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Abstract

Background: Mathematical models of the immune response to the Human
Immunodeficiency Virus demonstrate the potential for dynamic schedules of Highly
Active Anti-Retroviral Therapy to enhance Cytotoxic Lymphocyte-mediated control of
HIV infection.

Methods: In previous work we have developed a model predictive control (MPC)
based method for determining optimal treatment interruption schedules for this
purpose. In this paper, we introduce a nonlinear observer for the HIV-immune
response system and an integrated output-feedback MPC approach for
implementing the treatment interruption scheduling algorithm using the easily
available viral load measurements. We use Monte-Carlo approaches to test
robustness of the algorithm.

Results: The nonlinear observer shows robust state tracking while preserving state
positivity both for continuous and discrete measurements. The integrated output-
feedback MPC algorithm stabilizes the desired steady-state. Monte-Carlo testing
shows significant robustness to modeling error, with 90% success rates in stabilizing
the desired steady-state with 15% variance from nominal on all model parameters.

Conclusions: The possibility of enhancing immune responsiveness to HIV through
dynamic scheduling of treatment is exciting. Output-feedback Model Predictive
Control is uniquely well-suited to solutions of these types of problems. The unique
constraints of state positivity and very slow sampling are addressable by using a
special-purpose nonlinear state estimator, as described in this paper. This shows the
possibility of using output-feedback MPC-based algorithms for this purpose.

Background
The majority of untreated HIV patients, following a brief period of acute infection,

enter a long asymptomatic phase of infection characterized by high viral loads, persis-

tent immune activation, and a slow decline in the helper-T cell concentration [1].

Eventually, the concentration of helper-T cells becomes too low to sustain effective

immune responses, and opportunistic infections cause a dramatic decline in the

patient’s health. The slow decline of helper-T cells during the asymptomatic phase was

once thought to indicate a slow rate of infection and cell turnover, but it is now

known that very fast rates of virus and host cell turnover, as high as 1010 virions per

day or 2 × 109 infected helper-T cells per day occur during this phase [2,3].

The majority of patients follow the disease progression pattern described above, but

a small number of untreated patients, termed Long-Term Non-Progressors, do not
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show progressive decline in helper-T cell counts, have consistently low measured viral

loads, and do not show impaired immune responses, and show strong HIV-specific

helper-T cell responses [4,5]. Levels of Cytotoxic-T cells specific to HIV in these

patients remain high, even at low viral loads [6,7]. Patients with progressive HIV infec-

tion show a dramatic drop in the level of these cells when the viral load is reduced

[8,9]. Long-Term non-progressors can transition to progressive HIV infection [10],

probably due to the evolution of HIV strains resistant to the immune response [11].

In order to prevent mutation escape of the virus, HIV therapy uses three antiviral

drugs simultaneously. These drugs, which target different epitopes in the HIV genome,

make it very unlikely that the virus can simultaneously evolve resistance to all three

drugs. This approach, called Highly Active Anti-Retroviral Therapy (HAART) is very

effective at reducing viral load [12]. Unfortunately, the drugs used in HAART have a

number of significant adverse side effects, and must be continued for the life of the

patient [13]. HAART interruptions have been investigated in order to manage side

effects of treatment or to allow treatment of secondary infections such as hepatitis-A

[14-16]. A small number of cases where therapy was started during acute infection and

then discontinued and re-initiated have apparently led to long-term, drug-free suppres-

sion of the virus [17,18]. Follow-up studies investigating structured treatment interrup-

tions (STI) as a method of inducing immune-mediated control of the virus showed

some success in inducing a transient immune-mediated control of the virus [19-23].

Patients showing viral control also showed increased HIV-specific helper-T cell counts

and increased HIV-specific cytotoxic-T cell counts, similar to the pattern seen in

LTNPs. Follow-up studies tracking these patients showed that a majority of these

patients eventually reverted to an actively progressing infection [24].

Studies of STI in patients who originally initiated treatment during chronic infection

showed no success in inducing immune-mediated control, suggesting that treatment

initiation during acute infection is a necessary condition for success in this approach

[25-33]. HIV is known to preferentially infect HIV-specific T-cells [34], so HIV-specific

helper-T cell pools may be permanently damaged in patients that delay therapy until

the chronic phase of infection [35-39].

