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Abstract

Background: Denoising with edge preservation is very important in digital x-ray
imaging since it may allow us to reduce x-ray dose in human subjects without
noticeable degradation of the image quality. In denoising filter design for x-ray
imaging, edge preservation as well as noise reduction is of great concern not to lose
detailed spatial information for accurate diagnosis. In addition to this, fast
computation is also important since digital x-ray images are mostly comprised of
large sized matrices.

Methods: We have developed a new denoising filter based on the nonlinear
diffusion filter model. Rather than employing four directional gradients around the
pixel of interest, we use geometric parameters derived from the local pixel intensity
distribution in calculating the diffusion coefficients in the horizontal and vertical
directions. We have tested the filter performance, including edge preservation and
noise reduction, using low dose digital radiography and micro-CT images.

Results: The proposed denoising filter shows performance similar to those of
nonlinear anisotropic diffusion filters (ADFs), one Perona-Malik ADF and the other
Weickert’s ADF in terms of edge preservation and noise reduction. However, the
computation time has been greatly reduced.

Conclusions: We expect the proposed denoising filter can be greatly used for fast
noise reduction particularly in low-dose x-ray imaging.

Background
Image denoising is very important in digital x-ray imaging since it may allow us to

reduce x-ray dose in human subjects without noticeable degradation of the image qual-

ity. Owing to the advent of 2D flat-panel x-ray detector, digital x-ray imaging modal-

ities like digital radiography (DR) or 3D cone-beam CT are now widely used for

clinical imaging [1,2]. Taking x-ray images with low x-ray dose is always desired due to

the hazardous biological effects of x-rays. However, low dose x-ray images may suffer

from high level noises stemming from randomness of x-ray photon fluence and detec-

tor noise. There have been many developments of denoising filters that can be used to

improve signal-to-noise ratio (SNR) of x-ray images without compromising the image

resolution to a noticeable extent [3-5]. In denoising x-ray images, it is critical not to

lose detailed spatial information in the original images which is crucial for accurate

diagnosis. Recent developments of non-linear iterative denoising filters make it possible

to remove noise from the x-ray images while maintaining edge features, which is
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impossible with linear filtering techniques. In implementing non-linear iterative denois-

ing filters in x-ray imaging, fast computation time is one of the critical factors since x-

ray images usually have large sized image matrix. DR images have big matrix sizes as

large as 3500 × 4300 for chest imaging and 3600 × 4800 for breast imaging. 3D cone-

beam CTs based on a flat-panel detector often make images with the matrix size as

large as 1024 × 1024 × 512. For x-ray images of this big matrix size, fast computation

is essential for practical use of the iterative denoising filters.

Anisotropic diffusion filter (ADF) is one of the most widely used denoising techni-

ques in medical imaging [6-9]. ADF is believed to have good performance in denoising

while well preserving edge features, and it is also often used for edge detection [10-13].

Explicit schemes of ADF needs large amount of computation [14], mostly coming from

calculation of diffusion coefficients and gradients at every pixel. To improve the perfor-

mance of ADF particularly in terms of computation time, we propose an iterative

denoising filter considering the local image topology in the nonlinear diffusion model.

We have tested the filter performance using synthetically and experimentally obtained

x-ray images. We present the performance of the proposed filter in comparison with

the Perona-Malik ADF and Weickert ADF with experimental results obtained from

low dose 3D micro-CT images and 2D DR images.

Methods
A. Modified nonlinear diffusion filter

Perona and Malik proposed the following partial-differential-equation (PDE) based

denoising filter on a continuous domain [10]:

∂I
∂t

= div[c(|∇I|) · ∇I]

I(t = 0) = Io

(1)

where c(·) is the diffusion coefficient function based on the image gradient ∇I and Io
is the initial image. They suggested two diffusion coefficient functions of the form:

c(x) =
1

1 + (x/k)2
(2)

and

c(x) = exp[−(x/k)2] (3)

where k is the noise threshold that controls the amount of diffusion to be applied in

the gradient direction. Optimal choice of k is known to be very important for success-

ful denoising with the ADF and many kinds of k estimators have been proposed for

practical applications [15,16].

