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Abstract

Background: Recent evidence indicates that osteoarthritis (OA) may be a systemic
disease since mesenchymal stem cells (MSCs) from OA patients express type X
collagen, a marker of late stage chondrocyte hypertrophy (associated with
endochondral ossification). We recently showed that the expression of type X
collagen was suppressed when MSCs from OA patients were cultured on nitrogen
(N)-rich plasma polymer layers, which we call “PPE:N” (N-doped plasma-polymerized
ethylene, containing up to 36 atomic percentage (at.% ) of N.

Methods: In the present study, we examined the expression of type X collagen in fetal
bovine growth plate chondrocytes (containing hypertrophic chondrocytes) cultured on
PPE:N. We also studied the effect of PPE:N on the expression of matrix molecules such as
type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13
(MMP-13) and molecules implicated in cell division (cyclin B2). Two other culture
surfaces, “hydrophilic” polystyrene (PS, regular culture dishes) and nitrogen-containing
cation polystyrene (Primaria®), were also investigated for comparison.

Results: Results showed that type X collagen mRNA levels were suppressed when
cultured for 4 days on PPE:N, suggesting that type X collagen is regulated similarly in
hypertrophic chondrocytes and in human MSCs from OA patients. However, the
levels of type X collagen mRNA almost returned to control value after 20 days in
culture on these surfaces. Culture on the various surfaces had no significant effects
on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels.

Conclusion: Hypertrophy is diminished by culturing growth plate chondrocytes on
nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis.
Furthermore, one major advantage of such “intelligent surfaces” over recombinant
growth factors for tissue engineering and cartilage repair is potentially large cost-saving.

Background
Endochondral ossification involves the expression of type X collagen, a marker of

chondrocyte hypertrophy [1-3]. Recent evidence indicates that a major drawback of

current cartilage- and disc-tissue engineering is that human mesenchymal stem cells

(MSCs) from osteoarthritic (OA) patients express type X collagen [4]. We have shown

that synthetic polymer surfaces created by glow discharge plasma can suppress the

expression of genes associated with hypertrophy in committed human MSCs from OA
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patients [5-7]. However, little is known about the effect of different culture surfaces on

gene expression in the case of growth plate chondrocytes.

Endochondral ossification begins during long bone formation in the embryo [8]. After

birth, until adulthood, growth of the long bone is centred in the cartilagenous growth

plates, leading to an increase in bone length and epiphyseal growth. It is also an essential

component of fracture repair. The primary mammalian growth plate can be divided into

several zones, namely the resting, proliferative, and hypertrophic zones [8]. The resting

zone chondrocytes elaborate an extracellular matrix similar to the proliferating zone

cells, one which expresses type II collagen and the proteoglycan aggrecan; these consti-

tute, together with other matrix molecules, an extensive extracellular matrix. In the pro-

liferative zone, chondrocytes divide actively and synthesize different collagen molecules

(types II, IX, and XI) and cartilage-specific proteoglycans [1,2,8]. At this point in time,

they express cell cycle-related genes such as cyclins [8]. After cessation of cell division,

chondrocytes partly resorb their extracellular matrix and enlarge (become hypertrophic)

as they express type X collagen. The up-regulation of type X collagen expression signals

the change in chondrocytic phenotype from prehypertrophic to hypertrophic, after

which the matrix of the longitudinal septa between the cells starts to mineralize [2,8].

This coordinated proliferation and differentiation of growth plate chondrocytes is

required for normal growth and development of the skeleton [9-14].

We recently showed that a novel atmospheric-pressure plasma-polymerized thin film

material, named “nitrogen-rich plasma-polymerized ethylene“ (PPE:N), is able to inhibit

hypertrophy as well as osteogenesis in committed human MSCs from OA patients [6].

In contrast, neither aggrecan nor type I collagen expression were significantly affected.

These results indicated that PPE:N coatings may be suitable surfaces for inducing

MSCs to a chondrocyte or disc-like (nucleus pulposus) phenotype for tissue engineer-

ing of cartilage or intervertebral discs, respectively, in which hypertrophy and osteo-

genesis must be avoided.

