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Abstract

Background: Numerous studies have been conducted regarding a heartbeat
classification algorithm over the past several decades. However, many algorithms
have also been studied to acquire robust performance, as biosignals have a large
amount of variation among individuals. Various methods have been proposed to
reduce the differences coming from personal characteristics, but these expand the
differences caused by arrhythmia.

Methods: In this paper, an arrhythmia classification algorithm using a dedicated
wavelet adapted to individual subjects is proposed. We reduced the performance
variation using dedicated wavelets, as in the ECG morphologies of the subjects. The
proposed algorithm utilizes morphological filtering and a continuous wavelet
transform with a dedicated wavelet. A principal component analysis and linear
discriminant analysis were utilized to compress the morphological data transformed
by the dedicated wavelets. An extreme learning machine was used as a classifier in
the proposed algorithm.

Results: A performance evaluation was conducted with the MIT-BIH arrhythmia
database. The results showed a high sensitivity of 97.51%, specificity of 85.07%,
accuracy of 97.94%, and a positive predictive value of 97.26%.

Conclusions: The proposed algorithm achieves better accuracy than other state-of-
the-art algorithms with no intrasubject between the training and evaluation datasets.
And it significantly reduces the amount of intervention needed by physicians.

Background
As the healthcare system becomes ubiquitous, the necessity of an automatic diagnosis

algorithm increases. In particular, automatic arrhythmia classification algorithm

research is the most active area, as arrhythmia is diagnosed by reading long-term data.

High-performance arrhythmia classification algorithms based on electrocardiography

(ECG) [1-3] have been proposed in many areas over the last several decades. However,

the results from these studies have not been applied widely in practice. This situation

has arisen due to the differences among the biosignals of different individuals. Particu-

larly, ECG readings from different people show significant differences in terms of their

waveform, which can be used for a biometric application [4]. There is no reliable algo-

rithm capable of dealing with these differences thus far.

Most arrhythmia classification algorithms [1-3] have been evaluated with the same

subjects (people) from a training dataset. The results of the aforementioned research
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showed high performance (more than 95% accuracy), because the algorithm could

learn the characteristics of normal and abnormal heartbeats from a subject who was

included in both datasets (the training dataset and the evaluation dataset). (We subse-

quently refer to this assessment condition as the intrasubject condition (Figure 1(a)).

However, in practical use, it is impossible to incorporate the ECG data from all

humans in a training dataset. Therefore, arrhythmia classification algorithms should

analyse ECG data from subjects who are not included in a training dataset.

The intersubject condition is a contrary concept of the intrasubject condition (Figure

1(b)). Superficially, studies undertaken in an intersubject condition demonstrate signifi-

cantly lower performance levels than those in an intrasubject condition. According to

Christov et al. [5], premature ventricular contractions were detected 78.3% in terms of

specificity and 81.6% in terms of sensitivity in an intersubject condition, whereas these

values were 96.7% in terms of specificity and 96.6% in terms of sensitivity in an intra-

subject condition. However, studies in an intersubject condition undergo more appro-

priate assessments for practical use. To improve the performance in intersubject

condition, researchers [6-8] have recently proposed a number of compensation meth-

ods. Thus far, these typical compensation methods use a local training dataset.

Chazal et al. [8] evaluated various configurations of feature vectors extracted from

ECG data to determine which configuration has robust performance in the intersubject

condition. The best performance among the configurations was 75.9% and 77.7% in

terms of sensitivity for supraventricular ectopic beat (SVEB) and ventricular ectopic

beat (VEB) data, respectively. Chazal and Reilly [7] studied the effect of a local classi-

fier in the intersubject condition to enhance the accuracy of their algorithm. In that

study, a physician first verified the subject’s data, which was then learned by a local

classifier. Their study showed improved performances of 87.7% and 94.3% in terms of

sensitivity for SVEB and VEB, respectively. Ince et al. [6] also were able to detect VEB

and SVEB respectively at 98.3% and 97.4% in terms of accuracy and 84.6% and 63.5%

in terms of sensitivity using a local training dataset. Regarding the use of a local train-

ing dataset, other studies [6,7] did not reach a perfect intersubject condition but

instead tried to reduce intervention by the physicians by evaluating the effect of var-

ious sizes of the local training dataset. In this paper, we propose a new automatic

arrhythmia classification method to compensate for the use of the intersubject condi-

tion and to improve the performance using a dedicated wavelet.

                        (A)                                               (B) 

Figure 1 The configuration of the training and evaluating dataset. (A) Intrasubject condition, (B)
Intersubject condition
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Wavelets are advantageous because of analyzing a signal in the time-frequency

domain using a variety of mother wavelets. Because we can use a variety of mother

wavelets, there are already numerous evaluation studies with which to find the optimal

wavelet for each application, and this is also true for studies on arrhythmia classifica-

tion algorithms based on ECG. Using the Haar wavelet, Minhas [9] and Yu [10]

achieved high performance by classifying heartbeats with a kth nearest-neighbor

(KNN) and a probabilistic neural network (PNN), respectively. Lin proposed an

arrhythmia classification scheme which uses the Morlet wavelet as a feature extraction

method and a PNN as a classifier [11]. In addition, Froese captured features using the

Daubechies 6(db6) wavelet or a wavelet obtained by two proposed wavelet optimization

strategies. They compared the performances of various classifiers with the features [12].

In terms of using a deformable wavelet adaptively, such an approach is similar to the

proposed algorithm. However, the purpose of their study is to configure the feature

vectors by optimal compression of the morphological data, whereas the proposed algo-

rithm has the goal of reducing the differences among the subjects.

In this study, an approach utilizing the continuous wavelet transform (CWT) with a

mother wavelet fitted into a target subject’s ECG morphology is proposed. Through this

process, we expect to reduce the impact of the personal characteristic while obtaining

only the differences caused by abnormal heartbeats. The mother wavelet acquired from

the signal to process was known as a dedicated wavelet in previous studies [13,14]. The

previous studies [13,14] proposed an optimal mother wavelet to perform a voltammetric

determination effectively. In this paper, we apply the same method to develop a reliable

algorithm to diagnose arrhythmia in an intersubject condition.

