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Abstract

Background: Radiological scoring methods such as colon transit time (CTT) have
been widely used for the assessment of bowel motility. However, these radiograph-
based methods need cumbersome radiological instruments and their frequent
exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel
motility, based on a back-propagation neural network (BPNN) model of bowel
sounds (BS) obtained by an auscultation, was devised.

Methods: Twelve healthy males (age: 24.8 ± 2.7 years) and 6 patients with spinal cord
injury (6 males, age: 55.3 ± 7.1 years) were examined. BS signals generated during the
digestive process were recorded from 3 colonic segments (ascending, descending and
sigmoid colon), and then, the acoustical features (jitter and shimmer) of the individual
BS segment were obtained. Only 6 features (J1, 3, J3, 3, S1, 2, S2, 1, S2, 2, S3, 2), which are
highly correlated to the CTTs measured by the conventional method, were used as the
features of the input vector for the BPNN.

Results: As a results, both the jitters and shimmers of the normal subjects were
relatively higher than those of the patients, whereas the CTTs of the normal subjects
were relatively lower than those of the patients (p < 0.01). Also, through k-fold cross
validation, the correlation coefficient and mean average error between the CTTs
measured by a conventional radiograph and the values estimated by our algorithm
were 0.89 and 10.6 hours, respectively.

Conclusions: The jitter and shimmer of the BS signals generated during the
peristalsis could be clinically useful for the discriminative parameters of bowel
motility. Also, the devised algorithm showed good potential for the continuous
monitoring and estimation of bowel motility, instead of conventional radiography,
and thus, it could be used as a complementary tool for the non-invasive
measurement of bowel motility.

Background
Radiological scoring methods such as the Barr and Blethyn scores [1] and colon transit

time (CTT) [2,3], which operate by means of X-rays and magnetic resonance imaging

(MRI), have generally been used for the assessment of bowel motility. Among these

methods, the CTT described by Metcalf [2] is considered to be the gold-standard. It is

simply assessed by measuring the movement of radiopaque markers taken at a fixed

time after their ingestion. This test is highly reproducible and most useful in

Kim et al. BioMedical Engineering OnLine 2011, 10:69
http://www.biomedical-engineering-online.com/content/10/1/69

© 2011 Kim et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:song133436@gmail.com
http://creativecommons.org/licenses/by/2.0


determining whether constipation symptoms are associated with normal or slow tran-

sit. However, these radiograph-based methods need an expensive, cumbersome radiolo-

gical instrument and their frequent exposure to radiation.

In an effort to resolve these limitations, assessing bowel motility using bowel sound

(BS) signals obtained by means of auscultation has been recently attempted. Tomo-

masa et al. [4] and Craine et al. [5,6] presented changes in various features (sound-/

motility-index, sound-to-sound interval, number of events and so on) of bowel sound

according to the pathological condition. Yamaguchi et al. [7] showed that the sound

index of the gastro-duodenal sound in the diabetes mellitus patients was significantly

lower after food intake than in healthy adults. Also, wavelet-based strategies for the

signal acquisition, de-noising, automated segmentation, event detection and feature

extraction of bowel sounds were proposed [8-11]. Dimoulas et al. [12] implemented an

autonomous BS monitoring system utilizing wavelet feature extraction and multi-layer

perceptrons (MLP) network classifiers for the pattern classification of BS segments.

Besides, the fractal-dimension analysis of BS signals [9,10,13], principal component

analysis (PCA) [14], Weiner filtering [15] and hybrid expert system using hierarchical

audio pattern recognition [16] have been tried to detect the informative feature of BS

and evaluate the bowel motility via an auscultation. These BSs are generated from the

movement of the intestinal contents and gas in the lumen of the gastrointestinal tract

during peristalsis; therefore, they can be used clinically as useful indicators of bowel

motility.

Therefore, the aim of this study is to develop a non-invasive estimation algorithm of

bowel motility, based on an artificial neural network (ANN) model of the jitter and

shimmer, which were considered as useful features in recent study [17], of the BS sig-

nals during the digestive process. Also, we derived an ANN model between the acous-

tical features obtained from the BS signals and measured CTT, and finally determined

the feasibility of the proposed method.