In this study, the effect of culturing growth plate chondrocytes expressing the hyper-

trophic phenotype (cells that express type X collagen) on PPE:N, Primaria®, or regular

polystyrene (PS) culture dishes was investigated using reverse transcriptase (RT) and

polymerase chain reaction (PCR). Primaria® was chosen because it has been described

as having nitrogen-containing cations at its surface [15,16]. Thus, we set out to test

the hypothesis that the chemically-bound nitrogen content, [N], may be an important

regulator of cellular hypertrophy. We demonstrated that, similarly to what we observed

in human MSCs, fetal bovine growth plate hypertrophic chondrocytes respond to

N-rich substrates by down-regulation of type X collagen expression. This may be

important in designing substrates for cartilage- or intervertebral disc repair, where pre-

vention of hypertrophy and endochondral ossification is important. Our findings reveal

hitherto unsuspected similarities in regulation of expression of type X collagen in these

cell types, and they may provide novel insights into how these cells interact with PPE:

N surfaces.

Methods
A. Deposition of PPE:N

The methods employed have been described earlier by Girard-Lauriault et al. [17,18].

for the experiments reported here, PPE:N films were deposited on biaxially oriented
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polypropylene (BOPP; 3M Company) [6,17-20]. Using this method, films containing 30

at.% nitrogen, [N], were deposited from the precursor gas mixture composed of nitro-

gen (N2, 10 standard liters per minute, slm) and ethylene (C2H4, 10 standard cubic

centimeters per minute, sccm), the only mixture used in this particular study, unlike

our above-referenced earlier work [6,17,18].

To visualize the role of nitrogen content on the attachment of chondrocytes to PPE:N

surfaces, micropatterning experiments were carried out as follows: Special 25 μm thick

Kapton® polyimide masks were placed over the BOPP substrate. These masks were fabri-

cated with an excimer laser, coupled to a precise positioning system, to create square

arrays of holes (diameter: 100 μm; pitch: 200 μm) on an area of 4 cm2. Care was taken to

assure intimate contact between the mask and substrate surface during deposition runs.

B. Surface characterization

The surface compositions of the different cell culture surfaces (PPE:N as well as poly-

styrene (PS) and Primaria®; BD Biosciences, Mississauga, ON) were determined by

X-ray photoelectron spectroscopy (XPS) [6,17-20]. Throughout this article, we will be

referring to their surface elemental concentrations, [X], in terms of the elements that

comprise them, namely N, C and O; since hydrogen cannot be detected by XPS, [X] is

given by:

X
X

N C O
[ ] =

+ +
×100%

N, O, and C being determined from the XPS broad-scan spectra.

C. Growth plate chondrocyte isolation

The physes of multiple primary growth plates were isolated from bovine fetuses, as

described earlier [1]. These slices (~2 mm thick) were predominantly from hypertrophic

zones. Fetal age, on average 171 days (range 154 - 216 days), was determined by measure-

ment of tibial length [21]. Slices were held for up to 2 h at room temperature in Dulbec-

co’s modified Eagle’s medium (DMEM), pH 7.4, containing (per ml) 100 U penicillin, 100

μg streptomycin (medium A) supplemented with 0.25 μg amphotericin B, prior to chon-

drocyte isolation. The growth plates were digested for 12 to 16 h using collagenase (0.7%

w/v) and hyaluronidase (0.2% w/v) in the presence of medium A, supplemented with 10%

fetal bovine serum (FBS; Hyclone, Logan, UT), as described previously [1].

D. Cell culture

After isolation, these heterogeneous chondrocytes expressed type X collagen, a defini-

tive marker of the hypertrophic phenotype (see Results section). Cells were counted

with a hemacytometer and 1 million cells in 40 μl of medium A, supplemented with

5 μg/ml insulin, 5 μg/ml transferrin, 5 ng/ml sodium selenite, 1 mg/ml bovine serum

albumin, 60 μg/ml ß-glycerophosphate, and freshly prepared 50 μg/ml ascorbic acid,

were carefully pipetted onto the centers of the PPE:N surfaces (covering the entire sur-

face of the wells), Primaria® 24-well culture dishes (BD Biosciences), or regular 24-well