Methods
A block diagram of the proposed algorithm is presented in Figure 2. The first required

action in an ECG-based arrhythmia classification algorithm is to detect the QRS com-

plex. However, the main purpose of the proposed algorithm focuses on the classifica-

tion of arrhythmia; consequently, a QRS complex detection process is not included as

a part of this research. There are many studies that seek to detect the QRS complex,

and these studies have achieved high performance, such as a sensitivity of 99.5%

[15,16]. In the proposed algorithm, the annotation data from the MIT-BIH arrhythmia

database [17] is used for the implementation and evaluation of the algorithm.

First, the preprocessing step consists of filtering and segmentation. The ECG signal is

filtered to remove noise components, and then segmentation is performed to classify

each heartbeat. The following subject adaptation stage generates dedicated wavelets

using the ECG signal of a target subject. The ECG signal from the target subject is

transformed with the dedicated wavelet at the CWT stage. As CWT produces a large

amount of transformed data, we utilize principal component analysis (PCA) and linear

discriminate analysis (LDA) in the subsequent dimension reduction stage. In the next

stage, feature vectors are composed of the compressed morphology data and other fea-

tures. Lastly, classification is performed.

Pre-processing

ECG signals are typically exposed to noise components such as power line interfer-

ence, EMG, respiratory components, and motion artifacts. Therefore, various filtering
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Figure 2 Block diagram of the proposed algorithm.
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techniques to remove these noise sources have been proposed. The purpose of filter-

ing techniques is to remove the noise components while preserving the characteris-

tics of the original ECG signal components. In this study, a morphological filtering

technique is utilized to remove the noise components. Morphological filtering, which

was proposed by Sun [18], has the virtue of removing high-frequency noise and

baseline drift with less compromising of the original ECG signal and a low computa-

tional burden. When a general filter attenuating a specific frequency band is used,

the QRS complex can be expanded because the frequency band of the EMG has

some overlap with the band of the QRS complex [2]. This can be a serious weakness

in an arrhythmia classification algorithm, because it can increase the likelihood of

misclassifying normal heartbeats as VEBs. When using morphological filtering, this

phenomenon does not occur, as attenuating specific frequency bands is not used

with this type of filtering.

After the morphological filtering process, the ECG signal passes through a segmenta-

tion process. Segmentation is performed around the R peak. The PR interval is nor-

mally 0.12~0.2 seconds, and T-wave has a duration of about 0.2 to 0.4 seconds. Thus,

morphology data 0.25 seconds before the R peak and 0.4 seconds after the R peak are

obtained. The major ECG fiducial points (P, T wave and the QRS complex) are

included in the segmentation range.

Subject adaptation method

The template segments are then discerned from each subject to make the mother

wavelet similar to the appearance of each subject’s normal heartbeat. To reduce noise

components, we used an average segment of several consecutive normal heartbeats. In

this paper, six consecutive normal heartbeats were used to make template segment.

We extracted six consecutive normal heartbeats after passing the first 5 minutes of the

ECG record. The mother wavelet is calculated using the template segment. The crea-

tion of the optimal mother wavelet is based on Misiti’s research [19]. The mother

wavelet is generated via least squares approximation. The normal heartbeats and the

mother wavelets of subject 106 and 207 are presented below in Figure 3 as an example.

The obtained mother wavelets meet the conditions for a square norm of one and a

zero mean.

CWT with a dedicated wavelet

CWT is a type of linear multi-resolution data processing technique that is used to

detect or measure the characteristics of signals. CWT analyzes a signal using a scaled

and translated version of a mother wavelet to express the signal in the time-scale (fre-

quency) domain. The CWT results are obtained as wavelet coefficients CWTx(a,b),

where a and b refer to the scale and the translation, respectively. a is proportional to

the inverse of the frequency. b represents the location of the wavelet in the time

domain. We are able to obtain the information throughout the entire time-frequency

plane by varying these values. The CWT coefficients of the input signal x(t) are as fol-

lows.

CWTx(a, b) =
∫ ∞

−∞
x(t)�∗

ab(t)dt (1)

Kim et al. BioMedical Engineering OnLine 2011, 10:56
http://www.biomedical-engineering-online.com/content/10/1/56

Page 5 of 19



�∗
ab(t) in equation (1) indicates the complex conjugation of Ψab(t), and Ψab(t) is

obtained through the process of shifting and scaling the mother wavelet Ψ(t), as fol-

lows.

�ab(t) =
1√
a
�

(
t − b
a

)
(2)

As shown in equation (1), each wavelet coefficient denotes the correlation between

the signal and the wavelet in the given scale and position. In other words, CWT is

used to evaluate how the signal is similar to the scaled and translated mother wavelet.

Thus, the optimal mother wavelet in a certain application would have a shape identical

to the signal to analyze; we can explain the necessity of a dedicated wavelet based on

these ideas.

This study uses sampled data; thus, discrete-time CWT (DT-CWT) is performed.

The equations (1) and (2) are represented by equation (3):

CWTx(a,kTs) =
1√
a

N−1∑
n=1

x(nTs)�∗
akTs

[
(n − k)Ts

a

]
Ts (3)

 
(A)                                  (B)                                  (C) 

(D)                                                      (E) 

 
(F)                                   (G)                                  (H) 

(I)                                                       (J) 

Figure 3 Examples of the analysis of subjects 106 and 207 in the MIT-BIH arrhythmia database
using a dedicated wavelet. (A) The waveform of subject 106’s normal beat, (B) The waveform of subject
106’s PVC, (C) The dedicated wavelet of subject 106, (D) The scalogram of subject 106’s normal heartbeat
using the dedicated wavelet, (E) The scalogram of subject 106’s PVC using the dedicated wavelet, (F) The
waveform of subject 207’s normal beat, (G) The waveform of subject 207’s PVC, (H) The dedicated wavelet
of subject 207, (I) The scalogram of subject 207’s normal heartbeat using the dedicated wavelet, (J) The
scalogram of subject 207’s PVC using the dedicated wavelet
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Ts in equation (3) refers to the sampling period, it is 2.78 ms in this paper. As shown

in equation (3), the value of scale a should be determined to obtain the wavelet coeffi-

cients of the input signal x(nTs), and the length of the wavelet coefficients CWTx(a,

kTs) is identical to that of the input signal at each scale.

