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Abstract

Background: Speech production and speech phonetic features gradually improve in
children by obtaining audio feedback after cochlear implantation or using hearing
aids. The aim of this study was to develop and evaluate automated classification of
voice disorder in children with cochlear implantation and hearing aids.

Methods: We considered 4 disorder categories in children’s voice using the
following definitions:
Level_1: Children who produce spontaneous phonation and use words
spontaneously and imitatively.
Level_2: Children, who produce spontaneous phonation, use words spontaneously
and make short sentences imitatively.
Level_3: Children, who produce spontaneous phonations, use words and arbitrary
sentences spontaneously.
Level_4: Normal children without any hearing loss background. Thirty Persian
children participated in the study, including six children in each level from one to
three and 12 children in level four. Voice samples of five isolated Persian words
“mashin”, “mar”, “moosh”, “gav” and “mouz” were analyzed. Four levels of the voice
quality were considered, the higher the level the less significant the speech disorder.
“Frame-based” and “word-based” features were extracted from voice signals. The
frame-based features include intensity, fundamental frequency, formants, nasality and
approximate entropy and word-based features include phase space features and
wavelet coefficients. For frame-based features, hidden Markov models were used as
classifiers and for word-based features, neural network was used.

Results: After Classifiers fusion with three methods: Majority Voting Rule, Linear
Combination and Stacked fusion, the best classification rates were obtained using
frame-based and word-based features with MVR rule (level 1:100%, level 2: 93.75%,
level 3: 100%, level 4: 94%).

Conclusions: Result of this study may help speech pathologists follow up voice
disorder recovery in children with cochlear implantation or hearing aid who are in
the same age range.
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Background
Speech production strongly depends on hearing acuity. People who cannot adequately

hear what they say, cannot correct errors in their speech production. Speech articula-

tion in hearing impaired people under the age of 5 is disordered, of inadequate audi-

tory feedback for speech sound acquisition [1,2]. Cochlear implantation (CI) or the use

of hearing aids (HA) can partially or fully restore hearing. Consequently speech pro-

duction can improve over time and enters the normal range. After hearing is restored,

hearing impaired individuals use auditory feedback to adjust voice features such as

voice intensity, intonation and vowel duration.

There are characteristics impairments of voice and speech disorders in deaf or newly

rehabilitated hearing impaired people [1,3]. Speech resonance may be hyper nasal. The

tongue may be carried in the back of the mouth which may cause some resonance pro-

blems. Phoneme production may be better at the beginning of the words. Poor moni-

toring of speech production results in deficits in the fundamental frequency, intensity

and duration of voice. Consequently, production of high frequency vowels is more dif-

ficult. Furthermore, impaired fundamental frequency may be exacerbated by laryngeal

muscle tension. These characteristic deficits reduce comprehension of deaf speech by

strangers to no more than 20% to 25%. On the other hand when a child communicates

with others verbally, the content is effective only 7% in conveying feeling; while, facial

movements and voice are effective 55% and 38% respectively [4]. So analyzing voice

plays an important part in evaluation of child’s oral communications.

Few studies have categorized and classified the existing disorder of voice in impaired

hearing children. Judgment about voice quality has been mainly subjective and depends

on the listeners’ skills such as SIR (Speech Intelligibility Criteria) [3]. Although, there

are numerable reports that consider the influence of the hearing loss on the voice pho-

netic features quantitatively and objectively; none have fused this quantitative informa-

tion to classify voice using quantified levels. Thus, creating an automatic system that

can determine the state of the child’s phonetic disorder and classify it as a specific

level based on phonetic features may be essential to help speech pathologists evaluate

and monitor voice recovery in children with hearing impairment. If the severity of

voice disorder is not determined accurately, it may result in inadequate training and

possible failure in speech recovery process after CI or HA. In this study, the methods

that can classify speech disorder based on signal processing features are evaluated.

Various methods have been used by researchers to trace the effects of the different

disorder and abnormalities on speech signals. In [1], improvement in acoustic features

of the speech was studied in pre-lingually deaf children and in adults with hearing

background. Both groups were fitted with CI. They were studied in 3 month intervals

after implantation and compared with a control group for 15 months. A new criterion

was used for measuring voice nasality in individuals with CI. Results showed that CI in

patients enables them to make gradual improvement in segmental and supra - segmental

features of speech including formants, fundamental frequency and nasality and after

15 months post-implantation, the difference between their voice parameters and those

of the normal control group was at minimum. In another study [2], 20 pre-lingually deaf

children were studied. Vowel /a/ was extracted from all recorded words and changes in

fundamental frequency (f0) and 3 first formants (f1, f2, f3) were evaluated and compared

with a control group. These studies showed that after CI, f0 decreased; formants did not
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increase or decrease in a specific trend but they became close to normal after some

months post operation.

