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Abstract

Background: Drusen are common features in the ageing macula associated with
exudative Age-Related Macular Degeneration (ARMD). They are visible in retinal
images and their quantitative analysis is important in the follow up of the ARMD.
However, their evaluation is fastidious and difficult to reproduce when performed
manually.

Methods: This article proposes a methodology for Automatic Drusen Deposits
Detection and quantification in Retinal Images (AD3RI) by using digital image
processing techniques. It includes an image pre-processing method to correct the
uneven illumination and to normalize the intensity contrast with smoothing splines.
The drusen detection uses a gradient based segmentation algorithm that isolates
drusen and provides basic drusen characterization to the modelling stage. The
detected drusen are then fitted by Modified Gaussian functions, producing a model
of the image that is used to evaluate the affected area.
Twenty two images were graded by eight experts, with the aid of a custom made
software and compared with AD3RI. This comparison was based both on the total
area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass
correlation coefficient, the sensitivity, the specificity and the kappa coefficient were
calculated.

Results: The ground truth used in this study was the experts’ average grading. In
order to evaluate the proposed methodology three indicators were defined: AD3RI
compared to the ground truth (A2G); each expert compared to the other experts
(E2E) and a standard Global Threshold method compared to the ground truth (T2G).
The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of
variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and
0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient
0.58, 0.60 and 0.49, respectively.

Conclusions: The gradings produced by AD3RI obtained an agreement with the
ground truth similar to the experts (with a higher reproducibility) and significantly better
than the Threshold Method. Despite the higher sensitivity of the Threshold method,
explained by its over segmentation bias, it has lower specificity and lower kappa
coefficient. Therefore, it can be concluded that AD3RI accurately quantifies drusen, using
a reproducible method with benefits for ARMD evaluation and follow-up.
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Background
Drusen are considered as one of the Age-Related Macular Degeneration (ARMD)

main risk factors [1]. These are retinal abnormalities, caused by the accumulation of

extra-cellular materials beneath the retina surface. Despite that, on their own, they

usually don’t cause vision loss, although they can contribute to the development of

ARMD. They are visible in retinal images as yellow round deposits that can be

located anywhere in the retina (Figure 1). However, their consequences are more

severe when located in the macula. The diagnosis and the follow up of drusen are

commonly done through an evaluation of the affected area in fundus images. This

evaluation, in a sequence of images taken during a long term treatment, helps to

understand the progression of the disease and the effectiveness of the treatment.

Nevertheless, this evaluation is fastidious and difficult to reproduce when performed

manually. Therefore, the automation with digital image processing techniques, will

enable the establishment of a stable criterion which in turn will certainly improve

the follow up of this disease.

The automatic analysis of retinal images can be influenced by several factors. Misa-

lignment between patient eye and camera, contracted pupil or cataracts can produce

images with non-uniform illumination patterns, making retina analysis more difficult.

The correction of the image contrast is an important step to improve the automatic

processing of the retinal images. Histogram equalization and specification have been

used to normalize retinal images contrast [2-4]. However, they are not able to correct

localized non-uniformities. Smith et al. [5] presented a method to correct the contrast

on the macular region, which obtained a good normalization, but required user inter-

vention to specify the macula location and did not correct other illumination

distortions.

Several studies for drusen segmentation have been published in the last twenty-years.

Local thresholds [6-11], global thresholds [12] or fuzzy logic thresholds [13] were some

of the proposed solutions for drusen segmentation. However, threshold techniques are

significantly tampered by noise, requiring a good noise removal method.

Figure 1 Example of retinal images obtained by fundus photography. In this figure two retinal
images are shown. Left-side image contains hard drusen deposits (typically < 63 μm diameter yellow
bright spots in and around the macula). Right-side image contains soft drusen deposits (typically ≥ 63 μm
and with smooth contours).
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In this work we propose a novel methodology for automated drusen detection and

quantification that includes:

• an image pre-processing method to compensate the non-uniform illumination

and to normalize the contrast [14];

• a detection method [15] to determine the number and location of drusen spots;

and

• an image modelling method to quantify the affected area.

Methods
Materials

The retinal images which were used to validate the proposed methodology were

collected from two collaborating research centres. Twenty two film images were

selected, digitalized and saved as bitmap with 1000 × 1000 24-bit colour pixels.