The range of scale is chosen to be concentrated in the frequency band of 3~30 Hz,

where the main frequency components of the ECG signal exist. The scales approxi-

mately relate to the frequency according to equation (4) below.

Fa =
Fc

a · Ts (4)

Here, Fc represents the centre frequency of the mother wavelet, and Fa denotes the

pseudo-frequency values corresponding to the scale a. The centre frequency of the QRS

complex is approximately 5~15 Hz. As shown in Figurer 3, the dedicated wavelets have

very similar waveform to each subject’s normal heartbeat. Thus, the obtained dedicated

wavelets also occupy the same frequency. Table 1 shows Fa values given scale level and the

center frequency from 5 to 15 Hz. The highlighted region of Table 1 covers 3~30 Hz of Fa.

As shown in Table 1, selected scales from 90 to 1000 covers frequency band 3~30 Hz.

CWT transfers a one-dimensional signal to a two-dimensional signal, thus increasing

the amount of data considerably. Therefore, a dimension reduction process is adopted

to reduce the amount of data in this study.

Dimension reduction

The output data of CWT is represented by two-dimensional data (images) in the time-

scale domain. Each heartbeat is diagnosed based on the obtained morphological

Table 1 The frequency value corresponding to each scale level with the centre
frequency of the dedicated wavelet

scale The center frequency of the dedicated wavelet (Hz)

5 7 9 11 13 15

1000 1.80 2.52 3.24 3.96 4.68 5.40

900 2.00 2.80 3.60 4.40 5.20 6.00

800 2.25 3.15 4.05 4.95 5.85 6.75

700 2.57 3.60 4.63 5.66 6.69 7.71

650 2.77 3.88 4.98 6.09 7.20 8.31

600 3.00 4.20 5.40 6.60 7.80 9.00

550 3.27 4.58 5.89 7.20 8.51 9.82

500 3.60 5.04 6.48 7.92 9.36 10.80

450 4.00 5.60 7.20 8.80 10.40 12.00

400 4.50 6.30 8.10 9.90 11.70 13.50

350 5.14 7.20 9.26 11.31 13.37 15.43

300 6.00 8.40 10.80 13.20 15.60 18.00

260 6.92 9.69 12.46 15.23 18.00 20.77

230 7.83 10.96 14.09 17.22 20.35 23.48

210 8.57 12.00 15.43 18.86 22.29 25.71

190 9.47 13.26 17.05 20.84 24.63 28.42

170 10.59 14.82 19.06 23.29 27.53 31.76

150 12.00 16.80 21.60 26.40 31.20 36.00

110 16.36 22.91 29.45 36.00 42.55 49.09

90 20.00 28.00 36.00 44.00 52.00 60.00

The highlighted region covers the range of 3~30 Hz.
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features and other features such as the RR interval and the previous heartbeat’s classifi-

cation result. However, because morphological features have a very high dimension, a

dimension reduction process is necessary. Linear discriminant analysis (LDA) has been

successfully applied to various applications, such as image recognition. However, the

small amount of training data with high dimensional features here makes this difficult

to apply. As a means of resolving this limitation, LDA after the application of a princi-

pal component analysis (PCA) has been widely used [20]. The proposed algorithm also

performs PCA and LDA to reduce the dimension of the ECG morphology data trans-

formed by CWT.

The obtained scalogram has 234 samples in the time domain and 20 levels in the

scale domain. Thus, 20 × 234 (4680) dimensional morphology features occur for each

heartbeat. These are compressed by PCA and LDA to obtain the final four-dimensional

feature vectors. The 4680-dimensional dataset was compressed into a 100-dimensional

dataset via PCA. At this time, 99.99% of the information based on the Eigenvalues was

maintained using the 100-dimensional data. The 100-dimensional dataset was com-

pressed to four dimensions by LDA.

Feature vector composition

Each heartbeat is classified based on a feature vector configured as shown in Table 2.

There are six dimensions of features associated with the RR interval, which are RRI[k],

RRIavg, and RRIdiv. RRI[k] represents the features of the RR interval of the second-to-

last heartbeat, the last heartbeat, the current heartbeat and the following heartbeat

Table 2 The configuration of the feature vector

No Feature
(abbreviation)

Dimension Description Equation

1 RRI[k] 4 Adjacent RR intervals k = -2 t(Rpeak[n - 2]) - t(Rpeak[n - 3])

k = -1 t(Rpeak[n - 1]) - t(Rpeak[n - 2])

k = 0 t(Rpeak[n]) - t(Rpeak[n - 1])

k = 1 t(Rpeak[n + 1]) - t(Rpeak[n])

2 RRIavg 1 The average RRI of the last 10
heartbeats 9∑

k=0

Rpeak[n − k]/10
3 RRIdiv 1 The standard deviation between the

RRI of last 10 heartbeats √√√√ 9∑
k=0

(Rpeak[n − k])2/10

4 Annotbf1 5 The classification results of the last
heartbeat

[1 0 0 0 0] if Yn = Normal beat

[0 0 1 0 0] if Yn = SVEB

[0 0 1 0 0] if Yn = VEB

[0 0 0 1 0] if Yn = Fusion beat

[0 0 0 0 1] if Yn = Unknown beat

5 Annotbf2 5 The classification results of the second-
to-last heartbeat

6 Morph 4 Morphology data of the current
heartbeat (After CWT-PCA-LDA)

LDA(PCA(CWT(Xn)))

7 Morphbf1 4 Morphology data of the last heartbeat
(After CWT-PCA-LDA)

LDA(PCA(CWT(Xn-1)))

8 Morphbf2 4 Morphology data of the second-to-last
heartbeat (After CWT-PCA-LDA)

LDA(PCA(CWT(Xn-2)))
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when k equals -2, -1, 0 and 1, respectively. They reflect the information of a premature

beat, which normally has a short RR interval and a compensation period. In addition,

the average of the RR interval of the last 10 heartbeats is included in the feature vector

to establish a baseline. The standard deviation among the last 10 heartbeats is also

used to provide information about the variability of the RR intervals at that time.