PS culture dishes. The cells were left to adhere to the surfaces for 1 h. Medium was

carefully removed and 2 ml of fresh medium was added. Bovine chondrocytes adhered

and grew on the three surfaces. Media was changed every 2 days, up to 20 days in

culture.
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E. Total RNA isolation

Total RNA was extracted from chondrocytes by a modification of the method of

Chomcynski and Sacchi [22] using TRIzol reagent (Invitrogen, Burlington, ON). After

centrifugation for 15 min at 12,000 × g at 4°C, the aqueous phase was precipitated in

0.5 volume of isopropanol, incubated for 10 min at room temperature, and centrifuged

again for 10 min at 12,000 × g at 4°C. The resulting RNA pellet was washed in 75%

ethanol, centrifuged for 5 min at 7,500 × g at 4°C, air-dried, resuspended in 25 μl of

diethylpyrocarbonate-treated water, and assayed for RNA concentration and purity by

measuring A260/A280.

F. Reverse transcriptase (RT) and polymerase chain reaction (PCR)

The RT reaction was performed using 0.2 μg total RNA isolated from the chondrocytes

in a total volume of 20 μ1, containing 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM

MgCl2, 10 mM DTT, 0.5 mM each dATP, dGTP, dCTP and dTTP, and 200 units of

Superscript II™ RNAse H-reverse transcriptase (Invitrogen).

PCR was performed in a total volume of 25 μ1 containing: 20 mM Tris-HCl (pH 8.4),

50 mM KCl, 1.5 mM MgCl2 , 0.2 mM of dATP, dGTP, dCTP, dTTP, 0.8 μM of each pri-

mer, 1 μl of RT mixture and 1.25 units of Taq DNA polymerase (Invitrogen). The 30

cycles of PCR included denaturation (95°C, 1 min), annealing (50°C, 60 sec) and exten-

sion (72°C, 5 min), as previously described [5-7]. After agarose (2%) gel electrophoresis,

PCR products were visualized by ethidium bromide staining and analyzed using a Bio-

Rad VersaDoc image analysis system, equipped with a cooled 12-bit CCD camera (Bio-

Rad, Mississauga ON). The intensity of the bands was quantified using Quantity One

software on the VersaDoc. 18S rRNA level was used as housekeeping gene and served to

normalized the results. The primer sequences used for PCR, shown in Table 1, were

chosen because they are specific for bovine mRNA and they amplify a single product.

G. Statistical Analysis

The non-parametric Kruskal-Wallis test was performed to test for differences between

surfaces for each gene, and for changes between the different days of culture. Results

were considered significant for p < 0.05.

Results
A. Characteristics of polystyrene, Primaria®, and PPE:N coatings

X-ray photoelectron spectroscopy (XPS) broad-scan spectra of the different surfaces

show peaks characteristic of N, O, and C (Figure 1). The concentrations of elements

are expressed as atomic (at.) percentages (%); those of N were 0%, 6%, and 29.5%

(all at. %) for PS, Primaria®, and PPE:N, respectively (Table 2). The respective

Table 1 Primer sequences used for PCR

Genes Primers Size
(bp)

Aggrecan 5-CAGAACATGCGCTCCAATGA-3’ 5-CGTCATAGGTTTCGTTGGTG-3’ 371

Type II collagen 5-AACCCAGAAACAACACAATCC-3’ 5’-GAGGGGAGAAAAGTCCGAAC-3’ 168

Type X collagen 5’-CTGAGCGATACCAAACACC-3’ 5’-CCTCTCAGTGATACACCTTTAC-3’ 128

MMP-13 Cyclin B2 5’-GATAAAGACTATCCGAGAC-3’ 5’-CGAACAATACGGTTACTC-3’ 5’-
GTTGACTATGACATGGTG-3’ 5’-CAAGACAAAGTGCACGAAC-3’

168
358

18S rRNA 5’-CTACTTGGATAACTGTGGTAATTC-3’ 5’-GACTCTAGATAACCTCG-3’ 168
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concentration of O were 18%, 15%, and 5%, while those of C were 82%, 79%, and

65.5% for PS, Primaria®, and PPE:N, respectively, again all in at.%.