Eight experts (four ophthalmologists and four trained technicians) marked digitally

the existing drusen using the application, Manual Drusen Deposits Detection in

Retinal Images (MD3RI) that was specifically developed for this purpose [16] and

made available on the internet [17]. This application allows computer assisted

drawing of drusen contours, saving time and effort to the users and obtaining a

very precise manual detection. In this study, the Wisconsin Grading System recom-

mendations [18] were adopted. Following these recommendations, the inner-macula

was defined as the region of interest (circular region of 3000 μm diameter around

the Macula).

Image processing

The proposed methodology defines all image processing steps to determine the area

affected by drusen in order to establish a uniform analysis criterion. In the first processing

step, the effects of non-uniform illumination are reduced and the contrast is normalized.

The second processing step is the drusen detection, followed by the drusen modelling that

detects and characterizes the drusen spots. On the fourth and last step, the affected area is

quantified using the drusen model. The application Automatic Drusen Deposits Detection

in Retinal Images (AD3RI) was developed for the validation of this methodology.

Similarly to several other works [8,11,19] only the green channel was selected for all

the image processing. This channel usually offers a better drusen visibility by present-

ing a better contrast and less sensitivity to illumination abnormalities (when compared

to the red and blue channels).

Non-uniform illumination correction

In ophthalmic imaging, retina pigmentation, patient’s eye alignment, cataracts and

optical characteristics of the fundus camera are some of the factors that can contribute

to the non-uniform illumination of the acquired images (Figures 2.a1 and 2.a2)). Our

proposal to solve this problem is to divide the original image by an estimation of the

illumination pattern.

The estimation of the illumination pattern is obtained from the fitting of a cubic

smoothing Spline [20] to the image f(x,y) (Figures 2.b1 and 2.b2)). The chosen cubic

smoothing spline is a special class of Spline that can capture the low frequencies that
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characterize the non-uniformity of the illumination. The fitting objective is to mini-

mize the equation (1).

M = p ·
m∑
y=1

n∑
x=1

(
f (x, y) − S(x, y)

)2 + (1 − p)
∫∫ (

S′′(x, y)
)2
dxdy (1)

This equation contains two terms: the summation term (weighed by the smoothing

factor p) that measures how close the spline is to the data, and the integral term

(weighed by (1 - p)) that measures the spline smoothness using its second derivative.

The smoothing factor p, controls the balance between being an interpolating spline

crossing all data points (with p = 1) and being a strictly smooth Spline (with p = 0). A

too high p value will tend to produce, after the normalization, a flatter image, flatten-

ing also the drusen spots, which is a clearly unwanted side-effect. A too low p value

will maintain drusen spots, but will not correct the illumination’s non-uniformity.

The p value is also dependent on the image resolution and as resolution increases, it

must also increase in order to maintain equivalent smoothness. A reference smoothing

factor (p = 1e-6) was obtained empirically for a image resolution of 12.5 μm/pixel. To

find the relation between the smoothing factor and the image resolution, test images

were resized to a predefined scale and p values were estimated to produce equivalent

smoothing effects. The analysis of the smoothing factors showed a polynomial distribu-

tion as presented in equation (2) (take x as image resolution).

p =a2 · x2 + a1 · x + a0{
a2 = 6.826e − 8 a1 = −4.346e − 7 a0 = 9.342e − 7 } (2)

Figure 2 Non-uniform illumination correction examples. This figure shows one healthy eye retina
image (a1) and an image of an eye containing large drusen spots (b1). The illumination patterns (a2 and
b2) were estimated using smoothing splines. The illumination non-uniformity was corrected, dividing the
original images by their illumination pattern (a3 and b3).
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In this fitting process, the large drusen areas influence negatively the illumination

estimation, by being frequently evaluated as illumination. To overcome this, an itera-

tive estimation process which masks drusen areas was implemented. It is based on the

method proposed by Smith et al. [21], applied to the whole region of interest using two

clusters.

The iterative estimation process is algorithmically described in Figure 3. It is com-

posed by the following steps that were repeated a predefined number of times:

a. estimation of the illumination pattern (1);

b. division of the original image by the estimated illumination pattern (2);

c. binarization of the image (using Otsu thresholding) to cluster the pixels into two

classes: drusen and background (3); and

d. replacement of the pixels belonging to the drusen class by the estimated spline

in the original image, creating an image without drusen’s brighter areas (4).