Changes in production of 3 main vowels were evaluated in another study [5]. Voice

samples of 13 pre-lingually deaf children and 12 post-lingually deaf adults were ana-

lyzed in production of isolated vowels /a/, /u/ and /i/ before implantation and 6 and

12 months post implantation. The area of the vowel triangle was used to evaluate

changes in acoustic features of vowels pre and post CI. The results showed that vowel

triangle area is a sensitive indicator of the changes in vowel production after CI. In

another study [6], 31 pre-lingually deaf children expressed isolated vowel / a / pre

operation and 6, 12, 24 months post CI. Unlike the previous studies, this research did

not report postoperative decrease in f0. The results of this study [6] indicated that CI

enables children to control fundamental frequency and loudness of voice. Two Japa-

nese cochlear implanted children participated in a study by [4]. Their voices were

recorded monthly with first and second formants extracted for comparison with their

mothers’ formants. It was reported that their f1-f2 triangle was highly similar to their

mothers’ after one year post implantation. A similar study was done on children who

used hearing aids [4]. Results identified that 12 months after the first experiment, the

children’s formants became close to their mothers’, however the similarity between

mother’s formants and child’s formants was much higher in children with cochlear

implantation than children with hearing aid.

A further study of speech quality of impaired hearing children was classified accord-

ing to the listeners’ judgment using SIR criteria [7]. Using these criteria a person is

categorized in one of the five qualitative levels based on their speech intelligibility.

Further speech quality evaluation was completed in [8]. Jitter and shimmer of voice

and also correlation dimension of speech attractors were extracted from 51 vowel sam-

ples of normal subjects and 67 vowel samples of subjects with paralyzed vocal cords.

Results showed that all 3 mentioned features in patients had higher values than healthy

subjects. In addition, classification results with support vector machine indicated that

correlation dimension plays a more important rule than classic acoustic features in

separation of patients from healthy subjects. In [9], four cochlear implanted children

and four children with normal hearing as control group were included. A paragraph

from a standard French text was read by children. Samples were evaluated using the

subjective voice parameters of loudness, pitch perturbation, speech fluency and appro-

priate stops during speech production. Additionally, objective parameters including

fundamental frequency, formants frequencies and vowels duration were extracted from

the voice samples. Results indicated that sound intensity was different between the

control group and cochlear implanted children. Also formants frequencies in implanted

children were different from those in the control group, but this difference was not

easily distinguishable. Subjective test did not show a significant difference between nor-

mal and implanted children but it was possible to establish a correlation between sub-

jective and objective tests to evaluate implanted children’s voice disorder.

The aim of this study was not to individually classify every identified characteristic

voice impairment in individuals with hearing impairment, but to combine features of

impairment to classify voice abnormality as a whole. Specifically, methods that can

classify speech disorder based on signal processing features were evaluated. We aimed

to combine the outcome data from these analyses to form an index for abnormality.
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Methods
Proposed disorder levels in children’s voice

For purposes of this experiment, we considered a scale consisting of four disorder cate-

gories to classify voice:

• Level 1: Children who produce spontaneous phonations and use words sponta-

neously and imitatively.

• Level 2: Children who produce spontaneous phonations, use words spontaneously

and make short sentences imitatively.

• Level 3: Children who produce spontaneous phonations, use words and arbitrary

sentences spontaneously.

• Level 4: Normal children without any hearing loss background.

The levels of voice disorder in this study were defined by the speech therapist. Since

we proposed to develop a system that would correspond to existing subjective criteria,

we limited classification of impairment to four levels, however the number of levels

(voice categories) are expandable and can be increased if the needs arise. So, the reso-

lution and accuracy of this quantitative estimate can be improved.

The purpose of this study is to categorize above levels and quantify them based on

segmental features of children’s voice. After CI or using HA, speaking skills of the chil-

dren develop so that they use more words and sentences; phonation features also gra-

dually improve. As a result, it is reasonable that at any stage of progress, their assigned

severity level may change sufficiently to be distinguishable from the previous or next

stage. In classification of the above levels, a modification of SIR criterion is used

[10,11]. The criterion scores and their correspondence to our defined disorder levels

are introduced in table 1.

In total, thirty children between the ages of 3-6 years participated in the study. This

included 18 children using CI or HA that were selected according to the speech thera-

pist’s subjective ranking from level 1 to level 3 and 12 normal children in level 4.