An explicit discrete form of the Perona-Malik ADF is given by [10]:

Its(t + �t) = Its +
�t
|η̄s|

∑
p∈η̄s

c(
∣∣∣∇Its,p

∣∣∣)∇Its,p (4)

where Its is the discrete image at time t, s and p denotes the pixel position in a dis-

crete 2D grid, Δt is the time step size in PDE, η̄s is the spatial neighborhood of pixel s ,

|η̄s| is the number of pixels in the window, and ∇Its,p = Itp − Its,∀p ∈ η̄s. By implementing
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Eq. (4), calculation of the diffusion coefficient is most computationally intensive. In

most discrete implementations of ADF, the number of neighborhood pixels is often

chosen to be four, that is, east, west, north, and south pixels. Therefore, we need to

calculate the diffusion coefficients at least four times at every pixel.

One of the limitations of this explicit discretization scheme is the stability require-

ment that limits the step size Δt to less than 1/2d, where d is the number of directions

along which the gradients are calculated [14]. Therefore it takes longer computation

time if we choose more number of directions. Despite success of the Perona-Malik

model for practical use, it is known to be an ill-posed problem [10,11,17]. To over-

come this problem, incorporating regularization into the PDE has been proposed

[13,18]. In the regularized methods, the diffusion coefficients are derived from the reg-

ularized image rather than from the noisy image to avoid excessive noise effects on the

gradient calculation. Other approaches, that modify the diffusion coefficients to take

account of local image statistics, have been also proposed. Black and Saphiro have pro-

posed a robust statistical estimation approach in which they used diffusion coefficients

derived from the Tukey’s biweight function, and they have shown better edge preserva-

tion after denoising [16]. You et al. explored a variety of anisotropic diffusion equa-

tions and they reported some improved results [17]. In all the aforementioned

methods, the image features have been simply classified as ∇I <k for noise regions and

∇I <k for edge regions and its performance is well known to be successful. On the

other hand, Weickert proposed a more strict anisotropic diffusion model where a diffu-

sion tensor is used [11]. The anisotropic model mitigates the limitation of the Perona-

Malik model in which the diffusion process stops at edges leaving the noises near the

edges. It is believed that the Weickert model outperforms other isotropic models but it

takes more extensive computation time.

In this work, we concern about the computation time of ADF in denoising medical

images. We have noticed that using only a global k in defining the diffusivity function

works well in most cases, but more local image information must be incorporated into

the diffusivity function for faster convergence. Therefore, instead of using only a global

k and image gradient in the diffusivity function, we are to use the global noise behavior

and the local topology of the pixel intensities in defining new diffusivity functions.

Figure 1a shows a typical profile along a row in a DR image of an adult rat taken

with low x-ray exposure level (40kVp, 67 μA). Figure 1b is the profile at the same row

of the DR image taken with higher x-ray exposure level (40kVp, 500 μA). From visual

observation of Figure 1, we categorize two conspicuous types of pixels, the noise pixel

and the edge pixel. A noise pixel stands for a pixel that has much higher or lower

intensity than adjacent pixels having similar intensities. The edge pixel stands for a

pixel that is either on an inclining slope or on a declining slope as shown in Figure 2.

From the topology of the noise and edge pixels, we define the following parameters:

Dx =
{ |IE − Iw| − δ if |IE − Iw| > δ

0 else
, (5)

Ax = (IE + IW)/2, (6)

I′S,x =
{
IS − Dx

/
2 IS > Ax

IS +Dx
/
2 IS ≤ Ax

, (7)
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Px = I′S,x − Ax, (8)

where IE and IW are the image intensities at the east and west neighboring pixels,

respectively, and IS is the image intensity of the pixel of interest. Dx represents the x-

directional intensity difference in a 3 × 3 window. δ Î [0, s], where s is the standard

deviation of the image noise, is an auxiliary parameter to prevent small noise regions

from being identified as edges by setting Dx to 0 when |IE - IW| ≤ δ. Introducing δ to

Dx has the effect of combining both global and local information on the diffusion coef-

ficient. For automatic computation of δ, we use the median absolute deviation (MAD)

as suggested in [16] for calculating k in ADFs and used by [6,8]. The average of the

neighboring pixels in the x-direction, Ax, represents a local intensity reference for a

given pixel. From Figure 2, we observe that Px is greater than Dx at the noise-like pixel

and vice versa at the edge-like pixel. We can define parameters Dy, Ay, I
′
S,y, and Pyin

the vertical direction in a similar way by considering the north and south pixels. At

noise-like pixels, Px will have a higher value as compared to Dx and we are to define a

diffusivity function that allows fast diffusion around the noise-like pixels. Here, we

define diffusivity functions that are monotonically decreasing along the Dx or Dy

Figure 1 An x-ray image profile. (a) A typical profile of a DR image taken with low x-ray exposure level.
(b) The profile at the same row of the DR image taken with high x-ray exposure level.

