [40] requires solving the following optimization

problem:

min
1
2

‖w‖2 + c
N∑
n=1

ξn

subject to
anz(xn) ≥ 1 − ξn, n = 1, ...,N

ξn ≥ 0

(4)

where w is the vector representing adaptive model parameters, c>0 is the penalty fac-

tor, N is the total number of data points, an is the label associated with a data point, ξn
is the slack variable, z is the learned model, xn is the vector representing a data point,

and n is the index associated to a data point.

In this study, the LibSVM tool [50] was used in MATLAB R2009a environment.

LibSVM has an implementation for multi class SVM using one-versus-one strategy,

whose details are presented in [51]. The LibSVM supports well-known kernels such as

the radial basis function (RBF), polynomial, sigmoid and Gaussian kernels.

Following guidelines presented in [52], the RBF was selected as it nonlinearly maps

the samples and has limited numbers of hyper parameters thus reducing the complex-

ity of model selection. The mathematical representation of the RBF kernel is:

k(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2), γ > 0 (5)

Eight fold cross validation along with grid search was used to select the pattern

recognition optimal parameters c and g. Figure 8 shows an illustrative example of

results obtained for a single participant. It can be seen that the cross validation
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accuracy does occur in the interval (0,100) for c and (0,3) for g. This interval was

selected for the identification of the optimal parameters for all participants.

Results and discussion
The optimal values for the parameters c and g were selected according to the highest

value of the cross validation accuracy for each individual volunteer. Table 4 presents

the selected c and g parameters for each of the twelve seniors (denoted with capital let-

ters A-Q in Table 4) who participated in this study. Each pair of c and g parameters

was used to build a model for classifying the hand gestures of the participant. Results

of the classification accuracies for the 12 seniors are presented in Table 5. An average

accuracy of 90.62% was observed.

The accuracy reached over 95% in the case of the senior Q and less than 85% in the

case of the senior L (see Table 5). The senior Q controlled the hand functions well,

which resulted in an accurate separation between torque patterns. As an illustrative

example, the torque output recorded for the senior Q is shown in Figure 9-a. It is

clear from this figure that the senior Q was executing the protocol FD (three repeti-

tions of alternating radial and ulnar deviation). On the other hand, the senior L con-

trolled hand functions poorly, which resulted in small separation between torque

Figure 8 Cross validation accuracy based on c and g parameters.

Table 4 The senior cross validation accuracy and model parameters c and g
Senior c, g Cross validation accuracy (%)

A 10, 1.2 99.17

B 10,1.5 97.92

C 10,0.6 90.42

D 10,0.8 91.67

I 45, 0.4 90.42

K 10,0.6 96.67

L 10,0.4 88.75

M 10,0.5 99.17

N 10,0.6 98.33

O 10,0.4 99.58

P 25, 0.2 95.42

Q 10,2.4 97.92
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patterns. The torque output recorded for the senior L is shown in Figure 9-b; it is clear

that this senior was not able to correctly follow protocol FD. It should be noted that,

although the classification accuracy was smaller for the senior L (see Tables 5), it was

still acceptable (above 83%).

The system was therefore able to accurately classify the action of the seniors’ hand with

minimum misclassification, which occurred mainly for finger pinching. Figure 10 shows,

for example, sEMG signals extracted from ECR, ED, PL and FCU muscles of senior A

(Figures 10a-d), the “predicted classes” identified by our classification system (Figure 10-e)

and the “actual classes” corresponding to the different protocols (Figure 10-f). It can be

seen that misclassification occurred for consecutive classes related to the finger pinching

(see highlighted boxes in Figure 10-e). Specifically, class 7 (ring finger pinching in prona-

tion position) was confused with class 6 (middle finger pinching in pronation position)

and class 14 (ring finger pinching in supination position) was confused with class 13 (mid-

dle finger pinching in supination position) (see Table 3). It should be noted that this

Table 5 The senior pattern recognition accuracy

Senior Accuracy percentage (%) Maximum Force (N) Maximum torque (Nm)