The use of STIs in HIV therapy is controversial [40]. Interruptions in therapy are

likely to encourage the evolution of drug-resistance mutations [41-43]. It is clear that

before these STI-based methods will be attempted again, a reliable model of resistance

risk will need to be developed. This is the focus of much of our recent research

[44-47]. Although STI-induced immune control has shown disappointing durability on

its own, it could still be used in conjunction with a reduced-dosage HAART to attain

similar levels of viral suppression with fewer side effects. Assuming that the immune

response affects different targets from the HAART, this regimen should also be more

durable than HAART alone. Some evidence exists for the possibility of durable

immune control, as reported in [48]. Nevertheless, it will be necessary to increase the

success rate of STI in inducing immune-mediated control, and find methods of moder-

ating the risk of resistance evolution, for this method to become a viable option for

HIV therapy.

In previous work, we developed a Model Predictive Control (MPC) based method for

finding these schedules. This method is well-suited to the problem for a number of

reasons: It is easily adaptable, which will allow for various improved models to be
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integrated as they are developed. It inherits from the MPC framework a certain robust-

ness to disturbances and model inaccuracies which is important, since the model in

question is known to suffer from these. It allows us to fine-tune the treatment using

medically intuitive notions of cost. Finally, the long time-scales of the model allow us

to overcome the computation time issues which normally plague MPC-based methods.

However, the original work in [49] assumed full-state measurements. In practice only

viral load measurements can be made with the frequency and accuracy necessary for a

feedback control method.

In this paper, we introduce a full nonlinear observer with acceptable properties,

and test its reliability in the face of model uncertainty. This serves as a “proof of

concept” study for the use of nonlinear-observer output-feedback MPC in treatment

scheduling for HIV. Other authors have also considered similar problems. The

authors of [50] introduced an output-feedback model predictive control-based

method for treatment scheduling for a different but related model of HIV dynamics,

using an Extended Kalman Filter as the observer. The performance of this estimator

began to rapidly degrade with model parameter uncertainty; however, a one-to-one

comparison is not possible as the model of HIV dynamics was not the same. The

authors of [51,52] also developed an output feedback MPC algorithm for treatment

scheduling of a different model of HIV infection; this paper used a deadbeat observer

and assumed the ability to measure both CD4+ T-cell count and viral load, instead of

just viral load as in this paper. The authors of [53] considered open-loop finite-hori-

zon optimal control of a very simple model of HIV infection, allowed continuous

varying of drug concentration, and did not consider either the measurement problem

or the model inaccuracy problem. The authors of [54] introduced a robust multirate

MPC controller to calculate treatment schedules for a model of HIV infection that

does not include immune response dynamics, allowing continuous variation of drug

dosing. The authors of [55,56] developed an innovative output feedback scheduling

method for the same model which we use, but assume that both the CD4+ T-cells

and viral load are measurable. Their method does not use an MPC scheduling

method. The authors of [57] present an output-feedback method for controlling a

variation of the model which we use; however, their approach allows for continuous

values of drug dosing, unlike our method which assumes constant drug dosing of

either 1 or 0. The authors of [58] introduced a sophisticated nonlinear observer

design for the same HIV model used in this work, with very good convergence in

the continuous measurement case. Their method, however, relied on direct estimates

of higher-order derivatives, which required sampling every 6 hours during the early

phase of treatment, compared with the 1-week intervals proposed in this work. The

authors of [59] consider the treatment scheduling problem as a multi-objective opti-

mization and obtain a Pareto frontier, incidentally showing the near-optimality of

our previously reported results in [49]. The authors of this paper do not consider

the problem of output feedback. A review of the various control approaches applied

to HIV medicine was presented in [60].