Figure 2 Pixel classifying models. (a) A typical noise pixel and (b) a typical edge pixel in the horizontal
direction. s is the pixel of interest and E and W are east-side and west-side pixels, respectively.
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direction and monotonically increasing in the Px or Py direction as below:

c (Dx,Px) =
1

1 +
(
Dx

/
Px

)2
c
(
Dy,Py

)
=

1

1 +
(
Dy

/
Py

)2
(9)

At any noise pixels where Px>> Dx, c becomes close to 1 allowing big diffusion. But,

at the edge pixels where Px<< Dx, c becomes close to 0 allowing small diffusion. As

compared to the Perona-Malik diffusion coefficient which is determined by the local

gradient magnitude and a global parameter k, the proposed diffusion coefficient is

determined by the two local parameters, which results in more localized diffusion pro-

cess than the original ADF. We define only one diffusion coefficient in one direction

here, either horizontal or vertical, while Perona-Malik method defines two diffusion

coefficients in one direction. Therefore, we can expect computation time saving by fac-

tor of two. One example of c(Dx, Px) is shown in Figure 3. The discrete implementa-

tion of the proposed filter is:

It+�t
S = ItS + �t

[
c (Dx,Px) · (∇E + ∇W) + c

(
Dy,Py

) · (∇N + ∇S)
]t. (10)

where ∇p = Ip - IS (p = E, W, N, and S) represents the difference between the central

pixel and one of the east, west, north, and south pixels respectively. Since we use the

same explicit scheme used by Perona and Malik for our numerical PDE solver, the

Figure 3 Diffusivity function. A perspective view of the proposed diffusion coefficient function when δ = 0.
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stability will depend only on the step size Δt. Previous works [10,17] have pointed that

the solution always converges to a steady state under a small step size

(normally)�t ≤ (η̄s)
−1.

B. Metrics for filter performance evaluation

For quantitative evaluation of the filter performances in terms of noise reduction and

edge preservation, we use the following metrics.

Normalized Mean Square Error (NMSE)

We calculate NMSE of the original and filtered images with respect to the true images

when the true images are available. We assume the images taken with much higher x-

ray exposure to be the true images since they have much less noise as compared to

the ones taken with low x-ray exposure. NMSE would represent how the filtered image

resembles the true image. NMSE is defined by:

NMSE =

M∑
i=1

N∑
j=1

(
If (i, j) − IT(i, j)

)2
M∑
i=1

N∑
j=1

(
In(i, j) − IT(i, j)

)2 . (11)

where If and In are the filtered and original images, respectively, and IT is the true

image.

Noise Energy Reduction Ratio (NERR)

Assuming the noise is white all over the spatial frequency band and the signal is

mostly contained in the low spatial frequency band, we take Fourier transform of the

original image and the filtered image to transform them to the spatial frequency

domain. Then, we apply 2D radial high-pass filter with the cutoff frequency kc, that is,

H(u, v) = 1 if
√
u2 + v2 ≥ kc,H(u, v) = 0 else, to the transformed images to remove the

signal components residing in the low frequency band. After the high-pass filtering,

NERR is then calculated by:

NERR =

N∑
i=1

M∑
j=1

|Dn(ui, vj)|2 −
N∑
i=1

M∑
j=1

|Df (ui, vj)|2

N∑
i=1

M∑
j=1

|Dn(ui, vj)|2
(12)

where u and v are the spatial frequencies in the x- and y-directions, Dn is the Fourier

transform of the difference of the original image from the true (high x-ray dose) image

after the high-pass filtering. Df is the Fourier transform of the difference of the filtered

image from the true image after the high-pass filtering. The cutoff frequency kc was

chosen in each image so that most of the signal components are rejected in the calcu-

lation of NERR.