Physicians diagnose heartbeats using not only information about the current heartbeat

but also information about previous heartbeats. Some researchers also used the previous

heartbeat’s information to classify heartbeats correctly [21]. Therefore, to obtain infor-

mation about this, Annotbf1 and Annotbf2 are included in the feature vector (features 4

and 5 in Table 2). Annotbf1 refers to the classification result of the last heartbeat, and

Annotbf2 refers to the second-to-last heartbeat. These features are acquired from the

annotations of the MIT-BIH arrhythmia database in the training phase. However, when

evaluating an algorithm, these features come from the results classified by the algorithm

at run time. Annotbf1 and Annotbf2 at the beginning of the ECG data are set to normal.

Annotbf1 and Annotbf2 are represented in the form of five-dimensional binary features,

as shown in Table 2. In addition, Morph, Morphbf1 and Morphbf2 are included

(features 6~8 in Table 2) to describe the morphology of the present and the previous

heartbeats. Morph, Morphbf1 and Morphbf2 are four-dimensional feature vectors,

which are generated by CWT with a dedicated wavelet and PCA-LDA. Morphbf1 and

Morphbf2, respectively, represent the morphologies of the last heartbeat and the sec-

ond-to-last heartbeat. The total dimension of the feature vector is 28. To ensure that the

feature vectors are in an appropriate range, each component of the feature vectors, apart

from Annotbf1 and Annotbf2, is normalized using equation (5).

xnor =
x − μx

σx
(5)

μx in equation (5) refers to the average of component x, and sx represents the stan-

dard deviation of x.

Classifier

Typically, the Back Propagation Neural Network (BPNN) has some potential disadvan-

tages, such as a slow learning speed, the possibility of convergence to the local mini-

mum and the degradation of the classification performance due to over-training. The

Extreme Learning Machine (ELM) proposed by Huang [22] is a new learning technique

for multi-layer neural networks which overcomes the limitations of a BPNN. It can

obtain the weights of neural network not through iterative learning but through an

analytical method. ELM completes the learning process using the Moor-Penrose gener-

alized inverse. Thus, it has the advantage of a high learning speed. In addition, ELM is

more convenient to use than a conventional neural network, because only the type of

activation function and the number of hidden neurons are necessary to configure the

neural network. Several studies have shown that the performance of ELM is higher

than that of a BPNN and similar to or slightly lower than that of a support vector

machine [2,22]. In this study, ELM is more appropriate than SVM, because of using

large training dataset. Therefore, we used ELM due to its fast training speed and high

performance. The sigmoid function is used for an activation function, and 50 hidden

neurons are used.
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Evaluation Methods

In this study, the MIT-BIH arrhythmia database is used to evaluate the performance of

the proposed algorithm. There are five classes of heartbeats according to the AAMI

[23]. These are the normal beat class (N class), the supraventricular ectopic beat class

(S class), the ventricular ectopic beat class (V class), the fusion beat class (F class), and

the unknown beat class (Q class). Matching between the annotations of the MIT-BIH

arrhythmia database and the AAMI heartbeat classes is presented in Table 1 of Cha-

zal’s paper [8]. The MIT-BIH arrhythmia database is composed of ECG records from

48 subjects with a sampling frequency of 360 Hz, and each record is 30 minutes long.

The ECG signals were measured using two leads. Channel A was generally measured

by a modified limb lead II (MLII), and channel B by an augmented lead 1 (A1). Some

subjects to whom those lead methods were difficult to apply were measured by other

lead methods. In this study, only channel A (ML II) is used, and subjects with pacing

beats are not included so as to match the AAMI standard. Thus, 44 records were used

to configure and evaluate the algorithm after excluding records 102, 104, 107 and 217.

Typically, the morphology signal from the S class is similar to that from the N class. On

the other hand, the morphology signal from the V class shows a sizeable difference. Thus,

many feature extraction methods for ECG morphology may discriminate the V class from

the N class very well in one subject. However, because the morphology from the N class

and the V class vary depending on the subject, a normalization process is necessary. The

proposed method normalizes the difference in the ECG morphology among subjects using

dedicated wavelets. To evaluate the effectiveness of the normalization process, we com-

pared five feature extraction methods. Those are a normal template cross-correlation

(TemplateM), a discrete wavelet transform (DWT) with the Haar wavelet (Haar(7)), a

DWT with the Daubechies 6 wavelet (db6(4)), a CWT with the dedicated wavelet of sub-

ject 106 (106CWT), and a CWT with the dedicated wavelet of each subject (DedicatedW).

Each feature extraction method was applied to the ECG signals of the N class and V class,

which were extracted from subjects who had over 100 heartbeats of the V class. Using the

methods above, we compressed the output data to one-dimensional data via LDA. For

106CWT and DedicatedW, we used the PCA-LDA composition, because these two meth-

ods are based on CWT. The compressed data was normalized to remove amplitude varia-

tion due to the different signal processing methods.