Methods
Twelve healthy men (age: 24.8 ± 2.7 years, BMI: 23.6 ± 2.7 kg/m2), not taking any

medication that might affect their bowel motility, and 6 patients (6 men, age: 55.3 ±

7.1 years, BMI: 24.0 ± 3.5 kg/m2) with delayed gastric emptying due to spinal cord

injury were examined. The average number of months after injury was 17.2 ± 28.5

months. Ethical approval for this study was obtained from the Institutional Review

Board (IRB) of Chonbuk National University Hospital.

The total CTTs were measured by the strategy described by Metcalf et al. [2]. The

subject ingested a radiopaque marker capsule containing 20 markers (Kolomark™,

Korea) each day for 3 days. On days 4 and 7, an abdominal X-ray image was obtained.

Also, on day 7, the 3-channel BS signals were obtained from the right upper (ascend-

ing colon, CH1), left upper (descending colon, CH2) and left lower quadrants (sigmoid

colon, CH3) of the abdomen with the subjects lying on a bed, respectively. Under fast-

ing conditions, the subjects took test meals of 200 g at 9:00 AM. After that, the data

was recorded for 10 minutes at 9:30 AM (Post1), 1:00 PM (Post4) and 5:00 PM

(Post8). The subjects were asked to take no food from 9:30 AM to 5:00 PM.

A piezo-polymer microphone (CM-01B, Measurement Specialties Inc., U.S.) with a fre-

quency bandwidth of 8-2, 200 Hz was used for collecting the BS signal. The frequency
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content of the BS signals is known to be energetic mainly between 100 and 500 Hz

[11,18], thus the collected BS signals were pre-processed through a 60 Hz notch filter for

removing the power noise and 5-600 Hz band-pass filter for reducing the motion artefact

noise caused by respiration activation and unwanted noise. After that, the signals were

digitized by an A/D converter (USB-6009, National Instruments™, U.S.) at a sampling

rate of 8 KHz and resolution of 14 bits. Figure 1 shows the sensor-adaptation set-up of the

noncontact-type probe used for recording BS signals.

The statistical analysis was conducted using SPSS (ver. 14, SPSS Inc., U.S.) software.

Unpaired T-test was performed to compare the features obtained from the normal

subjects with those from the patients. Also, Pearson’s correlation coefficients were

obtained to evaluate the relationship between the acoustical features by means of our

algorithm and CTT by means of the conventional method. The level of statistical sig-

nificance was set as p < 0.05. Finally, k-fold cross-validation was performed to evaluate

the performance of our algorithm.

Bowel motility estimation
BS detection and segmentation

Figure 2 shows the procedure used for detecting selectively the BS segments from

noisy BS signals and extracting the features, in order to estimate the CTT using the

ANN model. First, the recorded BS signals were processed using the modified iterative

kurtosis-based detection (mIKD) algorithm, devised in our previous study [17], for the

selective detection of BS segments through noise-gating. Significant deviations from

kurtosis value can be attributed to the presence of non-Gaussian signals such as the

BS, since kurtosis is theoretically zero for Gaussian signals such as back-ground sound

Figure 1 Sensor-adaptation set-up of noncontact-type probe.
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(BGSs) signals [19]. Next, the detected BS signals were divided into the individual BS

segments, where an individual BS segment is defined as sounds having duration larger

than 20 msec without the period of silence [11].

Feature extraction

The characteristic parameters, viz. the absolute jitter (Jch, t) and shimmer (Sch, t), of

each BS segment, were calculated using (1) and (2), respectively;

Jch,t =
1

N − 1

∑N−1

i=1
| 1
Pi

− 1
Pi+1

| (1)

Sch,t =
1

N − 1

∑N−1

i=1
|20 log(Ai+1/Ai)| (2)

where Pi, Ai and N are the peak-to-peak period and amplitude of each pitch and the

number of pitches, while ch and t are the channel number (1 = CH1, 2 = CH2 and 3

= CH3) and time index (1 = Post1, 2 = Post4 and 3 = Post8) when the BSs were

recorded, respectively. The jitter is the average absolute difference between consecutive

periods, while the shimmer is the average absolute difference between the amplitudes

of consecutive periods in decibels [20].