Table 2 shows the demographic data related to the children in levels one to four.

Recording speech

Voice samples of the 5 following isolated Persian words were recorded and analyzed

for this study.

Table 1 Comparison of defined disorder levels in the study with SIR criteria

SIR
score

Levels of intelligibility in SIR criteria Levels of voice disorder
in the study

1 Connected speech is unintelligible.
Prerecognizable words in spoken language, primary mode of
communication may be manual.

Level1

2 Connected speech is unintelligible.
Intelligible speech is developing in single words when context and
lip-reading cues are available.

Level2

3 Connected speech is intelligible to a listener who concentrates on
lip-reading.

Level2

4 Connected speech is intelligible to a listener who has little experience
of a deaf person’s speech.

Level3

5 Connected speech is intelligible to all listeners. Level4
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1. mashin/ ma: ∫in/
2. mar/ ma:r/
3. moosh/mu: ∫/

4. gav/ga: v/
5. mouz /moυz

The English translations are: ‘car’, ‘snake’, ‘mouse’, ‘cow’ and ‘banana’ respectively.

These words were used as they contained 3 main Persian vowels: /i:/ in ‘mashin’, /a:/
in ‘mar’, /u:/ in ‘moosh’ and 3 Persian voiced consonants: /g/ and /v/ in ‘gav’ and /z/

in ‘mouz’. Selection criteria for these words were that they were easily spoken by all

children and they could be displayed in pictures to children. To avoid any imitative

speech, each word was displayed via a picture in Microsoft Power Point slide show

with 4 second intervals. The child was asked to tell the name of each word after seeing

its picture. Each picture was repeated 7 times for every child to express. We recorded

speech samples from 18 children with CI or HA (six children in each level) and 12

normal children. Sampling frequency was 44100 Hz. Voice samples were then analyzed

and voice features were extracted.

Extracting features from speech

The features used in this research are listed below:

Relative Intensity (RI)

Intensity is an indicator of sound loudness. It has been shown that people with

impaired hearing tend to speak louder than non-impaired people [3]. In this study,

relative intensity of the voice, defined as the ratio of the intensity to the maximum

intensity was extracted from each word.

Formants

Transfer function of the human vocal tract from larynx to mouth is an all pole model

that is expressed by Auto Regressive (AR) models [4]. Formants are poles of this

transfer function and appear as peaks in the voice spectrum. They are different for

each vowel and consonant. It is suggested that not any of the formants can indepen-

dently explain a specific trend in voice recovery process after CI, but ratio of for-

mants-for example f1/f2 in vowels and consonants- is a better indicator of progress

path. It is speculated that at any stage of speech improvement after implant surgery,

this ratio can identify the difference between the implanted and normal children’s

voice [5].

Table 2 Demographic data of children participating in the study

Level of
voice

disorder

Average age
(in month)

Average Age at CI or
using HA (in month)

Average last time after CI or
using HA (in month)

number of kids
in each level

Level 1 52 45.3 18 6 (4 male & 2
female)

Level 2 58 38 20.16 6(4 male & 2
female)

Level 3 59 28.5 29.3 6(3 male & 3
female)

Level 4 72 - - 12(8 male & 4
female)

Mahmoudi et al. BioMedical Engineering OnLine 2011, 10:3
http://www.biomedical-engineering-online.com/content/10/1/3

Page 5 of 18



Fundamental frequency (f0)

Fundamental frequency (f0) is the frequency with which the vocal cords fluctuate. f0

instability can be a sign of abnormality in the speech production system such as in

cochlear implanted people [12]. It is reported that fundamental frequency in hearing

impaired children is higher than normal children [1,3] and [13].

Nasality

A common problem in producing speech by impaired audio-verbal children is hyper

nasality [1].

The main reason for this problem is the inability to control movements of the soft

palate that separates the nasal and oral cavities, thus switching between nasal phona-

tion to vocal phonation. When producing nasal phonation, air flow exits through nose

at the end of the vocal tract and when producing oral phonation, air flow exits through

the mouth. Reduction in the first formant amplitude and appearing an extra peak near

1 kHz with a valley in the range of 700 - 800 Hz in the frequency spectrum, show

severe nasal cavity opening and hyper-nasality of voicing as a result [1]. Some research-

ers propose that the difference between the first formant amplitude and the extra peak

amplitude near 1 kHz is a reliable criterion to determine the degree of nasality [1]. We

show this difference with:

1
1 1Nasality

∝ −Amplitude Amplitudef kHz (1)

Amplitude in the above equation is measured in dB scale. It should be noted that

when Amplitude Amplitudef kHz1 1− increases, nasality decreases.