The paper is organized as follows. We first introduce the Wodarz-Nowak model of

HIV infection. Next we introduce the nonlinear observer design. We then show the

performance of this observer with continuous measurements and sampled measure-

ments. Next we introduce the complete output-feedback MPC-based treatment
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scheduling method, which combines the full-state feedback MPC of [49,61] with the

observer introduced in the following section. Finally, we evaluate the performance of

this design through Monte-Carlo experiments with various levels of model uncer-

tainty. The conclusions discuss the implications of these results for future work in

this area. This paper is the first to present a nonlinear-observer based output-feed-

back MPC algorithm for HIV treatment scheduling that incorporates realistic con-

straints on measurement intervals and relies only on the highly accurate viral load

measurements.

Results and Discussion
Model

We consider a five-state nonlinear ODE model of HIV infection and immune response

introduced in [62].

ẋ = λ − dx − β(1− ηu)xy

ẏ = β(1− ηu)xy− ay − p1z1y− p2z2y

ż1 = c1z1y− b1z1
ẇ = c2xyw− c2qyw − b2w

ż2 = c2qyw − hz2

(1)

where x represents the concentration of healthy helper-T cells, y represents the con-

centration of HIV-infected helper-T cells, z1 represents the concentration of inflamma-

tion mediated cytotoxic-T cells, w represents the concentration of memory phenotype

cytotoxic-T cells, and z2 represents the concentration of helper-T cell mediated cyto-

toxic-T cells. u is a binary variable representing the application of HAART, and h is

HAART’s effectiveness at reducing the infection rate. All states lie in the non-negative

orthant, which is also positive invariant. u(t) is restricted to take values of either 0 (no

treatment) or 1 (full treatment), in order to avoid the rapid evolution of the virus likely

under suboptimally suppressed conditions. The measurable output, plasma viral load, is

proportional to the infected cell state y, due to a singular perturbation phenomenon

(the decay rate of the free virus is much faster than the death rate of infected cells). A

more complete description of the states and their interactions can be found in our pre-

vious paper [49].

For realistic parameter values in the absence of treatment, this model has two sta-

tionary points in the non-negative orthant. One of these corresponds to a state where

the virus is controlled by the immune response:

xLTNP =
λ

d + βyLTNP

yLTNP =
[c2(λ − dq)− b2β]−

√
[c2(λ − dq)− b2β]

2 − 4βc2qdb2

2βc2q

zlLTNP = 0

wLTNP =
hz2LTNP

c2qyLTNP

z2LTNP =
yLTNPc2(βq− a) + b2β

C2p2yLTNP
.

(2)
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and one in which the virus dominates, progressing to AIDS:

xAIDS =
λc1

dc1 + b1β

yAIDs =
b1
c2

zlAIDS =
βxAIDS − a

p1
wAIDS = 0

z2AIDS = 0.

(3)

This model in this paper uses normalized parameter values.

Observer Design

This application presents some unique challenges for observer design. The system

described by Equation 1 is nonlinear with multiple steady-states. Observer design for

such a system is very much an open problem. Also, the invasive nature of blood-draw-

ing methods puts a very coarse lower limit on sampling time, with intersample times

of one week a bare minimum. The observer must therefore be reasonably robust to

error due to sampling.

After experimenting with simple high-gain type observers, we discovered they per-

formed poorly in a sampled-data situation. The bare error injection term would, for

large enough initial error, cause the observer to violate the non-negative orthant

restriction of the original system, which wreaked havoc on the numerical simulator as

well as being completely unrealistic. For the purpose of this paper, we settled on a

nonlinear observer specific ally designed to satisfy the non-negative orthant restriction.

The observer design was heavily influenced by the symmetry-preserving observer con-

cept presented in [63], though we did not follow the same formal design approach. By

starting with a copy of the system, and allowing output error-correction terms to enter

the system in a manner following the system’s natural geometry, we obtained an obser-

ver design that preserved state positivity, ensured good convergence, and avoided

unrealistic patterns of intermediate state estimate values while the system was conver-

ging. The equations describing this observer are

·
xe =λ − dxe − β(1− ηu)xeye + K1βxe(ye − y)
·
ye =β(1− ηu)xeye − aye − p1yezle − p2yez2e

− K2β(1− ηu)xe(ye − y)
·

z1e =c1zleye − b1zle + K3c1zle(ye - y)
·
we =c2xeyewe − c2qyewe − b2we

+ K4c2xewe(ye − y)
·

z2e =c2qyewe − hz2e + K5c2qz2e(ye − y).