B. Micropatterning

Figure 2 shows that chondrocytes cultured on micro-patterned surfaces preferentially

grow on nitrogen-rich surfaces (Figure 2A), indicating that the nitrogen-containing

functional groups (notably primary amines, see further below) may be responsible for

inducing the attachment of chondrocytes. However, the surface of cell attachment

exceeded the mask hole (100 μm) in some places, indicating that chondrocytes also grew

on the BOPP substrate, but to a lesser extent, or that contact between the mask and sub-

strate surface was not perfectly intimate and that some functional nitrogen groups were

formed around the hole. Results also showed that cells that adhere to nitrogen surfaces

expressed proteoglycans, as visualized by Safranin-O staining (Figure 2B).

Figure 1 XPS broad-scan spectra of commercial polystyrene and Primaria® culture dishes, and of
PPE:N surfaces.

Table 2 Elemental compositions from XPS analyses of the polystyrene, Primaria®, and
PPE:N surfaces

Culture Surfaces N (at. %) O (at. %) C (at. %)

Control polystyrene 0 18 82

Primaria® 6 15 79

PPE:N 29.5 5 65.5

Note: Hydrogen cannot be detected by XPS.

Petit et al. BioMedical Engineering OnLine 2011, 10:4
http://www.biomedical-engineering-online.com/content/10/1/4

Page 5 of 12



C. Gene expression

We recently showed that PPE:N surfaces decreased the expression of type X collagen

in MSCs from OA patients. Here, we explored the effect of PPE:N surfaces on the

expression of this gene in bovine growth plate chondrocytes. Bovine chondrocytes

adhered to the three surfaces compared in the present study and covered the entire

surface of the dishes by the end of the culture period (20 days) (results not shown).

Figure 3 demonstrates that fetal bovine growth plate chondrocytes isolated without

separating the different subpopulations, were enriched with terminally differentiated

cells that are characterized by the expression of type X collagen (Day 0), a marker of

hypertrophic chondrocytes.

The expression of type X collagen mRNA was significantly lower after 4 days of cul-

ture (p = 0.007) when chondrocytes were cultured on PPE:N, compared to control PS

and Primaria®, suggesting that type X collagen is regulated similarly in hypertrophic

chondrocytes and in human MSCs from OA patients (Figure 3). However, and con-

trary to what was observed in MSCs [5-7], the level of type X collagen mRNA almost

returned to control value after 20 days in culture on PPE:N surfaces.

Since growth plate chondrocytes secrete an extensive hyaline extracellular matrix

consisting principally of type II collagen and the large aggregating proteoglycan aggre-

can, we decided to examine the effect of the different culture surfaces on the expres-

sion of these genes in growth plate chondrocytes. The levels of type II collagen mRNA

did not vary significantly in cells cultured for 4 or 20 days on PS (p > 0.05) (Figure 4):

In contrast to type X collagen, type II collagen mRNA levels were not significantly

affected by PPE:N surfaces. The different surfaces and times in culture had little effect

on levels of aggrecan mRNA (Figure 5).

Collagenase 3 (MMP-13) was examined because it is the most important collagenase

found in the growth plate [23], although MMP-16 is also present. We have shown that

MMP-13 is up-regulated during chondrocyte hypertrophy in the growth plate [1,2].

Therefore, we next compared the expression of MMP-13 in growth plate chondrocytes

cultured on the different surfaces (Figure 6). MMP-13 mRNA levels were expressed

Figure 2 Micro-patterning of growth plate chondrocytes on a PPE:N-coated surface. Kapton®

polyimide masks (100 μm openings, 200 μm pitch) were placed over the BOPP substrate to create the
pattern. Growth plate chondrocytes grown on this patterned surface for 9 days and photomicrographs
were taken (A). Proteoglycan production was visualized using Safranin-O staining (B).
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maximally on day 4 and declined significantly on day 20 (p = 0.04). However, there were

no noteworthy differences in its levels in cells cultured on the three different surfaces.