Fractal dimension

Calculating phase space dimension of the signals is one of the most common strategies

to estimate the degree of chaotic behaviour in these signals. This feature is based on

measuring the localization of the trajectory points in the signal attractor while the sys-

tem is exploring the time [14]. There are different algorithms to calculate dimension of

the phase space including fractal dimension and correlation dimension. We used the

Higuchi method to calculate fractal dimension of the voice signals. For more informa-

tion on this algorithm see [15].

Approximate Entropy (ApEn)

Approximate entropy, like fractal dimension measures the level of complexity and

chaos in signals. Advantageous of ApEn over sample entropy and fractal dimension is

that in calculating fractal dimension or sample entropy, a large number of data samples

is required to have reasonable accuracy. However, for ApEn analysis, a much smaller

data set is enough. See [16] and [17] for ApEN calculation.

lyapanov Exponent

Lyapanov exponent is used to quantify chaos in the system and its symbol is l [18].

If l > 0, trajectory points escape from each other exponentially, the signal is chaotic.

If l < 0, trajectory points get close to each other, the signal is deterministic.
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If l = 0, trajectory points remain at a fixed distance from each other, the signal is

aperiodic.

Energy of wavelet coefficients

The wavelet functions are reproductions of time shifting, stretching and folding a

mother wavelet called ψ:

ψ ψj,k
j

0t a a t kb( ) = −( )− −
0

1
2 (2)

Wavelet coefficients of function fw(t) are:

d f t t f t a t kb dtj,k w j,k j w
j

0=< ( ) ( ) ≥ ( ) −( )∫ −, ( )¨ ¨
1

0
2

0

a
(3)

In the current study, the energy of the wavelet coefficients was extracted from speech

signal that is the mean square of the wavelet coefficients. The mother wavelet used in

the study was an order five Gaussian function. We extracted wavelet coefficients in the

scales of seven, eight and nine.

Wavelet transform provides good accuracy in both time and frequency domains. So

it is a suitable tool to analyze non-stationary signals such as speech. This property

makes it theoretically appropriate to evaluate speech after CI [19].

Table 3 summarizes the introduced features extracted from voice signal. Fundamen-

tal frequency and formants were extracted using Autocorrelation Coefficients in Praat

software. Other processes were performed in Matlab software. In all processing, 25 ms

Hamming windows with 75% overlap are used.

Hidden Markov Models (HMM) as classifier

HMM consists of limited number of hidden states that connect to some observable

states via probabilities. Every hidden state depends only on the N previous states [20]

and [21]. In order to use HMM classifier, a feature vector comes out from every hid-

den state of the system. In fact feature vector is the sequence of the observable states

in the model.

Table 3 Input features to the recognition system

features description

f0 Fundamental frequency of the voice signal

RI(Relative Intensity) Ratio of intensity to the maximum intensity in syllable.

f1 Frequency of the first formant

f2 Frequency of the second formant

f3 Frequency of the third formant

f1/f2 Ratio of first to second formant frequencies

Nasality (1/(Af1-A1k)) Reverse of the difference between amplitude of the first formant and spectral
extra peak at 1 kHz

Entropy Approximate entropy of the voice signal

Fractal dimension Fractal dimension of the speech phase space

Lyapanov exponent Lyapanov exponent of the voice signal

Mean energy of Wavelet
coefficients

Mean energy of Wavelet coefficients in scales 7,8 and 9
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To train HMM models, Expectation Maximization algorithm (EM) is used [21].

HMM Training is the estimation of the transition probabilities from every hidden state

to another hidden state or another observable state. Details about HMM structure and

its algorithms are given in [21]. To use continuous structure of HMM (mHMM),

observation vector is modelled by some mixture Gaussians using k-means algorithm.

This new observation vector is given to HMM model and using EM, transition prob-

abilities are estimated repeatedly and finally optimized model is achieved recursively.

In order to classify by HMM, the number of the trained HMMs should be the same as

the number of the classes. For example if there are k classes of patterns, there should

be k trained HMMs.

Then log-likelihood of the given observation sequence for all k HMMs is calculated

using Forward algorithm. Observed state sequence belongs to the i-th HMM and so to

the i-th voice category if this model maximizes the log-likelihood of the observed

sequence. The HMM structure used in this study to represent each word is Left-Right

structure with 8 hidden states. Hidden Markov Models are continues type with four

Mixture Gaussians for each state.