Beta metric (b)
As a measure to evaluate edge preservation and artifact formation, the beta metric (b)
is defined by [9]:
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β =
D

(
�In − �In,�If − �If

)
√
D

(
�In − �In,�In − �In

) · D (
�If − �If ,�If − �If

) ,

D(s1, s2) =
M∑
i=1

N∑
j=1

s1(i, j) · s2(i, j)
(13)

where ΔIn and ΔIf represent the edge images of the original image In and the filtered

image If, respectively. The edge images are calculated by applying the 3 × 3 Laplacian

operator followed by thresholding to reject false edges stemming from noise. �In and

�If are the mean intensities of ΔIn and ΔIf, respectively. The beta metric represents

the resemblance of the edge images derived from the original and filtered images. If

the edge is well preserved during the denoising process, the beta metric will be close

to unity.

SNR gain (g) SNR is evaluated in five different uniform-intensity ROIs with the size of

10 × 10. The uniform region is selected manually in each image by visual inspection.

SNR in the ROI is defined by the mean pixel intensity divided by the standard devia-

tion of the pixel intensity in the ROI. The SNR gain is defined by:

g =
SNRf

SNRn
(14)

where SNRf and SNRn are the average SNRs in the filtered and original images,

respectively.

Computation time

Computation time is evaluated on a personal computer with an Intel-Pentium® Dual-

Core CPU E6500 @ 2.93GHz processor. The filters have been implemented using

MATLAB™ (The Mathworks, Inc., Natic, MA.) and the computation time is evaluated

excluding the data readout time from the disk to the PC memory.

Results
We first applied the proposed filter to denoising of synthetic images. As an original

image, we used the Shepp-Logan head phantom image corrupted by the white

Figure 4 Filtering of a synthetic image. (a) The Shepp-Logan phantom corrupted by additive white
Gaussian noise with standard deviation of 0.03. (b) The image filtered by the proposed method.
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Gaussian noise with the standard deviation of 0.03 as shown in Figure 4a. The image

filtered by the proposed method is shown in Figure 4b. The number of iterations was

four and the step size in each iteration was chosen to be 0.25 according to [14]. For

the sake of comparison, we also filtered the original images with two types of ADFs,

one Perona-Malik ADF and the other Weickert’s ADF. In both cases we used the diffu-

sion coefficient function defined in Eq. (2) and the median regularization method sug-

gested in [18]. Figures 5a-d show zoomed ROIs images taken from the original image,

and the images filtered by the proposed method, Perona-Malik ADF and Weickert

ADF, respectively. Since the Shepp-Logan phantom image has simple structures in it,

it is difficult to compare the filtering effects by visual inspection. Table 1 summarizes

the filter performances of the three methods. As can be seen from Table 1, the pro-

posed method shows the noise reduction and edge preserving performances similar to

Perona-Malik ADF, but the computation time of the proposed method is far less than

the other two methods.

To demonstrate weak edge preservation performance, we have made a synthetic

phantom shown in Figure 6a which has low contrast inclusions stained by heavy noise.

We have applied the filters to remove the noise and we have shown the resulting

Figure 5 Filtering of a synthetic image: comparison with ADFs. (a) The original image with the noise
added. (b-d) The images filtered by the proposed method, Perona-Malik ADF, and Weickert’s ADF,
respectively.
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images along with the cut viewing profiles in Figure 6b-d. The weakest contrast of the

inclusions on the line is half the noise standard deviation. The proposed filter preserves

the weak edges well as other ADFs do.

To test the proposed filter with real x-ray images, we first obtained 3D micro-CT

images of a sacrificed rat using a lab-built micro-CT system. During the micro-CT

scan, the micro-CT acquires 2D projection images at every angle which are to be used

for 3D image reconstruction. Therefore, any of the 2D projection images can be

thought to be a DR image. We reconstructed 3D tomographic images using the modi-

fied Feldkamp algorithm [19]. The micro-CT system consists of a micro-focus x-ray

tube with a variable focal spot size of 5-50 μm (L8121-01, Hamamatsu, Japan), a

CMOS flat-panel detector with a matrix size of 2240 × 2240 (C7942, Hamamatsu,

Japan), a rotating subject holder for the cone-beam CT scan motion, and a data acqui-

sition system. The pixel size of the flat-panel detector is 50 × 50 μm2. We performed

the micro-CT scan with the tube voltage of 60kVp and the tube current of 340 μA

which gave the nominal focal spot size of 50 μm. The number of projection views,

which determines the angular spatial resolution of the micro-CT images, was 900. We

reconstructed 3D micro-CT images with the matrix size of 512 × 512 × 512 with iso-

tropic pixel size of 170 × 170 × 170 μm3 or 1024 × 1024 × 1024 with isotropic pixel

size of 85 × 85 × 85 μm3. Since the tube current of the micro-CT is two orders of

magnitude smaller than those of medical CTs, micro-CT images usually suffer from

high level noise in spite of long scan time.