In terms of using the template segments, TemplateM stands on a basis similar to

that of the proposed method. Thus, it is included in this evaluation. Haar(7) and db6

(4) are included in this assessment, as these methods are frequently used with many

arrhythmia classification algorithms using DWT. Haar(7) and db6(4) indicates that the

signal was decomposed up to 7 and 4 levels, respectively. The decomposition levels

were set to the extent possible given the support of the signal length. 106CWT is

included to evaluate the effect when using the same mother wavelet, similar to the

ECG morphology, for all subjects. DedicatedW is the proposed method.

The discrimination ability of the above feature extraction methods was estimated

using the Fisher discriminant ratio (FDR). FDR represents how far the data of two

classes are spread apart (equation (6)).

FDR =
(μN − μV)

2

σ 2
N + σ 2

V

(6)
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In equation (6), μN and μV denote the data averages from the N class and the V

class, respectively, and sN and sV are the respective standard deviations. The results

are represented in Table 3.

Evaluation results and discussion
The scalograms using the dedicated wavelet optimized for each subject (106 or 207) are

presented in Figure 3 as an example. The purpose of this study is to reduce the differences

from each subject’s ECG waveform characteristics while leaving the differences from the

types of heartbeats. Figure 3 indicates that this objective is achieved well. Although sub-

jects 106 (top of Figure 3) and 207 (bottom of Figure 3) have very different normal heart-

beat waveforms from each other (Figures 3(a) and 3(f)), the normal heartbeat scalograms

from these subjects have similar pattern, high components in similar position, through

CWT using a dedicated wavelet (Figure 3(c) for subject 106 and (h) for 207). In contrast

to the normal heartbeats, the high coefficients of premature ventricular contractions

(PVC) are concentrated at the high scale (low frequency, Figure 3(e) and 3(j)).

As shown in Table 3, the FDRs are large when the templates or the mother wavelets

are similar to the ECG morphology. (TemplateM, 106CWT and DedicatedW uses the

ECG signal as a template or a mother wavelet; some researchers use the db6 wavelet

due to its similarity to the ECG morphology [24,25].). Specifically, TemplateM and

DedicatedW, which use the ECG of each subject as a template, show the highest per-

formance. We highlight the spaces of Table 3 where FDR is less than 2. The method

which has the highest average FDR and the fewest subjects with a small FDR was

noted to be DedicatedW. Based on these results, we confirm that DedicatedW has bet-

ter discrimination ability than any other method.

In addition, while TemplateM can only evaluate the similarity between the template

heartbeat and the input signal, the proposed method can analyze other characteristics.

There are ECG morphologies and scalograms of a normal heartbeat and the right bun-

dle branch block (RBBB) shown in Feature 4. Both the normal heartbeat and RBBB are

Table 3 The FDR value for the feature extraction methods

Subject TemplateM Haar (7) db6(4) 106CWT DedicatedW

106 12.781 1.098 5.004 6.409 9.072

116 16.204 3.856 13.851 14.391 30.078

119 30.882 2.279 6.970 11.562 37.488

200 10.937 1.156 6.542 5.853 8.136

201 44.911 0.449 13.613 13.637 37.534

203 6.146 0.005 0.889 0.434 4.080

207 1.818 0.457 1.831 0.659 1.688

208 19.283 2.293 15.109 11.629 32.354

210 5.777 0.780 3.064 2.289 6.236

213 9.592 0.772 5.481 2.986 20.721

214 1.891 0.312 1.378 1.562 5.516

215 13.458 0.088 1.162 1.488 6.338

221 21.050 0.576 8.558 12.860 33.630

223 1.085 1.155 2.156 4.963 4.818

228 7.765 1.372 5.088 8.809 18.488

233 4.094 1.645 3.567 4.624 31.035

Average 12.980 1.143 5.891 6.510 17.951

Std. 11.733 0.997 4.689 4.951 13.604
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included in the N class. However, the morphology of RBBB has a wide and deep S

wave owing to its slow right ventricular depolarization (Figures 4(b) and 4(f)).

These differences should be ignored when classifying these two types of heartbeats

into the N class. Nonetheless, this is not always feasible when using a method such as

TemplateM. The proposed method is able to deal with these types of problems, as it can

recognize some characteristics of RBBB through a scalogram. (’1’ in Figure 4(d) and ‘2’

in Figure 4(h) both show some low-frequency components when an S wave occurs.)

Figure 5 shows how the proposed algorithm deals with such a problem. Figure 5

represents the average of the scalograms and the PCA-LDA mapping matrix. The pro-

posed algorithm mapped 20 × 234 (4680) dimensional data to four-dimensional feature

vectors through equation (7).

xout = ((xin − µPCA) · MPCA − µLDA) · MLDA

= xin · MPCA · MLDA − µPCA · MPCA · MLDA − µLDA · MLDA
(7)

In equation (7), xin and xout are the input and output feature vectors, respectively. xin
is a 4680 dimensional data, and xout is a 4 dimensional data. MPCA, MLDA, μPCA, and

        
(A)                                                    (B) 

 (C)                                                     (D) 
 

          
 (E)                                                      (F) 

 

 (G)                                                     (H) 

Figure 4 Examples of the analysis of subjects 212 and 231 in the MIT-BIH arrhythmia database
using a dedicated wavelet. (A) The waveform of subject 212’s normal beat, (B) The waveform of subject
212’s right bundle branch block(RBBB), (C) The scalogram of subject 212’s normal beat using the dedicated
wavelet, (D) The scalogram of subject 212’s RBBB using the dedicated wavelet, (E) The waveform of subject
231’s normal beat, (F) The waveform of subject 231’s RBBB, (G) The scalogram of subject 231’s normal beat
using the dedicated wavelet, (H) The scalogram of subject 231’s RBBB using the dedicated wavelet
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μLDA are the mapping matrix of PCA (4680 × 100), mapping matrix of LDA (100 × 4),

mean value of PCA (1 × 4680), and mean value of LDA (1 × 100), respectively [20].