A total of 18 features (the Jch, t of 9 and Sch, t of 9) per subject were obtained. Among

all of these 18 features, the features highly correlated with the measured CTT were

selected as the informative one through correlation analysis. As a result, only the top six

features (J1, 3, S1, 2, S3, 2, J3, 3, S2, 2, S2, 1) with the high correlation coefficient of 0.65 and

over were used as the features of the input vector for the ANN. Table 1 represents the

correlation coefficients between the selected features and CTT and their p-values.

Architecture of the ANN

The estimation of the CTT was performed using a back-propagation neural network

(BPNN). The input and output layers of the BPNN consisted of 7 nodes (selected 6

Figure 2 Procedure used for the estimation of the colon transit time (CTT) using the jitter and
shimmer of bowel sounds.
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features and 1 bias) and 1 node (estimated CTT, eCTT), respectively. The training of a

network by back-propagation involves three stages; the feed forward of the input train-

ing pattern, the calculation and back-propagation of the associated error, and the

adjustment of the weights. After training, the application of the net involves only the

computations of the feed-forward phase [21].

Also, the performance of a BPNN can depend on its structure such as the learning

rate and number of hidden nodes. Thus, we determined their practical values which

can provide the best performance, i.e. the least error and best correlation between the

measured CTT and estimated one. The values of learning rate tested were 0.05, 0.1,

0.2, 0.3 and 0.4 (5 cases), and the values of the number of hidden nodes were 2, 3, 4

and 5 (4 cases).

Results
Figure 3 shows (a) the raw signals obtained from healthy subject (31-year-old male,

ascending colon at Post1), (b) BS segments detected by the mIKD algorithm and (c)

background noise. As shown in the output of the mIKD (in Figure 3b), our algorithm

could sensitively separate even the low peaks (e.g. around time 19.5 seconds) although

they were hard to be distinguished from BGSs by means of visual or auditory inspec-

tion. On the contrary, the high peak (e.g. around 21.5 seconds) was classified as BGS

since the kurtosis value of the corresponding segment was almost zero. These results

show the performance of the mIKD algorithm used for selectively detecting inherent

BS segments, despite the difference in the BGS level and in BSs amplitude and

number.

Firstly, in order to determine the availability of the jitter and shimmer used in our

algorithm, we compared the values of the selected features obtained from the normal

Table 1 Correlation coefficients (C.C.) between the selected features and measured colon
transit time (CTT) and their p-values

J1, 3 S1, 2 S3, 2 J3.3 S2, 2 S2, 1 CTT

N1 0.154 37.6 36.1 0.159 35.1 35.4 10.8

N2 0.172 34.4 34.2 0.167 35.4 35.6 26.4

N3 0.176 38.3 36.6 0.177 38.2 37.0 10.8

N4 0.173 34.7 32.4 0.166 35.1 33.8 2.4

N5 0.162 34.6 36.8 0.155 36.3 38.3 18.0

N6 0.164 34.6 34.1 0.168 35.2 35.0 12.0

N7 0.160 37.1 36.5 0.164 34.7 35.2 16.8

N8 0.161 34.5 35.0 0.164 35.7 37.5 60.0

N9 0.157 36.2 33.8 0.168 35.4 37.3 26.4

N10 0.159 36.0 36.0 0.161 34.6 38.2 25.2

N11 0.167 35.0 36.7 0.165 34.3 36.4 2.4

N12 0.163 32.3 32.3 0.161 35.8 33.1 33.0

P1 0.132 30.2 31.1 0.151 30.1 29.8 69.0

P2 0.139 32.0 27.8 0.148 32.6 31.9 86.0

P3 0.147 31.8 30.6 0.154 31.7 32.4 102.0

P4 0.149 30.9 34.5 0.156 35.0 31.9 66.0

P5 0.134 32.5 30.8 0.142 30.7 30.5 82.2

P6 0.155 29.9 30.9 0.155 30.5 30.7 68.0

C.C. -0.79* -0.76* -0.75* -0.74* -0.72* -0.68*

N: normal subject, P: patient, Jch, t: jitter, Sch, t: shimmer, *: p < 0.01
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subjects with those of the patients. As a result, both the jitters (J1, 3: 0.164 ± 0.007, J3,