This process is repeated 5 times (obtained empirically) progressively reducing the

influence of higher intensity pixels on the next iteration. As result of this iterative pro-

cess a corrected image with uniform illumination and without lost of contrast between

the background and the drusen areas is obtained (Figure 2.c1 and 2.c2)).

Image contrast normalization

Depending on the original image contrast the non-uniform illumination correction can

generate saturated or low contrasted images. This problem was corrected with the

introduction of a contrast normalization procedure, achieved by normalizing the Root

Mean Square contrast (RMSc) [22] to a predefined value. The RMS contrast calculation

was based in the calculus of the contrast between retinal vessels and the background

that was adopted as a reference contrast value. This calculus is applicable to any retinal

image, as retinal vessels are always present.

For the vessels contrast calculation, we used a squared sliding window that locally

evaluates RMSc contrast and mean intensity. The window was dimensioned to 250 μm

wide (twice the diameter of a main vessel), in order to contain a single vessel sur-

rounded by background. After moving the sliding window over all the image, the 51

darker windows, typically containing main vessels over a uniform background, are

Smooth Spline
Estimator

Mask with
Spline

Otsu
Threshold

/Input
Image

Flatten
Image

21

34

Figure 3 Algorithm for the Non-Uniform Illumination correction on retinal images. The algorithm
starts by fitting a smoothing spline (1) to the input image. The input image is divided by (1), generating a
flatten image (2). The approximate location of drusen spots are then estimated applying an Otsu Threshold
(3) to the generated image. These areas are then replaced in the input image by the spline (1), producing
a new image (4) with reduced influence of the drusen bright areas. The next iteration uses this new input
image and executes the same procedure a predefined number of iterations to generate the final image.
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selected. The overall image RMSc - RMSc_overall - is calculated as the median of the

51 windows local RMSc (Figure 4). As the automatic algorithm can fail in some parti-

cular situations (images defects or other retinal irregularities), the window correspond-

ing to the RMSc_overall value might be manually relocated by the user.

Image intensity is updated using the equation (3), with RMSc_reference = 15 and the

constant background value A = 85. Such predefined values were obtained empirically,

in order to keep 2/3 of the grey scale for representing the bright areas.

norm image(x, y) = A ·
(
RMSc reference
RMSc overall

∗ (
image(x, y) − 1

)
+ 1

)
(3)

Drusen detection

Drusen detection and quantification are based on the modelling of drusen to ensure

shape consistency in image segmentation. The first step of the detection algorithm is

to determine drusen amplitudes and locations. Considering that drusen are regional

intensity maxima and that, in a gradient image, they have in its direction a confluence

of several ascending paths (Figures 5.a and 5.b), the algorithm proposed for drusen

detection is a novel segmentation method based on the labelling of these gradient

paths (Figure 6).

The first stage of this labelling procedure is a pixel level analysis, following a top-left

to bottom-right direction. It starts assigning a new label to each pixel and determining

its gradient azimuth using a 3 × 3 Sobel operator (Figure 5.b), which is the direction to

an ascending intensity. The following step, label propagation, propagates this label fol-

lowing the gradient path until an already marked or outside image boundaries pixel is

found (Figures 5.c and 5.d). When the propagation process finishes on a different label,

the two labels are tagged as equivalents, i.e., they are considered to belong to the same

maximum (for example labels 2, 4, 6, 10 in Figures 5.d and 5.e).

Figure 4 The contrast normalization procedure. After correcting the non-uniform illumination, the 50
darker windows are selected (a1 and a2) and the median RMS contrast of all images is considered as the
overall RMS contrast value (b1 and b2).
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The second stage of the labelling procedure is to apply the equivalences. Equivalent

labels are grouped and replaced on the image by the smaller one of each group (Figure

5.f) producing a segmented image with as many labels as drusen spots.

When flat valleys or flat hills exist, not all gradient paths end on the same maximum

pixel, resulting in an over-segmentation of the image. To solve this problem, a merging

algorithm was introduced as the last stage of the labelling procedure.