Since the upregulation of MMP-13 expression is observed immediately before and at

the onset of cell division, as defined by cyclin B2 expression, and again in chondrocytes

that undergo hypertrophy [3], we next analyzed the effect of the different culture sur-

faces on cyclin B2 mRNA levels (Figure 7). Cyclin B2 mRNA was also expressed maxi-

mally on day 4 and declined significantly on day 20. Here too, there were no

appreciable differences in its levels in growth plate chondrocytes cells cultured on the

three different surfaces.

Discussion
The role of cell-biomaterial interactions in tissue engineering is still quite poorly

understood. It has been known for some time that cells may be sensitive to subtle dif-

ferences in surface chemistry [5-7,15,16,24-31]. The chemical and topographical nature

of the surface can directly influence cellular responses [5,15,16,18,25,29-32], ultimately

affecting the rate and quality of new tissue formation [25,33,34]. Our previous studies

have shown that PPE:N suppresses the expression not only of type X collagen in MSCs

from OA patients, but also of osteogenic marker genes such as alkaline phosphatase,

bone sialoprotein, and osteocalcin [6]. In contrast, neither aggrecan nor type I collagen

expression were found to be significantly affected. Furthermore, plasma-modified poly-

propylene or nylon-6 was found to affect type X collagen expression in human MSCs

from OA patients [5,7].

Figure 3 Effect of polystyrene culture dishes (PS), Primaria® (P), and PPE:N (N) surfaces on the level
of type X collagen mRNA in hypertrophic growth plate chondrocytes. Bovine hypertrophic growth
plate chondrocytes were cultured for up to 20 days on the different surfaces and mRNA levels were
analyzed by RT-PCR. Agarose gels show representative examples of PCR products for type X collagen (COL
10) mRNA and 18S rRNA. All values were normalized to 18S rRNA. Quantitative results are the mean ±
standard error of 4 experiments. * p < 0.05 vs. PS.
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Recent studies have attempted to use growth factors to inhibit type X collagen

expression [35]. However, no earlier study had so far addressed the possible effect of

the substratum on growth plate chondrocyte hypertrophy. The recent advances in our

group in creating novel bioactive synthetic polymer surfaces with the aid of ultraviolet-

photochemical and plasma-chemical processes [5,17-19,29], particularly the latter, have

enabled us to study the culture of MSCs on nitrogen-enriched (nitrogen concentration,

[N], up to ~20%) surface-modified polymers such as BOPP and Nylon-6 polyamide

[5,7], as well as on super-rich ([N] ≥ 25%) plasma-polymerized thin films, PPE:N

[6,17,18]. The latter substrates have distinguished themselves by their ability to adhere

certain cell types that earlier resisted adhesion to all prior-known cell culture surfaces,

for example, human U937 monocytes [17,18,29].

The present data indicate that surfaces with high [N] values are capable of suppres-

sing type X collagen mRNA in growth plate chondrocytes, with no significant effects

on type II collagen, aggrecan, MMP-13 and cyclin B2 mRNA levels. The similarity in

type X collagen suppression by PPE:N in hypertrophic growth plate chondrocytes and

in human MSCs from OA patients raises the question of whether similar mechanisms

are involved. However, contrary to what was observed in MSCs in which PPE:N

reduced type X collagen for long time in culture [6], PPE:N was found to decrease the

expression of type X collagen in growth plate chondrocytes only in the short-term. In

fact, the decreased type X collagen expression was not observed after 12 days of cul-

ture (results not shown). This suggests that the decrease may be associated with the

initial preferential adhesion of growth plate chondrocytes, as illustrated in Figure 2.

Figure 4 Effect of polystyrene culture dishes (PS), Primaria® (P), and PPE:N (N) surfaces on the level
of type II collagen mRNA in hypertrophic growth plate chondrocytes. Bovine hypertrophic growth
plate chondrocytes were cultured for up to 20 days on the different surfaces and mRNA levels were
analyzed by RT-PCR. Agarose gels show representative examples of PCR products for type II collagen (COL
2) mRNA and 18S rRNA. All values were normalized to 18S rRNA. Quantitative results are the mean ±
standard error of 4 experiments.
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This, in turn, suggests that the effect of PPE:N may vary with the cell type. It is also

possible that that the surfaces were altered by chondrocyte metabolism and lost their

initial composition. This remains to be investigated. Nevertheless, we now know that

the substrates’ effect on adhering cells is mediated not by the absolute value of [N],

but rather by the concentrations of various chemical functionalities at the surface, for

example primary amines, imines, nitriles, amides [18,29]. However, hydroxyls (alcohols)

and carboxylic acid groups can also play a role since bound oxygen is always incorpo-

rated in plasma polymer films due to the reaction of residual surface radicals with air.