μPCA is shown in Figure 5(a). As shown in the bottom line of equation (7), only the

first term is a variable related to the input feature vectors xin, as the second term and

third term are constants. Thus, MPCA·MLDA determine the relationship strength

between the input feature vectors and the output feature vectors. Figures 5(b) repre-

sents the first component of MPCA·MLDA, which refer to the relationship strength

between the first component of the final four-dimensional feature vectors and each

coefficients value of the scalogram.

According to the output features through the first PCA-LDA mapping matrix, the

features of the V class are generally greater than those of the other classes. As shown

in Figure 5(b), the components of the first PCA-LDA mapping matrix are small at a

low scale level and near zero in the time domain, where normal scalograms have large

components (’1’ in (b) in Figure 5). On the other hand, the components are large at a

high scale level and 0.2~0.3 in the time domain, where the scalograms of the V class

have large components (’2’ in (b) in Figure 5). Interestingly, there are virtually zero

components in which the scalograms of RBBB have large components (’3’ in (b) in

Figure 5). Through this process, the proposed method can disregard the unwanted fea-

tures in the time-frequency domain.

Performance evaluations were carried out in two ways. First, the training and the

evaluating datasets were constructed using a leave one out rule to evaluate the algo-

rithm’s performance for all of the subjects in the MIT-BIH arrhythmia database. This

indicates that the data from 43 subjects were used as the training dataset and that the

data from the other one subject was used to evaluate the algorithm. In this case, as the

size of the training dataset was too large, with over 100,000 heartbeats, the training

dataset was reduced to 15,000 heartbeats (13,300 heartbeats for the N class, 450 heart-

beats for the S class, 1200 heartbeats for the V class, 130 heartbeats for the F class and

2 heartbeats for the Q class). The obtained results are presented in Table 4. The pro-

posed algorithm was evaluated in terms of its accuracy, specificity, sensitivity and posi-

tive predictive value.

Sensitivity(ST) =
TP

TP + FN
× 100 (%) (8)

Specificity(SF) =
TN

TN + FP
× 100 (%) (9)

(A)                                                      (B) 

Figure 5 The average scalogram of the ECG segments (a) and a PCA-LDA mapping matrix (b).

Kim et al. BioMedical Engineering OnLine 2011, 10:56
http://www.biomedical-engineering-online.com/content/10/1/56

Page 13 of 19



Table 4 The results of the proposed algorithm by each subject in the MIT-BIH arrhythmia database

files beat type Normal SVEB VEB

N S V F Q AC SF. ST +P AC SF ST +P AC SF ST +P

100 2239 33 1 0 0 98.50 0 100 98.50 98.55 100 0 - 99.96 100 0 -

101 1860 3 0 0 2 99.68 0 99.95 99.73 99.84 100 0 - 99.95 99.95 - 0

103 2082 2 0 0 0 99.90 0 100 99.90 99.90 100 0 - 100 100 - -

105 2526 0 41 0 5 97.16 28.26 98.42 98.69 99.49 99.49 - 0 97.67 98.85 24.39 25.64

106 1507 0 520 0 0 99.26 97.31 99.93 99.08 100 100 - - 99.26 99.93 97.31 99.80

108 1741 4 16 2 0 99.38 68.18 99.77 99.60 99.77 100 0 - 99.26 99.54 68.75 57.89

109 2492 0 38 2 0 98.93 55.00 99.64 99.28 100 100 - - 99.01 99.64 57.89 70.917

111 2123 0 1 0 0 99.91 100 99.91 100 100 100 - - 99.91 99.91 100 33.33

112 2537 2 0 0 0 99.92 0 100 99.92 99.92 100 0 - 100 100 - -

113 1789 6 0 0 0 99.72 16.67 100 99.72 99.67 100 0 - 99.94 99.94 - 0

114 1820 12 43 4 0 97.82 30.51 100 97.80 98.99 99.63 0 0 98.30 100 25.58 100

115 1953 0 0 0 0 100 - 100 100 100 100 - - 100 100 - -

116 2302 1 109 0 0 99.67 94.55 99.91 99.74 99.96 100 0 - 99.71 99.91 95.41 98.11

117 1534 1 0 0 0 99.93 0 100 99.93 99.93 100 0 - 100 100 - -

118 2166 96 16 0 0 95.08 0 100 95.08 95.79 100 0 - 99.90 100 0 -

119 1543 0 444 0 0 100 100 100 100 100 100 - - 100 100 100 100

121 1861 1 1 0 0 99.95 50.00 100 99.95 99.95 100 0 - 100 100 100 100

122 2476 0 0 0 0 100 - 100 100 100 100 - - 100 100 - -

123 1515 0 3 0 0 100 100 100 100 100 100 - - 100 100 100 100

124 1536 31 47 5 0 97.04 42.17 100 96.97 98.09 100 0 - 99.26 100 74.47 100

200 1743 30 826 2 0 95.69 86.95 100 93.96 98.85 100 0 - 96.92 100 90.31 100

201 1635 128 198 2 0 95.31 73.17 99.76 94.88 93.48 100 0 - 93.17 94.90 77.78 63.11

202 2061 55 19 1 0 98.17 48.00 100 98.14 97.43 100 0 98.64 98.91 68.42 36.11

203 2529 2 444 1 4 97.15 87.80 98.81 97.85 99.93 100 0 - 97.25 98.74 88.74 92.49

205 2571 3 71 11 0 98.42 52.94 99.92 98.47 99.89 100 0 - 98.72 99.81 59.15 89.36

207 1543 107 210 0 0 86.77 23.66 99.74 86.41 94.14 99.89 0 0 92.31 99.70 34.29 93.51

208 1586 2 992 373 2 90.90 80.86 99.56 85.77 99.93 100 0 - 95.47 93.63 99.09 88.72
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Table 4 The results of the proposed algorithm by each subject in the MIT-BIH arrhythmia database (Continued)

209 2621 382 1 0 0 90.28 25.07 99.81 90.11 90.31 99.85 24.87 95.96 99.97 99.97 100 50.00