Multiple classifier fusion

Information fusion can be used at different stages of the processing [22]; data fusion,

feature fusion or classifier fusion. In the current study classifier fusion was considered.

Every word acted as an isolated classifier for classifying four levels (classes) of voice

disorder and then final decision was made by fusing classifiers in a hierarchical

arrangement [23]. In the base of this structure, an input decision was made about each

word and then at higher stage, these decisions were combined [19]. Two different sets

of features were extracted from recorded voice signals including “frame-based” and

“word-based” features. Frame-based features are: fundamental frequency, the first, sec-

ond and third formants, first to the second formant ratio, relative intensity of the

voice, nasality and approximate entropy. Word-based features were: fractal dimension,

Lyapanov exponent and mean energy of the wavelet coefficients. For the frame-based

features, hidden Markov models were used as classifiers and for the word-based

features, neural network was used. Classifier outputs including word-based and frame-

based were then fused together in a hierarchical scheme. Figure 1 shows the main

diagram of the study.

For the HMM classifiers, first the log-likelihoods of the given sequence of indepen-

dent observations (extracted features from test data) were calculated for the given

word by using Forward algorithm. Then the classifier chose the voice category which

the HMM of that category indicated the highest log-likelihood among other HMMs.

After testing all of the classifiers for all five isolated words, we had five highest log-

likelihoods each of which related to one of the words “/ ma: ∫in/, / ma:r/, /mu: ∫/,

/ga: v/ and /moυz”. In fact, we had five decisions (e.g. each word gave out one decision

about the voice category of the child); however, we needed just one decision about the

voice category that the child was situated in. Thus, we had to fuse these five decisions

into one decision. So, using classifier fusion was mandatory. We chose the fast, easy

and reliable methods of classifier fusion for our purpose. Since we needed fusion rules

that could be used online with sufficient accuracy, we could not use complicated and

time consuming methods. We decided to use these three methods of fusion: Majority
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Voting Rule, Linear Combination and Stacked fusion and compare them with each

other.

None of the words could independently classify all levels of the disorder, so a fusion

of the words is essential to make a reliable decision on the degree of disorder of the

child’s voice. For each level in each word, a Hidden Markov Model is trained, thus in

total 20 HMMs (four HMMs for each word) were considered. Log-likelihoods of all

HMMs were then fused to make a final decision. Figure 2 shows the detailed diagram

of the study. In this structure, Markov models of each word are placed in parallel with

HMMs from other words. Three methods of classifier fusion used in the study are

described below. The purpose of all fusion rules is making a final decision based on

the output information from all classifiers.

Linear combination fusion

Linear combination is a fast and easy method to fuse classifiers. In this method, classi-

fiers probabilities are simple or weighted averaged as in formula (4). ‘x’ is the feature-

vector sequence. pi
k (x) is the log-likelihood of the given feature-vector sequence x

when this sequence is input of the i-th HMM of the k-th Classifier in this study

referred to each word from the list “/ ma:∫in/, /ma:r/, /mu:∫/, /ga:v/ and /moυz”.

There should be a trained HMM for each voice category (voice level). Every word con-

tained the four voice categories and there were five words. So, we had twenty HMMs

totally (four HMMs for each word) which every four HMMs made an isolated classi-

fier. Thus, we had N classifiers that N = 5 here (number of words) and we have

4 HMMs that i = 1...4 (i-th HMM corresponds to the i-th voice category). Further

explanations can be found in [22].

p w p xk i
k

i
ave

k

N

x( ) = ( )
=

∑
1

(4)

Figure 1 Main diagram of the study.
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Figure 2 Detailed diagram of the system.
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When the voice category of a child is going to be determined, he or she should utter

all the five words mentioned in the paper. Then the extracted feature vector of each

word was given to every of the four HMMs of that word and then four log-likelihoods

were calculated. When done for all words, this combined to twenty log-likelihoods,

each four of them belong to one classifier. To reduce this large number of likelihoods

to ease the classification, we summed the log-likelihoods of the HMMs of the same

categories from all the classifiers to finally reach to four log-likelihoods. Then the child

belonged to the category which the sum of its HMM likelihoods is maximum.

We used simple averaging for fusion. Simple average is the optimal fuser for classi-

fiers with the same accuracy and the same pair-wise correlations. Weighted average is

required for imbalance classifiers, that is, classifiers with different accuracy and/or dif-

ferent pair-wise correlations [22].

Majority Voting Rule (MVR) fusion

Let us consider the N abstract ("crisp”) classifiers outputs S(1), ..., S(N) associated to

the pattern x. Class label ci is assigned to the pattern x if ci is the most frequent label

in the crisp classifier outputs [22]. To implement this method in the current study,

first every word was classified in one of the 4 disorder classes (labels), and then the

final voice label was the most frequent label assigned by all 5 words.