Analysing the labelled and the original image, the merging algorithm begins by creat-

ing a graph where nodes correspond to labels and links represent the adjacencies

between them (Figure 7). Each node is characterized by the maximum intensity level of

the pixels in its region and each link is set with the minimum intensity value of the

border pixels between the two adjacent regions. If the difference between the link and

the nodes is below a predefined threshold (Δa), the two corresponding regions are

merged. The value of Δa adjusts the detail of the analysis (Δa = 3 was empirically

found to be adequate for our normalized images).

After the merging, drusen are segmented and characterized by the coordinates and

amplitude of their maximum intensity, which are the initial parameters for the model-

ling algorithm.

Drusen modelling

In order to quantify drusen spots it is necessary to analytical characterize their shape

and intensity. The intensity elevations shown on drusen areas on the tri-dimensional

Figure 5 Drusen detection algorithm example. This figure presents a test image containing two drusen
(a). In images (b and c) the gradient vectors and the pixels search directions are shown. Image (d) presents
the initial label propagation in the two first upper rows and the label propagation paths. The labels
equivalence table shown in figure (e) was built from the label propagation procedure and was applied to
figure (d) in order to obtain the final labels image (f). In this example the two drusen are correctly
segmented and their maximum point is highlighted.
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empty ?

true
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Figure 6 Gradient Path Labelling Algorithm. A step-by-step diagram of the gradient path labelling
procedure is presented in this figure. The procedure receives the input image and analyses every pixel in a
top-left, bottom-right direction. For every pixel it applies a labelling procedure, by propagating labels
throughout its gradient direction and by detecting equivalent labels. At the end of the pixel analysis, label
equivalences are applied in order to produce an image where each maximum is represented by a unique
label. Finally, to reduce the over-segmentation produced by the algorithm, a label merging algorithm is
applied. This merging algorithm groups adjacent regions that met the predefined amplitude merging
conditions.
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representation (Figure 8.a) motivated the creation of a model of the image intensity.

From this model the drusen dimensions and the total affected area are extracted.

Modelling function

In a typical three-dimensional view of a druse (Figure 8.a), it can be seen that it has a

shape similar to a Gaussian function (Figure 8.b). Based on this observation, the Modi-

fied Gaussian function (equation (4)) was adopted to individually model the drusen

spots. This function allows translations in the xyz axes (x0, y0, z0), amplitude scaling

(A), rotation (θ) and shape adjustments (sx, sF, d). These latter define the width in the

x-plane (sx); width in y-plane (sF ); and the amplitude profile between square shape,

bell shape and thin shape (d ).

G(x, y) = A·e
−

⎛
⎜⎝

(
(x − x0) · cos(θ) + (y − y0) · sin(θ))2

σx
+

(−(x − x0) · sin(θ) + (y − y0) · cos(θ))2
sF · σx

⎞
⎟⎠

2
d

+z0

(4)

The Levenberg-Marquardt Least-Squares optimization algorithm [23] was used to fit

the multiple elementary functions to the image (Figure 8.c) adjusting the functions

parameters in order to minimize the mean square error between the model and the

image. The algorithm was improved by including interval constraints in the amplitude

and shape factor parameters, in order to guarantee the convergence of the solution

and reduce computation time.

98

114

11
0

97

(a) (b) (c)
Figure 7 Merging Algorithm. This figure shows the segmentation (b) of a small region of a retina image
(a) and its corresponding connectivity graph (c). The connectivity graph represents the connections
between segmentation areas and is labelled with the minimum intensity border value on each link. Each
node contains the label and the intensity maximum of the segmentation area it represents.

Figure 8 Drusen modelling. The similarity between the three dimensional view of a druse (a) and a
Gaussian shape (b) is shown. Figure (c) shows the final result of the modelling procedure for an image
containing superimposed drusen (grid - original image; surface - image model).
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Image sectioning

The modelling of the image by multiple functions, each containing eight adjustable

parameters, is time consuming and can be non-convergent. To reduce complexity and

improve convergence, an image sectioning method was implemented. Its goal was to

create smaller images containing isolated or confluent drusen to be processed

individually.