3: 0.165 ± 0.006) and shimmers (S1, 2: 35.4 ± 1.7, S3, 2: 35.0 ± 1.7, S2, 2: 35.5 ± 1.0, S2,

1: 36.1 ± 1.7 dB) of the normal subjects were relatively higher than those of the

patients (J1, 3: 0.143 ± 0.009, J3, 3: 0.151 ± 0.005, S1, 2: 31.2 ± 1.0, S3, 2: 30.9 ± 2.1, S2, 2:

31.8 ± 1.8, S2, 1: 31.2 ± 1.0 dB), whereas the CTTs of the normal subjects (20.4 ± 15.8

hours) were relatively lower than those of the patients (78.9 ± 14.0 hours) (p < 0.01).

Next, for evaluating the performance of our algorithm, k-fold cross-validation (k = 3)

was done using WEKA machine learning software (ver. 3.6. The University of Waikato,

New Zealand) [22]. After the random rearrangement of all of 18 feature-datasets, 67%

of them (12 feature-datasets) were used for training the BPNN model and the remain-

ing 33% (6 feature-datasets) were used for estimating the CTT using the model trained

previously. Consequently, the correlation coefficient, mean average error (MAE) and

root mean square error (RMSE) between the measure CTTs and estimated values

(eCTT) were 0.89, 10.6 and 14.6 hours at the number of epoch of 5,900, respectively,

when applying the learning rate of 0.05 and the number of hidden nodes of 3 to the

designed BPNN. Figure 4 shows the changes of the correlation coefficient and MAE of

the testing-datasets according to the increase of the number of epoch.

Discussion
Auscultation of the abdomen, one of physical examinations, has been used as a tradi-

tional technique for evaluating bowel motility. For the last few decades, there have

been various comparative studies on the BSs of normal subjects and those of patients

with bowel dysfunction, such as irritable bowel syndrome [5,6,8], Crohn’s disease [6],

Figure 3 a) Raw bowel sound signals obtained from the abdomen. b) Inherent bowel sounds
detected by the modified iterative kurtosis-based detector algorithm. c) Background noise. Arrows
represent the individual bowel sound segments.
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diabetes mellitus [7] and obstruction [18], and their results showed significant differ-

ences between the features obtained from BS signals according to the pathological con-

dition of bowel motility. Also, several researchers recently have developed the de-

noising, segmentation and feature extraction strategies of BS signals based on various

signal-processing techniques [9-16,19]. However, relatively few studies related to the

quantitative estimation of bowel motility have been performed. Therefore, the goal of

this study is to show the possibility of the quantitative estimation of the CTT, which

has been used for the clinical assessment of bowel motility, by means of an ANN

model and acoustical features.

BSs are produced from the movement of the intestinal contents, gas and fluid during

peristalsis. Generally, normal ‘very loud’, ‘gurgling’ and ‘rumbling’ sounds are easily

produced by a healthy bowel during an active stage of digestion. On the other hands,

hyperactive BSs (’loud’, ‘high-pitched’ and ‘tinkling’ sounds) might be caused by diar-

rhea or early intestinal obstruction, whereas hypoactive sounds (very diminished or

absent sounds) are associated with bowel obstruction, paralytic ileus, torsion of the

bowel or peritonitis that indicate diminished peristalsis [23,24]. As considering these

differences of sounds, several informative BS-features related to the pathological condi-

tion of the gastrointestinal tract have been reported: time-domain features, such as

sound-to-sound interval (silence between BSs durations) [5,6,14], number of BSs by

time interval [4,6,11,14], sound index (sum of the BSs amplitude) [4,7], median dura-

tion [11,14,16] and median acoustic intensity [11,14] of BSs, and frequency-domain

ones, such as main frequency of BSs [4,11,14,16,18].