Stacked fusion

In this method, the k soft outputs of the N individual classifiers can be considered as

features of a new classification problem. In other words, classifiers can be regarded as

the feature extractors. Another classifier can be used as fuser: this is the so-called

“stacked” approach [22]. We used a multi-layer perceptron (MLP) neural network as

the final classifier with one hidden layer, 6 neurons in the input, 10 neurons in the

hidden and 4 neurons in the output layers. Training algorithm is back propagation.

Transfer function of the hidden neurons is tangent sigmoid and for output neurons it

is log sigmoid.

Data division in classifiers

Figure 3 illustrates division of the train and test data in different parts of the system.

Data were first divided to two main parts including train1 and test 1. Train1 was used

to train frame-based and word-based classifier. Test1 was used to test them. Train1

incorporated 60% of the whole data and test1 contained 40% of the data. Then the

log-likelihoods of classifiers were divided depending on the fusion rule. If MVR or Lin-

ear Combination is used, there is no extra division in data and final test data would be

achieved from the whole test1, but in the case of using stack fusion, log-likelihoods are

divided to two separated parts including train2 and test2 to train and test final classi-

fier, so test data of the whole system would be achieved from test2 that is a fraction of

test1.

The data was divided such that the recordings from a random batch of all children

are used for training and the trained model is used to classify other data. Train data is

independent from test data. This means that the data samples were never present in

both train and test set at the same time but occasionally and randomly there may be

some children who are present in both train and test data. Since division of train and
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test was done on a random permutation of the total data, there may be some children

who were in both train and test data set; however their voice samples are not common

in train and test. Although some data samples of train and test may be from the same

children, they are different utterances of those children.

The question may arise if ‘this system can be generalized to other groups of children,

the answer is yes. The authors set a test to examine this. The classification accuracies

were checked in two situations: in the first situation among the total data there were

some children, who were present in both train and test, and in the second situation

there was no common child in test and train data. The classifiers are were and tested

several times for each situation and the results of classification were averaged out.

There was no significant difference between classification accuracies of the two situa-

tions. This provides evidence that the system can be generalized.

After recording voice samples, frame-based and word-based features were extracted

from the signal. Fundamental frequency, intensity and formants were extracted using

Praat software. Other signal processing was performed in Matlab software. We used

method in [1] to quantify nasality in this study. In frame-based feature extraction, pro-

cessing is done with 25 ms hamming windows with 75% overlap.

Results
Table 4 represents correct classification rates of the specified levels for each word

before any classifier fusion. These percentages were achieved using Random Sub Sam-

pling cross-validation [24].

As it was expected and the results show as well, every word was classified well at just

some levels and not all of them. For example, the word “mar” was acceptably classified

in levels 1 and 3 but classified poorly at levels 2 and 4 (low classification rate), so

a combination of all 5 words was required to make a reliable decision about the disor-

der level of the child who has spoken all the 5 words.

Figure 3 Data division in different parts of the system.
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Figures 4a, b, c and 4d show the reconstructed phase space of the voice samples

from the word ‘mouz’. x(t) and x(t-1) on the figures axes are samples of the raw speech

signal.

It can be seen that when severity of the disorder level decreased, phase space extends

and stretches in dimension.

From the phase space of a signal, with a fast interpretation, we found the degree of

chaos existing in the signal. The more chaotic a signal, the more stretched its phase

space. A more chaotic signal was produced from a system with more flexible behaviour

and higher dynamic dimension. Therefore it was concluded that in the children with

milder voice disorder, the speech production system has greater ability to produce flex-

ible phonation and the child can match suitable segmental features to different parts of

a word, so phase space is more self organized and more chaotic. However the children

with more severe voice disorder cannot manage acoustic features in different parts of

their speech and their voice was raw and unsophisticated. Table 5 shows final

  

a b 

c d 

Figure 4 Phase space reconstruction of the voice samples from the word ‘mouz’. a: Phase space of
‘mouz’ signal from level 1. b: Phase space of ‘mouz’ signal from level 2. c: Phase space of ‘mouz’ signal
from level 3. d: Phase space of ‘mouz’ signal from level 4.