The sectioning process begins by applying a threshold to the normalized image (10%

above the normalized background). The result is an image where drusen (isolated or

confluent) are roughly identified and surrounded by background. The process is fol-

lowed by a connected components object detection algorithm [4] to identify and label

the drusen areas. Finally, these marked areas are copied from the original image to

new smaller images containing just the identified drusen surrounded by background.

These small images are then individually analysed by the modelling algorithm, requir-

ing lower complexity.

Drusen Area Quantification

The contour of drusen spots and their area are calculated by thresholding the analyti-

cal model. The threshold value, that produces more accurate contours, was determined

by comparing the false-positives and the false-negative pixels between the automated

method and all the manually graded images. The threshold value is defined as a per-

centage of the background value used for the image normalization.

The threshold value was found by comparing the statistics for different threshold

values (between 0% and 50%) by plotting their Receiver Operating Characteristic curve

(ROC) and Cohen’s kappa Coefficient Curve (Figure 9). The curves show maximum

accuracy at a threshold of 18% with a kappa coefficient of 0.51, a sensitivity of 0.63

and a specificity of 0.96. The 18% threshold was therefore adopted as the quantification

threshold.

Validation

To validate and assess the accuracy of the automated method (AD3RI) it was com-

pared to the gradings done by the experts and to a classical Global Threshold method.

The Global Threshold method was applied to the normalized images and used an
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Figure 9 Algorithm sensitivity for different parameterizations. This figure represents sensitivity,
specificity and kappa coefficient values obtained by the automated method using different threshold
values when compared to the ground truth. The results are presented as a ROC curve (a), a plot of the
kappa coefficient vs. threshold (b) and a plot of sensitivity vs. threshold (c). The optimal threshold value
was considered to be at approximately 18%, corresponding to the maximum of the kappa coefficient.
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empirically found threshold value of 30% of the background value used for the image

normalization.

For evaluation purposes it was assumed that a good performance of the AD3RI

would be to obtain an overall score similar to the obtained by the experts. Experts

were also evaluated among themselves, in order to produce an efficiency score for each

of them.

AD3RI, Experts and Threshold gradings were assessed using both overall and local

agreement indicators. Based on the total affected area, two overall indicators were

used: the Coefficient of Variation (CV) and the Intraclass Correlation Coefficient

(ICC). Local indicators sensitivity, specificity and kappa coefficient were based on a

pixel-to-pixel analysis that determines false-positive and false-negative pixels.

Results and discussion
The validation of the methodology was made with the dataset of twenty two retinal

images. A first examination of the total affected areas, as presented in Table 1, showed

a significant variability within the experts’ gradings (43% average). There was a poor

agreement among them especially on some low contrast images, creating an issue for

image comparison purposes. User’s subjectivity and different contrast and illumination

settings were the main causes for the different analysis criteria. To illustrate these