210 2423 22 195 10 0 96.79 62.56 100 96.61 99.17 100 0 - 97.77 99.88 71.28 97.89

212 2748 0 0 0 0 100 - 100 100 100 100 - - 100 100 - -

213 2641 28 220 362 0 90.99 51.97 100 90.01 99.14 100 0 - 96.83 99.74 56.82 93.98

214 2002 0 256 1 2 99.20 93.05 100 99.11 100 100 - - 99.25 99.95 93.75 99.59

215 3196 2 164 1 0 99.49 92.81 99.84 99.63 99.70 99.76 0 0 99.58 99.97 92.07 99.34

219 2082 7 64 1 0 98.93 70.83 99.90 99.00 99.68 100 0 - 99.30 99.90 79.69 96.23

220 1954 94 0 0 0 95.41 0 100 95.41 95.41 100 0 - 100 100 - -

221 2031 0 396 0 0 99.92 99.49 100 99.90 100 100 - - 99.92 100 99.49 100

222 2274 209 0 0 0 91.06 43.06 95.47 94.80 91.62 97.01 33.01 50.36 97.74 97.74 - 0

223 2045 73 473 14 0 87.82 43.04 99.95 86.50 97.20 100 0 - 90.98 99.91 50.74 99.17

228 1688 3 362 0 0 99.51 97.81 99.88 99.53 99.85 100 0 - 99.71 99.94 98.62 99.72

230 2255 0 1 0 0 99.96 0 100 99.96 100 100 - - 99.96 100 0 -

231 1568 1 2 0 0 99.94 66.67 100 99.94 99.94 100 0 - 100 100 100 100

232 398 1382 0 0 0 96.18 97.76 90.70 92.09 96.07 90.70 97.61 97.33 99.89 99.89 - 0

233 2230 7 831 11 0 97.63 91.40 100 96.83 99.77 100 0 - 97.89 99.78 92.78 99.36

234 2700 50 3 0 0 98.18 5.66 100 98.18 98.18 100 0 - 100 100 100 100

Total 90126 2779 7008 803 15 97.18 75.66 99.71 97.21 98.61 99.86 54.44 91.59 98.61 99.56 85.99 93.65

’-’ shows the parts with the ‘0’ denominator. The overall performance levels are calculated based on the entire classification results; these do not refer to the average of the performance level of each subject. AC, SF,
ST and +P means accuracy, specificity, sensitivity and positive predictive value respectively. SVEB is supraventricular ectopic beats. VEB is ventricular ectopic beats.
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Accuracy(AC) =
(TP + TN)

(TP + TN + FP + FN)
× 100 (%) (10)

Positive Predictive Value(+P) =
TP

TP + FP
× 100 (%) (11)

In addition, to facilitate a comparison with the findings of Chazal [7,8], the training

and evaluating datasets of the second assessment were constructed in the same manner

used in those studies. The training dataset (subjects 101, 106, 108, 109, 112, 114, 115,

116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223 and 230) and the

test dataset (subjects 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,

214, 219, 221, 222, 228, 231, 232, 233 and 234) consisted of data from 22 subjects in

each case. The details of the possession rate of each class are shown in Table 2 in a

referenced study [8]. The size of the training dataset was also too large, with a total of

51,020 beats. Thus, the training dataset was reduced by about 15,000 beats with the

same rate. The obtained results are presented in Table 5.

Table 5 The classification results of the proposed algorithm by heartbeat type and a
comparison with other studies

Proposed algorithm’s Chazal et al. (2006)[7]

Real Results Total Real Results Total

N S V F Q N S V F Q

N 44082 115 61 0 0 44258 N 32432 1360 66 483 53 34394

S 302 1448 87 0 0 1837 S 136 1264 31 10 0 1441

V 284 6 2924 7 0 3221 V 45 65 2433 32 4 2579

F 321 0 49 18 0 388 F 24 3 49 216 0 292

Q 5 0 2 0 0 7 Q 4 0 1 0 0 5

Total 44994 1569 3123 25 0 49711 Total 32641 2692 2580 741 57 38711

performance (%): Proposed algorithm performance (%): Chazal et al. (2006)

N S V F Q Avg N S V F Q Avg

AC 97.81 98.97 99.00 99.24 99.99 97.94 AC 94.39 95.85 99.24 98.45 99.84 94.8

SF 83.28 99.75 99.57 99.99 100 85.07 SF 95.16 96.17 99.59 98.63 99.85 95.52

ST 99.60 78.82 90.78 4.64 0.00 97.51 ST 94.30 87.72 94.34 73.97 0.00 93.89

+P 97.97 92.29 93.63 72.00 0.00 97.26 +P 99.36 46.95 94.30 29.15 0.00 96.53

Chazal et al. (2004) [8] Ince et al. (2009) [6]

Real Results Total Real Results Total

N S V F Q N S V F Q

N 38444 1904 303 3509 98 44258 N 73019 991 513 98 29 74650

S 173 1395 252 16 1 1837 S 686 1568 205 5 6 2470

V 117 321 2504 176 103 3221 V 462 333 4993 79 32 5899

F 33 1 7 347 0 388 F 168 28 48 379 2 625

Q 4 0 3 0 0 7 Q 8 1 3 1 1 14

Total 38771 3621 3069 4048 202 49711 Total 74343 2921 5762 562 70 83658

performance (%): Chazal et al. (2004) performance (%): Ince et al. (2009)

N S V F Q Avg N S V F Q Avg

AC 87.65 94.63 97.42 92.47 99.58 88.58 AC 96.47 97.30 98.00 99.49 99.90 96.62

SF 94.00 95.35 98.78 92.50 99.59 94.35 SF 85.30 98.33 99.01 99.78 99.92 86.76

ST 86.86 75.94 77.74 89.43 0.00 85.88 ST 97.82 63.48 84.64 60.64 7.14 95.58

+P 99.16 38.53 81.59 8.57 0.00 95.06 +P 98.22 53.68 86.65 67.44 0.00 95.84

AC, SF, ST and +P means accuracy, specificity, sensitivity and positive predictive value respectively.
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The results of the proposed algorithm show high performance for the N class in all

of the subjects. In addition, for the V class, the proposed algorithm shows high perfor-

mance in most subjects, but some subjects were characterized by low performance.