In the case of PS or Primaria®, bound oxygen is due to plasma-modification of the

polystyrene in an O2-containing gas mixture. As we recently reported elsewhere [18,29],

we also know that primary amines account for 5 to 10% of [N]. We also know that

nitriles (-C≡N) also constitute an important surface functionality of PPE:N coatings.

Moreover, primary amines are the dominant functionality in the remarkable adhesion

behaviour we observed in the case of the U937 macrophages [29]. As a next step in the

study of growth plate chondrocyte response on high-[N] culture surfaces, those earlier

studies suggest working with coatings prepared by two other techniques in our labora-

tories, low-pressure plasma polymerisation [36], and vacuum ultraviolet photo-polymeri-

sation [37], both capable of yielding a higher amount of primary amine than those found

in the high-pressure plasma polymerised coatings used in this present work.

Finally, although gene expression data may suggest an influence of the nitrogen-rich

surfaces on the hypertrophic phenotype, mineralization was not addressed in the pre-

sent study. It is commonly believed that type X collagen is involved in controlling the

Figure 5 Effect of polystyrene culture dishes (PS), Primaria® (P), and PPE:N (N) surfaces on the level
of aggrecan mRNA in hypertrophic growth plate chondrocytes. Bovine hypertrophic growth plate
chondrocytes were cultured for up to 20 days on the different surfaces and mRNA levels were analyzed by
RT-PCR. Agarose gels show representative examples of PCR products for aggrecan (AGG) mRNA and 18S
rRNA. All values were normalized to 18S rRNA. Quantitative results are the mean ± standard error of 4
experiments.
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Figure 6 Effect of polystyrene culture dishes (PS), Primaria® (P), and PPE:N (N) surfaces on the level
of MMP-13 mRNA in hypertrophic growth plate chondrocytes. Bovine hypertrophic growth plate
chondrocytes were cultured for up to 20 days on the different surfaces and mRNA levels were analyzed by
RT-PCR. Agarose gels show representative examples of PCR products for MMP-13 mRNA and 18S rRNA. All
values were normalized to 18S rRNA. Quantitative results are the mean ± standard error of 4 experiments.
* p < 0.05 vs. day 4.

Figure 7 Effect of polystyrene culture dishes (PS), Primaria® (P), and PPE:N (N) surfaces on the level
of cyclin B2 mRNA in hypertrophic growth plate chondrocytes. Bovine hypertrophic growth plate
chondrocytes were cultured for up to 20 days on the different surfaces and mRNA levels were analyzed by
RT-PCR. Agarose gels show representative examples of PCR products for cyclin B2 mRNA and 18S rRNA. All
values were normalized to 18S rRNA. Quantitative results are the mean ± standard error of 4 experiments.
*p < 0.05 vs. day 4.
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later stages of endochondral bone formation [1-3]. In this case, culturing chondrocytes

or MSCs on these surfaces should suppress mineralization. This is of great importance

for cartilage repair or tissue engineering using MSCs from osteoarthritc patients

known to express type X collagen. Further studies are therefore necessary to determine

the effect of these surfaces on mineralization.

Conclusions
Type X collagen expression was reduced, at least transiently, by nitrogen rich surfaces

in both growth plate chondrocytes as well as in MSCs from OA patients, which is ben-

eficial to chondrogenesis. As “intelligent” surfaces, PPE:N coatings therefore represent

a potentially advantageous cell-culture substrate with beneficial effects for cartilage and

intervertebral disc repair. However, further studies are necessary to better understand

the nature of specific functional groups, such as primary amines, on gene expression

and cell phenotype: this information will be important in tissue engineering applica-

tions that require the use of such “intelligent” surfaces.
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