Table 1 Automatic vs. manual measurements of Drusen per image

# OP1 OP2 OP3 OP4 TE1 TE2 TE3 TE4 AD3RI CVExperts CVAD3RI

1 1.8 2.2 2.0 2.2 1.3 1.3 1.6 2.0 3.0 21% 63%

2 3.2 4.4 3.3 4.2 2.9 3.4 2.7 6.2 1.8 30% 52%

3 8.3 4.4 5.8 7.8 6.9 4.3 6.1 7.1 7.4 23% 17%

4 2.7 1.3 0.9 1.2 1.2 1.5 1.5 0.6 1.7 46% 24%

5 4.9 3.7 4.3 5.0 2.0 3.5 5.0 5.7 5.8 27% 36%

6 10.7 5.8 7.6 10.7 10.2 9.1 10.0 18.3 11.9 36% 15%

7 13.0 9.5 9.7 18.1 10.3 14.4 12.3 22.8 14.0 34% 2%

*8 10.1 3.3 0.1 4.5 3.6 3.0 2.2 9.5 5.2 77% 14%

9 13.8 13.8 14.6 20.2 15.1 3.9 20.6 31.7 12.9 48% 23%

*10 7.7 1.8 4.2 2.5 7.6 4.9 10.2 12.0 10.7 57% 68%

*11 2.1 3.9 7.5 17.8 20.3 5.3 20.1 12.1 11.4 67% 2%

12 5.9 5.5 6.7 6.1 6.7 6.6 8.3 7.2 5.6 13% 15%

13 1.2 3.4 2.3 2.3 2.9 2.2 3.7 2.7 1.4 30% 47%

14 3.5 3.6 3.6 5.6 3.8 4.5 6.5 3.5 5.3 26% 23%

15 1.4 5.2 8.4 6.7 5.7 6.6 6.4 7.3 6.1 35% 3%

16 1.9 5.3 4.3 4.8 3.4 4.0 4.5 5.9 4.8 29% 12%

17 1.2 1.6 1.1 0.4 0.8 1.3 1.9 1.4 2.6 38% 113%

*18 1.0 1.1 2.0 0.2 0.8 1.4 1.7 4.1 1.2 77% 19%

19 31.0 25.2 51.0 45.5 44.9 41.7 55.9 63.2 52.2 28% 16%

20 11.7 16.2 18.4 20.5 17.0 15.5 16.7 27.2 19.3 25% 8%

21 9.3 15.8 9.1 7.1 6.7 11.2 14.2 16.1 15.1 34% 35%

*22 12.5 7.3 4.6 0.7 0.1 0.0 0.0 0.8 0.0 141% 100%

This table shows the measurements of drusen areas as a percentage of the total macular area for each expert and for
AD3RI. It is also shown the CV among experts and the CV of the automated method when compared to the ground
truth for the twenty two test images. As it can be seen in the outlier images signed with an asterisk (*), the CV among
experts was significant (> 50%), especially in image #22 where only 3 out of 8 experts graded significant drusen areas. It
should also be noticed that no significant differences in the results produced by the group of Ophthalmologists (OP)
and by the group of Technicians (TE) were observed. In this table it can be observed that AD3RI obtained a good
accuracy with a CV lower than the average CV of the experts in 10 out of 17 images (dataset without outliers). In the
remaining 7 images AD3RI obtained a higher CV mainly due to the small drusen areas in which even a small difference
in the area value penalizes significantly its CV.
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differences, Figure 10 presents three images processed by the AD3RI side-by-side with

the experts’ gradings. It can be seen that, on the right image, which was the one with

highest variability, there was almost no agreement on drusen sizes and locations. As a

result of this variability, an outlier identification policy was implemented. Therefore,

the images which had a CV among the experts above 50% (#8, #10, #11, #18 and #22)

were considered outliers and excluded from the study.

Table 2 presents the summary of results obtained by the AD3RI, the Global Thresh-

old method and each expert, excluding the outlier images. Areas’ comparison (CV and

ICC) showed that, although the CV obtained by the AD3RI (28.8%) was above the

average among the experts (22.5%), the ICC (0.92) revealed a strong correlation

between AD3RI and the experts. The images containing few drusen spots were the

main cause for a higher CV. In these images, the total affected area is low and an over

or under estimation of drusen spots will cause a significant relative variation on the

total area, increasing its CV. The Threshold method showed a low agreement, obtain-

ing a high CV (41.1%) and a low correlation (ICC = 0.67).

OP1 OP1 OP1

TE3 TE3 TE3

AD3RI AD3RI AD3RI

Figure 10 Grading examples. This figure shows, from left to right, images #1, #20 and #22, graded by
different experts (first and second row) and by AD3RI (third row). A high agreement was obtained among
the expert’s gradings of the two images represented on the left side and that show normal drusen spots.
On the right side it is shown a control image containing no visible drusen that was considered an outlier
due to the high variability observed among the experts.
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When examining the accuracy on a pixel-to-pixel comparison, the AD3RI achieved

an average sensitivity of 0.68 and an average specificity of 0.96, while the experts

obtained 0.67 and 0.97. The slightly lower specificity obtained by the AD3RI was

mainly due to the higher detection of drusen as consequence of a more detailed and

systematic analysis. The kappa coefficient, analyzed accordingly to Landis and Koch

guidelines [24], showed a moderate agreement for both AD3RI (k = 0.58) and experts

average (k = 0.60).

The Threshold method showed a sensitivity of 0.74, higher than the average obtained

by the experts as consequence of an over-detection of drusen. However this over-

detection penalizes significantly its specificity (0.94) and its kappa coefficient (0.49).

From this statistical analysis it was concluded that the proposed algorithm follows

the same criteria as the experts, although with a better accuracy and reproducibility.