Table 4 Classification rate for all words using frame-based featuresa

word Level 1 accuracy Level 2 accuracy Level 3 accuracy Level 4 accuracy

’mashin’ 86.87 80 98.12 66.7

’mar’ 91.25% 71.25% 100% 51.51%

’moosh’ 83.12% 67.5% 100% 86.97%

’gav’ 90% 40% 100% 94%

’mouz’ 87.5% 60.62% 100 95.76%
a Features: f0, f1, f2, f1/f2 , f3, RI, nasality and approximate entropy.
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classification rates for different subgroups of features by 3 types of classifiers fusion.

Percentages less than 50% were determined with ‘not classified’. The train set and test

set were independent and separated. So it was an out-of-sample classification and the

results were predictive accuracies. All the percentages mentioned in the tables, includ-

ing tables 4 and 5, are the results of classification on test data set which is independent

from train data set. To measure the accuracies in table 5 Random Sub Sampling cross-

validation was used as it was used to measure the accuracies in table 4. In this type of

cross-validation the train and test data division was repeated randomly for several

times and the results were achieved by averaging the classification accuracies over sev-

eral randomly testing the classifiers.

In this study, 40% of total data was used as test and the rest 60% was used as train-

ing data set. Training and testing the classifiers was repeated ten times. In each repeti-

tion, test and train data were divisions of random permutations of total data and this

permutation was repeated randomly each time. The percentages mentioned in the

tables were averaged accuracies over ten times randomly training and testing the clas-

sifiers. This method was used in all classifiers including frame-based, word-based and

stacked fusion classifiers.

The best results and the highest classification rate for each level were achieved from

features “fundamental frequency, first, second and third formants, the first to the sec-

ond formant ratio, relative intensity, nasality, fractal dimension, lyapanov exponent and

energy of the wavelet coefficients” when we used MVR fusion rule (level1:100%,

level2:93.75%, level3: 100% and level4: 94%).

Table 5 Average classification rate for subgroups of features and different fusion rules

subgroup Features Fusion
method

Level 1
accuracy

Level 2
accuracy

Level 3
accuracy

Level 4
accuracy

Average
accuracy
in all
levels

1 f0, f1, f2, f1/f2, f3, RI, nasality,
approximate entropy

Stacked
fusion

not
classified

54.0% 75.0% 80.0% 65.7%

MVR 93.8% 68.8% 100.0% 87.9% 87.4%

Linear
combination

93.8% 87.5% 100.0% 93.9%% 93.8%

2 f0, f1, f2, f1/f2, f3, nasality,
approximate entropy, fractal
dimension

Stacked
fusion

63.0% 65.2% 76.3% 82.0%% 71.2%

MVR 100.0% 81.2% 100.0% 91.0% 93.1%

Linear
combination

87.5% 81.2% 100.0% 100.0% 92.2%

3 f0, f1, f2, f1/f2, f3, RI, nasality
approxiamate entropy,
lyapanov exponent

Stacked
fusion

not
classified

not
classified

71.2% 79.4% 62.5%

MVR 100.0% 75.0% 100.0% 91.0% 91.5%

Linear
combination

87.5% 81.2% 100.0% 94.0% 90.7%

4 f0, f1, f2, f1/f2, f3, RI, nasality
approxiamate entropy,
fractal dimension, lyapanov
exponent, wavelet
coefficients in 3 scales

Stacked
fusion

60.0% 62.0% 80.0% 87.5% 73.8%

MVR 100.0% 93.8% 100.0% 94.0% 96.9%

Linear
combination

100.0% 68.8% 100.0% 100.0% 92.2%

Mahmoudi et al. BioMedical Engineering OnLine 2011, 10:3
http://www.biomedical-engineering-online.com/content/10/1/3

Page 14 of 18



Discussion
In this study, voice disorder in children with cochlear implantation and hearing aids

are classified quantitatively and objectively. These children gradually make improve-

ment in their speech production after gaining audio-feedback by using cochlear

implantation or hearing aid. We considered 4 levels of disorder in the children’s voice.

The four levels of the voice disorder were defined mainly with regard to the higher-

level linguistic capabilities of the child (for example “use words spontaneously and

make short sentences”) that are usually correlated with the lower-level phonetic articu-

lation aspects of the child’s speech (nasality, formant frequencies, fundamental fre-

quency, etc). However, there might be cases with language disorder that cannot be

detected by an instrument that only measures articulation aspects of speech.

Linear and nonlinear features including: “fundamental frequency, first, second and

third formants, the first to the second formant ratio, relative intensity, nasality, fractal

dimension, lyapanov exponent and energy of the wavelet coefficient” were extracted

from the voice in expressing five Persian words and were classified in a hierarchical

structure. In the first level of this structure, there were HMMs and a neural network.

Outputs of all the classifiers were then fused by three methods.