Besides those features mentioned above, jitter and shimmer selected in our approach

are measures of the fundamental frequency and amplitude cycle-to-cycle variations,

respectively. They can represent the deviation or displacement of some aspect of the

Figure 4 Changes of the correlation coefficient (C.C.) and mean average error (MAE) of the testing-
datasets according to the increase of the number of epoch.
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pitches of sounds in frequency- and time-domain, accordingly, they have been success-

fully used in a speaker verification, emotion expression, vocal or articular pathologies

[20,25-27]. In this study, the jitters and shimmers were significantly different between

two groups (p < 0.01) and highly correlated with the CTTs (correlation coefficient

from -0.68 to -0.79). These differences were thought to be related to the delayed peri-

stalsis caused by the impaired vagus and hypogastric nerves of the SCI patients [28],

and this aspect might produce relatively decreased perturbation of the pitches of BSs.

Therefore, the jitter and shimmer considered in our method could be employed as a

useful clinical parameter for the continuous monitoring of the bowel motility.

In relation to recording-duration issues of our approach, the BS signals were ana-

lyzed based on short-term analysis that deals with small-duration samples of the entire

activity in fasted humans, coincided with [5-8,18,19], and all of the features were

obtained from impulsive BSs due to the management difficulty of subject’s immobiliza-

tion during the test and huge data. On the contrary, many researchers believe that the

period of BS monitoring should be longer over at least 2 hours since lasting/regularly-

sustained (RS) BSs monitored during a full migrating motor complex (MMC) cycle are

also associated with bowel motility [4,10-16]. Unfortunately, even though the acoustical

features obtained from the short-term recording of 10 minutes set in this study showed

its feasibility, this strategy would raise a subject prolific of controversy related to the

statistical reliability of the acquired samples. Therefore, in a future study we need to

determine the appropriate recording period and to implement additional techniques

for RS-BSs treatment as well as impulsive sounds.

Recently, the estimation method based on the regression analysis between the fea-

tures obtained from BS signals, such as the jitter and shimmer, and conventional CTT

was implemented in [17]. Accordingly, the comparison of the estimation results of the

proposed approach by means of the ANN model with those obtained from the pre-

vious regression model was performed. When applying 18 feature-datasets used in this

study into the regression model, the regression equation between the selected features

and measured CTT was obtained as follows;

eCTT = 430.3− 1462.9J1,3 − 5.7S1,2 − 4.3S3,2 + 261.1J3,3 + 0.8S2,2 + 3.1S2,1 (3)

Also, the correlation coefficient, MAE and RMSE between the CTTs and eCTTs

were 0.89, 12.4 and 18.4 hours, respectively. As a result, the estimation errors of the

ANN model (MAE of 10.6 and RMSE of 14.6 hours) were relatively lower than those

of the regression model, whereas the correlation coefficients of both methods were

almost same. Consequently, these results showed that the neural-network-based

approach attempted in this study could enhance its performance.

The limitations of this study are the small number of subjects, and the effects of the

physiological characteristics of the subjects, such as their body mass index or severity

of the spinal cord impairment were not considered in our algorithm. In a future study,

we will apply our algorithm to a larger number of patients with various bowel dysfunc-

tions, as well as to normal subjects, in order to enhance the accuracy of the estimated

CTT. Also, we plan to develop supplementary signal processing techniques for effec-

tively reducing frictional noise generated unavoidably between the skin and micro-

phone as well as unwanted bio-signals.
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Conclusions
A non-invasive algorithm for the estimation of the CTT based on BPNN model of the

jitter and shimmer of the BS signals obtained by auscultation is reported. The correla-

tion coefficient and MAE between the CTTs measured by the conventional method

and the values estimated by our algorithm were 0.89 and 10.6 hours, respectively. The

proposed algorithm showed good potential for the non-invasive measurement and con-

tinuous monitoring of bowel motility, instead of conventional radiography.
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