The Global Threshold method showed a low agreement with the experts. Comparing

Thresholding with AD3RI gradings, it can be observed that AD3RI, although with less

detailed contours, has lower illumination dependency and provides more consistent

drusen shape segmentation with higher reproducibility. The Threshold method is a

simpler method, but shows an important tendency for drusen over-detection, produ-

cing a higher number of false-positives.

The analysis of the related work shows a large number of different methods and

indicators for performance evaluation, limiting the comparison with our method. In

the work of Rapantzikos et al. [8] their algorithm was tested in a set of twenty three

images and compared to two experts analyses. For the specificity and sensitivity analy-

sis the interception between the experts’ gradings was used. This methodology

decreased the probability of false-negatives, consequently rising sensitivity. These two

indicators exceeded 0.96 in all cases, which can be considered excellent. However, it

should be noted that the experts’ interception is not a reliable method, since it elimi-

nates variability, increasing sensitivity without compromising specificity. Smith et al.

[5] evaluated their work with a dataset of twenty images examined by one expert,

obtaining a sensitivity of 0.7 and a specificity of 0.8. Therefore, we can consider AD3RI

Table 2 Summary of average indicators for automatic and manual measurements

CV ICC Sensitivity Specificity Kappa

AD3RI 28,8% 0,92 0,68 0,96 0,58

THRESH 41,1% 0,67 0,74 0,94 0,49

OP1 28,3% 0,86 0,58 0,98 0,55

OP2 23,6% 0,79 0,66 0,98 0,61

OP3 15,0% 0,92 0,69 0,97 0,64

OP4 19,6% 0,92 0,61 0,96 0,53

TE1 16,3% 0,92 0,66 0,98 0,64

TE2 14,2% 0,89 0,65 0,98 0,62

TE3 21,9% 0,90 0,76 0,96 0,64

TE4 41,2% 0,82 0,77 0,93 0,57

This table presents the average CV, ICC, sensitivity, specificity and kappa coefficient obtained by AD3RI and by the
Thresholding method compared to the manual gradings done by each of the experts (OP - Ophthalmologist; TE -
Technician). These results exclude the images considered as outliers. As it can be seen, AD3RI and manual gradings
obtained similar values; only for CV the AD3RI results were above the average. This is justified by the level of detail of
the AD3RI analysis that is usually superior to the manual analysis. AD3RI obtained better results than the Thresholding
method on all the indicators except on sensitivity. However, Thresholding sensitivity is higher due to its over-detection
of drusen what consequently decreases its performance on the other indicators.
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more accurate namely because it was tested against a set of eight experts in order to

achieve a more reliable ground-truth.

Conclusions
The development of methods to quantitatively measure drusen in a reproducible and

accurate procedure will certainly improve the quality of the follow up of this disease

and potentiate epidemiologic studies and clinical trials. These studies, that collect

thousands of images throughout several years, must be graded using a reproducible

method to allow comparison during all the study period. Currently, this is manually

done by trained experts with a fastidious process, lacking accuracy and reproducibility.

This article presents a new method to quantitatively measure drusen and its’ valida-

tion with 22 images graded by eight independent experts. The algorithm is based on

the detection and modelling of drusen to automatically calculate the affected areas. It

includes also an image pre-processing step to correct the non-uniform illumination

commonly found on this type of images.

The illumination compensation algorithm is an important step to obtain a less para-

meterized methodology, since it is capable to create an image with normalized illumi-

nation and contrast to be used in all the remaining steps. The detection and modelling

of drusen with Modified Gaussian functions demonstrated its capability to segment

drusen keeping their typical shape, even on low contrast images.

It also provides an analytical model that allows the determination of drusen indica-

tors such as number of spots, affected areas, confluence and average size.

Since there is no standard assessment technique to be applied in this type of studies,

most of the published works use different performance indicators what makes compar-

ison between studies inaccurate or even impossible. In our work, performance was

assessed using several indicators allowing direct comparison with other studies. This

comparison showed that the results produced by the AD3RI were similar or better

than the others.

From the above, we considered that AD3RI demonstrated promising results. It com-

pares positively with the panel of human experts and since is a determinist method; it

is not dependent on factors such as attention or accuracy.
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