(4)

where xe, ye, z1e, we, z2e are the state estimates of x, y, z1, w, z2 respectively. We let

X refer to the vector of all states and Xe refer to the vector of state estimates. This

yields error dynamics described by the equations
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·
ex =− dex − β(1− ηu)(exey + yex + xey)

+ K1β(exey + xey)
·
ey =β(1− ηu)(exey + yex + xey)

− p1(eyez1 + z1ey + yez1)

− p2(eyez2 + z2ey + yez2)

− K2β(1− ηu)(exey + xey)
·

ez1 =c1(eyez1 + yez1 + z1ey)− b1ez1
+ K3c1(eyez1 + z1ey)

·
ew =c2(exeyew + xeyew + yexew +wexey

+ xyew + xwey + ywex)

− c2q(eyew + yew +wey)− b2ew
+ K4c2(exeyew + xeyew +wexey + xwey)

·
ez2 =c2q(eyew + yew +wey)− hez2

+ K5c2q(eyez2 + z2ey).

(5)

where eX is X - Xe. The combined system of Equations 1 and 5 have two steady-

state solutions, corresponding to the steady-state values for the original system

described in Equations 2 and 3 combined with the error values eX = 0. For the para-

meter values of Table 1, these two steady-states are locally stable by Lyapunov’s second

method.

Simulations

We implemented the observer described above, with model parameters as listed in

Table 1, and tested its behavior under a variety of circumstances. With continuous

feedback, the observer error converged asymptotically to zero for every combination of

initial state and estimate. Representative examples of this can be seen in Figures 1 and

3. In Figure 1, the initial condition is in the same Region of Attraction (ROA) as the

initial estimate (error convergence for this case is shown in Figure 2), and in Figure 3,

the initial estimate is in a different ROA from the initial condition (error convergence

for this case is shown in Figure 4). The location of initial conditions in a particular

ROA was verified by simulation. In both cases the estimate converges to the actual

value.

The actual system is constrained by a sampling period of no less than one week.

Accordingly, we implemented in MATLAB a discretized sample and hold version of

the continuous observer described above, with a sampling period of one week. Again,

this observer performed well, with error converging toward zero, albeit at a slower rate

than in the continuous-time case. Figure 5 shows the performance of the discretized

observer when the initial condition is in the same ROA as the initial estimate (error

Table 1 Parameter Values

Parameter d b a p1 p2 c1 c2 b1 b2

Value 0.1 1 0.2 1 1 0.03 0.06 0.1 0.01

Parameter l q h K1 K2 K3 K4 K5

Value 1 0.5 0.9799 10 10 150 5 50

These are the parameter values used in our implementation of the nonlinear observer, values adapted from [62].
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convergence for this case is shown in Figure 6), and Figure 7 shows the performance

when the initial condition is in a different ROA than the initial estimate (error conver-

gence for this case is shown in Figure 8). It should be noted that the tuning parameters

(K 1, K 2, K 3, K 4, K5) used in these simulations are tuned for performance of the dis-

cretized observers. Better performance is possible for the continuous-time observer, at

the cost of higher gains and worse performance for the discretized observer. The
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parameters (K 1, K 2, K 3, K 4, K 5) were tuned primarily through trial and error; local

stability of the observer holds for a wide range of values, but there is a clear trade-off

between convergence rate and sensitivity to low sampling rates.

Output Feedback

In this section, we present the output feedback adaptation of the Model Predictive

Control based treatment scheduling algorithm of [49]. Output-feedback Model Predic-

tive Control recursively solves a finite-horizon optimal control problem, applying the

first sample of each optimal control solution before resampling the system. Consider a

discrete-time system of the form

Xk+1 = f (Xk, uk) (6)

and a current measurable output yk = g(Xk) we find a length N sequence U = {uk, uk

+1, ..., uk+N-1} which minimizes a cost function of the form

V(yk, U) =
k+N−1∑
i=k

l(Xei , ui) + F(Xek+N) (7)

with stage cost l, terminal cost F, and state estimate Xe obtained from the observer.