Considering the information in table 2, we can assume that the longer the period of

CI or HA usage, the better the speech will be. This is what others have also previously

mentioned [1-3,6,9,25] and [26]. In table 2 we have also shown that the children who

are implanted at earlier ages, attain higher levels of speech with fewer abnormalities in

their voice, which is reported by Eberhard as well [5]. It can be seen in table 2 that

older children have higher levels of speech than younger children. Older children have

greater ability to control phonetic features of their voice due to more sophisticated

speech system. This is matched with the result of [9].

In another study [7] speech quality of impaired hearing children was classified

according to listeners’ judgment using Speech Intelligibility Rating (SIR) criteria. In the

mentioned study, no quantitative and objective classification is applied to the children’s

voice; while, in the current study voice disorder were categorized quantitatively based

on speech processing features.

Considering the diversity of children at each level, results of this study can be used

to help speech pathologists follow up voice disorder recovery in children with the

same range of age that use cochlear implantation or hearing aid. This system can be

an effective strategy to evaluate methods to train these children. By doing this detec-

tion test, speech therapists will understand whether the applied training was effective

or not and whether the child is in its appropriate level regarding the type and the

duration of the training.

Different educational strategies are implemented to rehabilitate hearing impaired

children; however, direct comparison of these strategies without taking a proper quan-

titative criterion will not be possible. Quantifying voice disorder in these children and

expressing it in the form of a level, give speech pathologists the chance to compare dif-

ferent training strategies and choose the best one. In addition, designing a website with

the engine system created in this study, in order to provide special facilities for patients

undergoing the speech therapy, gives this opportunity to these patients to connect to

this website according to a scheduled time table and upload samples of their voice to

the site to be analyzed by the system. Then the analyzer motor implemented in the
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site will be able to process the speech sample, including convenience feature extrac-

tion, classification and quantification in order to perform an approximately online

diagnostic test. Finally the result of the test and state of the voice improvement can be

released or can be sent via monthly or daily email to the patient.

As with most classification studies, in which a new objective technique is being

tested against a human expert (e.g., an experienced speech therapist), the ever-present

‘gold standard’ problem becomes an important issue. In this paper, the system is being

trained and tested against a single human expert who will also be prone to making

errors. Thus, the classification errors made by the system may not have been errors at

all and may have reflected some noise in the human expert which a panel of other

human experts may have disagreed with. Thus, the gold standard, particularly a single

one, is unlikely to be perfect in classification of such a complex process such as speech.

Conclusions
In this study for the first time, nonlinear and phase space features are extracted from

voice of the children with cochlear implantation and hearing aid. Results showed the

capability of nonlinear analysis to follow up speech recovery in these children. This

result is also achieved in analyzing speech disorder in patients with laryngeal abnorm-

ality to separate healthy subjects from patients [14].

Comparing Table 5 with Table 4 it is observed that after combining outputs of the

classifiers, the final classification rates in all levels increase compared with isolated

classifiers. To have better classification accuracy in fused classifiers than isolated classi-

fiers, two conditions must be met: 1-Isolated classifiers should have high accuracy.

2- Output errors of the isolated classifiers should be independent [27]. In other words,

classifiers should complement and compensate for each other, otherwise, regardless of

what the fusion rule is, results of the multiple classifier fusion would not be better,

and perhaps even worse, than isolated classifiers. Considering table 4, it can be seen

that output errors of classification by each word almost does not overlap other words.

Levels that cannot be classified well by a word are classified well by at least one other

word. Therefore after fusing classifiers, better results are achieved compared to isolated

classification. Best classification accuracy is gained from features of “fundamental fre-

quency, first, second and third formants, the first to the second formant ratio, relative

intensity, nasality, fractal dimension, lyapanov exponent and mean energy of the wave-

let coefficient” with MVR fusion rule.

Linear Combination is a fast and easy method for fusion when a large number of

classifiers are to be fused. This method has been one of the most successful and com-

mon ways for fusion of multiple classifiers [28]. Stacked fusion made improvement in

classification rate compared to individual classifiers but the amount of increase in

accuracy is not as MVR and Linear Combination. When using stacked fusion, the

meta-classifier should be trained with a data set different from the one used for the

individual classifiers (Experts’ boasting Issue) [22]. Data is therefore divided to 3 smal-

ler subsets; first to train the individual classifiers, second to train the meta-classifier

and third to test the whole system. When the amount of data is small, a subdivision of

it would not be enough to train meta-classifier, so the MLP network used as meta-

classifier in this study cannot be trained well and the results of the classification are

not acceptable.
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