Figure 7a shows an example of the micro-CT images of 1024 × 1024 × 1024 matrix

size in coronal view and Figure 7c shows an example of the micro-CT images of 512 ×

512 × 512 matrix size in sagittal view. Since the micro-CT images are in full 3D for-

mat, we can view the images in arbitrary direction. Figures 7b and 7d show the images

filtered by the proposed method in four iterations. For better visualization of this

images, magnified version of the ROIs are shown in Figure 8 and Figure 9. Here, we

have also shown the images filtered by the two ADFs in four iterations and the same

Table 1 Performance of the proposed denoising filter in comparison with other ADFs

Images Matrix size NERR NMSE SNR gain b Computation time (s)

Shepp-Logan
Phantom

512 × 512 0.979
(0.731)
[0.927]

0.0885
(0.364)
[0.196]

3.40
(2.43)
[2.34]

0.987
(0.858)
[0.964]

0.428
(1.050)
[0.863]

Mouse
Chest

2240 × 2240 0.942
(0.904)
[0.903]

0.206
(0.393)
[0.488]

2.10
(1.80)
[1.74]

0.148
(0.271)
[0.113]

8.072
(19.17)
[15.45]

Micro-CT
Sagittal

512 × 512 3.46
(2.92)
[3.26]

0.809
(0.886)
[0.986]

0.484
(1.26)
[0.781]

Micro-CT
Coronal

1024 × 1024 2.07
(2.05)
[2.00]

0.894
(0.914)
[0.902]

1.723
(3.989)
[3.139]

Micro-CT
Axial

512 × 512 2.19
(1.75)
[1.36]

0.736
(0.803)
[0.936]

0.470
(1.01)
[0.949]

Human
Chest

3072 × 3072 0.782
(0.778)
[0.747]

0.376
(0.437)
[0.470]

1.79
(1.65)
[1.59]

0.163
(0.174)
[0.166]

12.94
(34.69)
[26.57]

( ) represents the results obtained with Weickert ADF.

[ ] represents the results obtained with Perona-Malik ADF.
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Figure 6 Filtering of a synthetic image: comparison of edge preservation with ADFs. (a) The original
image with the noise added. (b-d) The images filtered by the proposed method, Perona-Malik ADF, and
Weickert’s ADF, respectively, along with profiles.

Figure 7 Filtering of micro-CT images of a rat. (a) A coronal image before filtering and (b) after filtering.
(c) A sagittal image before filtering and (d) after filtering. The square boxes are the region of interest.
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Figure 8 Filtering of micro-CT images of a rat: zoomed coronal views. (a) The original image. (b-d)
The images filtered by the proposed method, Perona-Malik ADF, and Weickert’s ADF, respectively.

Figure 9 Filtering of micro-CT images of a rat: zoomed sagittal views. (a) The original image. (b-d)
The images filtered by the proposed method, Perona-Malik ADF, and Weickert’s ADF, respectively.
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time step size of 0.25. As can be seen from Figure 8 and 9, the proposed filter well

removes the noise while preserving small anatomic structures. Figure 10a shows a DR

image of an adult rat taken with the tube voltage of 40kVp and the tube current of 67

μA. The exposure time was 1s. The image matrix size is 2240 × 2240 with the pixel

size of 50 × 50 μm2. Figure 10c shows a magnified version of the ROI indicated by the

white rectangle in Figure 10a. Figures 10b and 10d show the images filtered by the

proposed method.

Figure 11a shows the sagittal micro-CT image on which salt and pepper noises have

been intentionally added. Salt and pepper noises may appear on DR images due to the

defective detector elements. Figures 11b-d show the images filtered by the proposed fil-

ter and the two ADFs, respectively. Both the ADFs do not remove the salt and pepper

noises completely whilst the proposed filter removes the noises very well.

Table 1 summarizes the filter performances in all the cases shown in the previous

figures and also in extra cases of an axial-view micro-CT image of the rat and a DR

image of a human chest. In the case of human chest imaging, we took the true image

with much higher tube current of 2.2mA as compared to 0.4 mA in normal imaging.