The first element of the resulting optimal control sequence is applied, a new sample is

obtained, and a new optimal control sequence is calculated. An excellent review of

MPC in its various implementations can be found in [64]. Our control objective is to

globally stabilize the stationary point described in Equation 2. We also want to mini-

mize the transient decrease in helper-T cell concentration. We use the stage cost:

l(Xei , ui) = α1(xi − xLTNP)2

+α2(wi − wLTNP)2 + α3|ui|
(8)

where aj > 0 are design weights and xLTNP , wLTNP are the desired equilibrium values

for the respective states [65]. shows conditions on the full-state feedback system and

controller which, if satisfied, guarantee robust asymptotic convergence to a neighbor-

hood of the desired equilibrium. In a similar fashion, the work in [66] shows condi-

tions on the system, output, observer, and state-feedback MPC formulation which, if

satisfied, allow the use of the state-feedback MPC algorithm with the estimated state

values from the observer to generate an output-feedback MPC algorithm which

robustly stabilizes the desired steady-state. We implemented the output-feedback MPC

algorithm described above in MATLAB. With no error in the model parameters,

across a large range of randomly selected initial conditions and initial estimates, the

algorithm always managed to stabilize a small neighborhood of the desired steady-state

of Equation 2.

Robustness

While the measurements of viral load (proportional to output y) have well-charac-

terized log-normal variation, the parameters of the system are expected to vary sig-

nificantly from patient to patient, and are impossible to identify in practice for each

patient. In [49], we characterized the robustness of the state-feedback system to

error in the model. We introduced a at random variation into every parameter in
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the model. The scheduling algorithm continued to use the nominal, but now incor-

rect values to calculate its schedules. We ran at least 100 simulations each with this

error randomly distributed at up to 5%, 10%, 15%, 20%, 25%, and 30% of each para-

meter value, allowing the algorithm up to two (patient) years to successfully stabi-

lize the desired steady-state. The simulations were carried out from a common

initial condition. We run the same Monte-Carlo type robustness test here on the

output-feedback MPC algorithm described in this section, and the results are sum-

marized in Table 2 with the results from [49] included for comparison. An example

of typical performance is shown in Figure 9. As expected, the output-feedback algo-

rithm was outperformed by the state-feedback algorithm, but the success rate of the

output-feedback algorithm did not drop o dramatically as model error increased,

and even at up to 30% error in every parameter, is still better than 70%. The incon-

sistencies between the 25% and 30% error cases are undoubtedly due to the small

sample sizes, which in turn were forced by the computational cost of these simula-

tions. These results demonstrate a practical robustness to modeling error which

strongly motivates the use of output-feedback MPC in treatment scheduling for

HIV.

Conclusions
In this paper, we have introduced a candidate nonlinear observer for use in output-

feedback MPC-based treatment scheduling for HIV. The observer is designed to pre-

serve the forward-invariance of the non-negative orthant in the face of sampling-

induced measurement error. The observer performs well in both the continuous-time

and discretized implementations.

We have implemented an output-feedback MPC-based scheduling algorithm, and

tested its robustness to modeling error. The closed-loop system performed well. Also,

the performance of this output-feedback system should be understood as a lower-

bound on what is possible. This work motivates the use of output-feedback MPC, but

the observer used is only one candidate observer. A more natural implementation

might be a nonlinear receding-horizon observer as in [67], though the implementation

of such an observer for a system such as ours is still an open problem.

The possibility of enhancing immune responsiveness to HIV through dynamic

scheduling of treatment is exciting. Model Predictive Control is uniquely well-suited

to solutions of these types of problems. The sample-and-prescribe framework is

reconcilable to the realities of patient treatment through office visits. The work in

Table 2 Robustness to modeling error

State-Feedback MPC Output-Feedback MPC

% Error Success Rate # of samples Success Rate # of trials

5% 100% 100 100 107

10% 100% 100 98.1 106

15% 100% 115 90.2 102

20% 99.4% 140 81.9 105

25% 98% 100 71 107

30% 90.7% 129 72.5 102

This table compares the degree of flat-random error in the parameter estimates with the success rate of the feedback
algorithm in stabilizing the desired outcome.
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this paper shows the possibility of using output-feedback MPC-based algorithms for

this purpose.
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