According to some findings [7,8] reporting the performance against each subject, the

proposed algorithm shows better performance compared to one study [8] and compar-

able performance compared to another [7] with the exception of subject 213. The pro-

posed algorithm shows very low ST and +P results for subject 213, as it reports a low

ST in the F class and because the subject 213 has many F class heartbeats.

On the other hand, the ST of the S class showed low performance in almost all of

the subjects except subject 232. Interestingly, this performance characteristic is com-

mon in intersubject research. According to some findings [7,8] as well as the results of

the proposed algorithm, those studies show low ST and +P values for the S class in

many subjects but achieve high overall performance owing to the high performance

only for subject 232. This may be due to characteristics that are too distinctive and the

presence of too many S class heartbeats by subject 232. Subject 232 has 1382 S class

heartbeats among a total of 2779 S class heartbeats in the entire MIT-BIH arrhythmia

database. Moreover, this subject has simultaneously bradycardia and many consecutive

atrial premature beats which are in the S class. Therefore, the RRIs of subject 232’s

normal beats occurred for about 2 seconds, and the RRIs of the atrial premature beats

occurred for about 1 second. These characteristics make the feature weak, because the

atrial premature beats normally have a RRI of less than 0.6 seconds. This distinctive

characteristic of #232 makes the previous heartbeats’ information to become important.

The proposed algorithm uses information of past heartbeats, such as Annotbf1,

Annotbf2, Morphbf1 and Morphbf2, to classify S class heartbeats correctly. Table 6

shows classification results of the proposed algorithm in subject 232 with or without

the previous heartbeats’ information. Through using the features, the proposed algo-

rithm could classify N and S class more clearly. This kind of previous heartbeats’ infor-

mation, like the number of consecutive S class heartbeats, was also used by other

researchers [21].

Table 6 The classification results of #232 with or without information of past heartbeats
(Annotbf1, Annotbf2, Morphbf1 and Morphbf2)

With information of past heartbeats Without information of past heartbeats

Real Results Total Real Results Total

N S V F Q N S V F Q

N 397 1 0 0 0 398 N 398 0 0 0 0 398

S 1 1379 2 0 0 1382 S 864 319 199 0 0 1382

V 0 0 0 0 0 0 V 0 0 0 0 0 0

F 0 0 0 0 0 0 F 0 0 0 0 0 0

Q 0 0 0 0 0 0 Q 0 0 0 0 0 0

Total 398 1380 2 0 0 1780 Total 1262 319 199 0 0 1780

performance (%): Proposed algorithm performance (%): Chazal et al. (2006)

N S V F Q Avg N S V F Q Avg

AC 99.89 99.78 99.89 100 100 99.80 AC 51.46 40.28 88.82 100 100 42.78

SF 99.93 99.75 99.89 100 100 99.79 SF 37.48 100 88.82 100 100 86.02

ST 99.75 99.78 - - - - ST 100 23.08 - - - -

+P 99.75 99.93 0.00 - 0.00 - +P 31.54 100 0.00 - 0.00 -

AC, SF, ST and +P means accuracy, specificity, sensitivity and positive predictive value respectively.
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As shown in Table 5, it is very common for existing studies to classify N class heart-

beats into the S class. However, the proposed algorithm significantly reduces the num-

ber of such misclassifications. This gives the proposed algorithm higher AC, SF and +P

values than those of the other studies of the S class. For a V class heartbeat, the pro-

posed algorithm also shows higher performance compared to other research, except

for one existing study [7].

On an average performance basis, as obtained by the weighted sum of the performance

of each class, the proposed algorithm showed higher AC, ST and +P results, whereas the

SF result was slightly lower compared to that of previous studies. This arose because the

proposed algorithm misclassified many non-N class heartbeats into the N class. How-

ever, in terms of the misclassified heartbeat rate against the entire set of heartbeats, the

proposed algorithm misclassified only 2.52% of all heartbeats, while 4.42%, 6.11% and

14.12% of all heartbeats were incorrectly classified in the research of Chazal in 2004 and

2006 and Ince in 2009 [6-8]. In addition, the proposed algorithm is based on 1 channel

ECG signal only, but the studies [6-8] used 2 channel ECG signals.

The proposed algorithm specifically uses a different subject-adaptation technique

against the existing subject-adaptation algorithms. The aforementioned previous stu-

dies [6,7] attempted to adapt the characteristics of a target subject using a part of his

data preclassified by a physician in the training dataset. On the other hand, the pro-

posed algorithm does not apply a target subject’s data to the training dataset, but uses

specific transfer functions to reduce the differences among subjects. In terms of the

efforts of physicians, they preclassify 500 heartbeats and then apply them to the train-

ing dataset in one previous study [7]. In another [6], they preclassify and apply the first

5 minutes of the data (about 300 heartbeats). The proposed algorithm improved the

usability with only 6 heartbeats.

Conclusions
In this paper, a dedicated wavelet-based arrhythmia classification algorithm is proposed.

This algorithm has the characteristic using a mother wavelet optimized for each subject

to achieve stable performance, even in the intersubject condition. Through this process,

we sought to reduce the variation among the subjects and to preserve only the differ-

ences from the arrhythmia. It was verified that this approach works effectively though an

assessment of the features and an evaluation of the algorithm. The proposed algorithm is

able to ensure higher performance with less effort compared to previous studies. How-

ever, the low performance of the S class and V class of some subjects remain as a pro-

blem. In addition, the high computational load due to the use of CWT is a disadvantage.

We cannot reach a perfect intersubject condition, although those would significantly

reduce the amount of intervention needed by physicians. We will continue to develop a

robust arrhythmia classification algorithm to deal with these problems.
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