The tube voltage was 104 kVp. As can be noticed from Table 1, the overall perfor-

mance of the proposed filter is similar to those of the two ADFs in terms of noise

Figure 10 Filtering of a DR image of a rat. (a) A DR image of a rat before filtering and (b) after filtering.
(c, d) The zoomed images of the ROI in (a) and (b), respectively.
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reduction and edge preservation. But, the computation time of the proposed filter is

much shorter than the two ADFs.

Discussion
The proposed filter uses the same form of PDE equation as the Perona-Malik ADF but

with a different way of diffusion coefficient calculation. In the original Perona-Malik

ADF, four different diffusion coefficients are employed to a given pixel in four ortho-

gonal directions to allow different amount of diffusion in each direction according to

the gradient strength. Owing to the four directional diffusion processes, the Perona-

Malik ADF has better edge preservation than a linear diffusion filter. Even though the

proposed filter uses only two diffusion coefficients in solving the PDE, it turns out that

the proposed filter has similar performance to the Perona-Malik ADF. In Perona-Malik

ADF, regularization must be incorporated into the diffusion coefficient calculation to

stabilize the diffusion process avoiding the influence of high noises. Since the proposed

filter is not based on the gradient-dependent diffusivity function with a global noise

threshold, high impulsive noises do not affect the performance of the proposed filter as

can be seen from the salt-and-pepper noise case in Figure 11. Even without any regu-

larization in the proposed filter, we have not observed any unstable operations either

Figure 11 Filtering of salt-and-pepper noise. (a) A micro-CT image of a rat with the salt and pepper
noises added. (b-d) The images filtered by the proposed method, Perona-Malik ADF, and Weickert’s ADF,
respectively.

Michel-González et al. BioMedical Engineering OnLine 2011, 10:47
http://www.biomedical-engineering-online.com/content/10/1/47

Page 13 of 16



in denoising the images we have used so far. Filtering without regularization has also

allowed further reduction of computation time of the proposed filter. It is believed that

the Weickert’s ADF better removes the noise at the edge region, but it takes much

longer computation time. Although fast algorithms to solve the Weickert’s ADF have

been proposed, those schemes suffer from bigger errors and artifacts [14]. There are

also many other iterative non-linear denoising filters than ADFs, which are thought to

outperform ADFs in many respects [20-22].

Stopping iterations at the right time during the diffusion filtering process is an

important issue. Weickert introduced a stopping criterion based on the variance of the

filtered image relative to the variance of the original image [23]. Later, Mrázek pro-

posed the so-called decorrelation criterion which minimizes the covariance of the

image to the noise [24]. Bazan observed that the correlation between I(t) and I(0)

decreases gradually from 1 to 0 as t ® ∝, and suggested that the iteration be stopped

when the second derivative of correlation between I(t) and I(0) reaches a maximum

that is very close to the correlation between the true and the filtered image [25]. We

have found that Bazan’s criterion agrees well with the behavior of the proposed filter.

Figure 12 shows the NMSEs of the three filters calculated at every iteration step during

the filtering of the rat image shown in Figure 10. It demonstrates that as the filtering

process goes by, the proposed filter also converges to a steady state as the other meth-

ods. Even though the steady state error of the proposed filter is greater than the other

methods, the proposed filter converges faster in the early stage of iterations. Based on

the Bazan’s criterion, the optimal number of iterations was four for this case which is

smaller than those of the other filters. For other cases, the optimal number of

Figure 12 Convergence of the filters. Convergence behaviors of the proposed filter, Perona-Malik ADF
and Weickert’s ADF along with its respective optimal stopping points indicated by vertical lines.
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iterations for the proposed filter ranges from 4 to 6 which always are smaller than

those of the other filters. Until the iteration reaches the optimal point, the NMSE of

the proposed filter is smaller than those of the other filters. We think faster conver-

gence of the proposed filter is due to the use of local pixel topology in defining the dif-

fusion coefficient, which makes the filter more robust to high intensity noises.

Conclusions
We have experimentally confirmed that the proposed filter and the two ADFs have

similar filter performance in terms of noise reduction and edge preservation. However,

the proposed filter takes much shorter computation time than the two ADFs do. We

expect the proposed filter can be greatly used to mitigate the noise effects in low-dose

x-ray imaging.
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