A 91.67 1.79 4.13

B 91.67 2.53 7.03

C 91.67 1.90 5.55

D 87.50 8.84 10.05

I 91.67 1.05 2.14

K 91.67 3.58 7.45

L 83.33 2.12 6.91

M 91.67 3.00 6.45

N 87.50 0.97 1.92

O 91.67 7.01 8.75

P 91.67 1.67 3.58

Q 95.83 2.84 7.10

Figure 9 The output recorded by the torque sensor for seniors. (a) Senior Q following the protocol FD
correctly and (b) Senior L following the protocol FD incorrectly.
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misclassification, which probably resulted by a co-contraction of the forearm muscles, is

believed to be acceptable for future potential devices assisting finger movements, as gener-

ally middle, ring and little fingers have synergistic patterns during functional grasping [53].

Table 5 also reports the maximum force and the maximum torque each senior was

able to exert. The average maximum force was 3.11N and the average maximum tor-

que was 5.92 Nm. No clear relationship was identified between classification accuracy

and maximum force or maximum torque exerted by the volunteers. For example,

volunteers D and N had equal classification accuracy but their maximum force and

torque were respectively the highest and the smallest of the entire group of seniors.

Table 6 and Table 7 respectively present the selected c and g parameters and the

corresponding classification accuracies for the group of young volunteers. An average

classification accuracy of 97.6% was obtained. Table 7 also reports the maximum force

Figure 10 System performance. (a) ECR muscle activation, (b) ED muscle activation, (c) PL muscle
activation, (d) FCU muscle activation, (e) Predicted class by the system, (f) Actual class.

Table 6 The young volunteer cross validation accuracy and model parameters c and g
Young volunteer c, g Cross validation accuracy (%)

Y_R 15,0.9 99.17

Y_S 10,0.9 94.58

Y_T 10,1.1 93.33

Y_U 10,0.2 96.67

Y_V 10,0.5 97.50

Y_W 10,0.3 93.75

Y_X 70,0.2 99.58
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and maximum torque each young volunteer was able to exert. The average maximum

force was 4.20N and the average maximum torque was 3.37 Nm. In this case, data sug-

gests a linear relationship between classification accuracy and maximum force and

maximum torque, as shown in Figure 11. It should however be noted that the number

of young volunteers participating in this study was limited to 7.

A comparison between results obtained for seniors and the young volunteers shows

that while maximum force decreased of about 26%, classification accuracy decreased of

only 7% with age. Although there are major physical changes occurring in humans

while ageing [32], successful sEMG classification is therefore possible in seniors.

Conclusions
The possibility of associating forearm sEMG patterns to seniors’ hand postures was

investigated. Results support the hypothesis that successful pattern recognition can be

performed to distinguish different hand gestures of seniors in vital activities of daily

living.

The identified classes in this study were grasping, radial/ulnar deviation and four dif-

ferent finger pinching in both pronation and supination positions of the seniors’ arm.

The use of only four sEMG channels demonstrated to be suitable for classifying the fif-

teen different hand gestures considered in this study. In fact, the implemented pattern

recognition strategy was able to identify the different hand gestures with accuracy

greater than 90% independently of age and gender. The difference (7%) in classification

accuracy observed between the young and older people could be attributed to aging.

Table 7 The young volunteer pattern recognition accuracy

Young Volunteer Accuracy percentage (%) Maximum force (N) Maximum torque (Nm)

Y_R 91.67 1.86 0.38

Y_S 100.00 5.91 2.65

Y_T 100.00 5.27 5.89

Y_U 95.83 4.44 3.57

Y_V 100.00 4.09 3.82

Y_W 95.83 1.88 2.61

Y_X 100.00 5.90 4.69

Figure 11 The relationship between the maximum force/torque and the classification accuracy.
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Misclassification occurred especially in seniors with reduced hand functions. Such a

misclassification was however acceptable as it was mainly related to the ring finger,

whose use is generally coupled to middle and little fingers during functional grasping.
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