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Abstract

Background: Since the first well-known electrocardiogram (ECG) delineator based on
Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort
has been devoted to the exploitation of this promising method. Its ability to reliably
delineate the major waveform components (mono- or bi-phasic P wave, QRS, and
mono- or bi-phasic T wave) would make it a suitable candidate for efficient online
processing of ambulatory ECG signals. Unfortunately, previous implementations of
this method adopt non-linear operators such as root mean square (RMS) or floating
point algebra, which are computationally demanding.

Methods: This paper presents a 32-bit integer, linear algebra advanced approach to
online QRS detection and P-QRS-T waves delineation of a single lead ECG signal,
based on WT.

Results: The QRS detector performance was validated on the MIT-BIH Arrhythmia
Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010
annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on
788050 annotated beats). The ECG delineator was validated on the QT Database,
showing a mean error between manual and automatic annotation below 1.5
samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak,
T-offset, and a mean standard deviation comparable to other established methods.

Conclusions: The proposed algorithm exhibits reliable QRS detection as well as
accurate ECG delineation, in spite of a simple structure built on integer linear
algebra.

Background
The electrocardiogram (ECG) is the recording of the electrical activity of the heart by

means of electrodes placed on the body surface. It is the most commonly used non-

invasive test in primary care for heart rate and rhythm-related abnormalities detection

[1,2]. In recent years the interest for the ECG signal analysis has extended from clinical

practice and research to disciplines such as cognitive psychophysiology [3,4], physical

training [5,6] and rehabilitation [7].

Many non-diagnostic applications do not require the full 12-lead setup of clinical

ECG, employing a limited number of electrodes. In some cases a single lead setup,

requiring only three electrodes, is sufficient. Such applications focus on ambulatory

ECG monitoring, namely in unconstrained conditions, in which subjects perform nor-

mal activities as in their daily life [4], [8-10].
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Ambulatory ECG analysis requires processing of signals which are affected by consid-

erable noise, mainly caused by electrode motion and muscular activity, more promi-

nently than in resting ECG recordings, and by power-line coupling. Moreover,

emerging wearable technologies for ambulatory ECG monitoring have limited proces-

sing resources and low power budget.

Clinical information on the cardiac beat is carried by the waveforms appearing on

the electrocardiogram, namely: QRS-complex and P, T, U, waves. Their amplitudes

and relative time intervals provide insight on heart rhythm abnormalities and heart dis-

ease such as ischemia and myocardial infarction. Electrocardiogram delineation is the

automatic process of determining such amplitudes and time intervals.

Performing an accurate delineation is quite a challenging task, for many reasons. For

example, the P wave is characterized by low amplitude and may be masked by elec-

trode motion or by muscular noise. The P and T waves may be biphasic, which

increases the difficulty to accurately determine their onset or offset. Moreover, some

arrhythmic beats may not contain all the standard ECG waves, for example the P wave

may be missing, while in accelerated heart rate patterns, it might be partially over-

lapped to the T wave of the previous beat.

The first stage of ECG delineation is devoted to detecting the QRS-complex, which

in most cases is the most pronounced wave of the heart cycle. Subsequent processing

locates P, QRS-complex and T waves fiducial points (onset, peak, offset).

The cyclic nature of the ECG signal and its spectral components, which mainly

appear in well-known and distinguishable frequency bands, make ECG a suitable can-

didate for multi-resolution decomposition by means of wavelet transforms [11,12].

Methods based on wavelet transforms have been proposed by numerous authors

[13-18], building on the first well-known ECG delineator proposed by Li et al. [19].

Unfortunately, most of these ECG delineation algorithms adopt non-linear operators

such as root mean square (RMS) or floating point algebra, which are computationally

demanding. The work by Sovilj et al. [17] presents a real-time implementation of QRS

detection and P wave delineation, though no validation on standard databases is pro-

vided, nor is the P wave delineation criterion explained. In [20] a WT-based algorithm

for real-time QRS detection and ECG delineation is presented, though no validation is

reported on delineation, and the total number of annotated beats used in the validation

of QRS detection does not match the record-by-record count, as noted in [13].

The work by Boichat et al. [16] presents a real-time implementation of the offline

method proposed by Martinez et al. [13], though no validation on arrhythmia data-

bases (such as the MIT-BIH Arrhythmia Database) is provided. The delineation of

QRS onset and QRS offset in [16] is performed on WT detail coefficients at scale 24,

namely on the output of a pass-band FIR filter with a 3dB band of 4.1-13.5 Hz. More-

over, the criterion adopted for the validation of the delineation algorithm is based on a

320 ms window, which exceeds the maximum tolerance (150 ms) for QRS detection

accuracy allowed by the ANSI/AAMI-EC57:1998 standard.

This paper presents a wavelet-based algorithm for single lead QRS detection and

ECG delineation of P wave, QRS-complex and T wave, under the algorithmic con-

straint of 32-bit integer linear algebra online processing and compliance with ANSI/

AAMI-EC57:1998 requirements on QRS detection accuracy. The algorithm was
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validated on MIT-BIH Arrhythmia Database (MITDB), the European ST-T Database

(EDB), and QT Database (QTDB), available from Physionet.

Methods
Wavelet Transform

The general theory on wavelet transforms for multi-resolution analysis is described in

detail in [11,12], [21] and its application to ECG signal delineation is presented in [13],

[19], while a review is given in [14].

With reference to the family of spline functions of degree 2r + 2 proposed in [12] for

the smoothing function θ(t), in this study the 8th degree (r = 3) was adopted. Its Four-

ier transform is expressed in (1.1) and the Fourier transform of the wavelet function is

expressed in (1.2).
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Unlike previous studies [13], [16-20] where a cubic spline smoothing function θ(t)

(r = 1) was used, in this study a higher value of r was adopted to reduce the width of

the compact support and the pass-band of the equivalent filter for scales higher than

21, to improve frequency band separation across scales. However, the number of filter

taps increases with r, therefore a tradeoff should be determined between computational

effort and delineation performance.

Figure 1 shows the smoothing function θ(t) and wavelet function ψ(t) for r = 1 and

r = 3. The compact support of the smoothing (scaling) function decreases in width as

r increases.

Figure 1 Smoothing function and wavelet function. Smoothing function θ(t) (left) and wavelet function
ψ(t) (right), for r = 1 (dotted line) and r = 3 (solid line).
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The low-pass filter H and high-pass filter G derived from (1.1) and (1.2) can be

expressed as:

H(ejω) = e
j
ω
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2 sin
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whose finite impulse response hn and gn are given by the coefficients reported in

Table 1.

It shall be noted that hn is symmetrical and of even length, representing a linear

phase low-pass FIR filter, while gn is anti-symmetrical of even length, representing a

linear phase high-pass FIR filter.

The frequency response for the filter bank generalized for any given scale can be

written as:

Qk(ejω) =

⎧⎨
⎩
G(ejω), k = 1

G(ej2
k−1ω) ·

k−2∏
l=0

H(ej2
lω), k ≥ 2

(3)

The filter bank structure is illustrated in Figure 2.

The frequency response of the equivalent filters Qk in (3) is displayed in Figure 3 for

the first four scales, for r = 1 (cubic spline smoothing function) and r = 3 (8th degree

spline smoothing function). For any given scale 2k, Qk pass-band narrows with increas-

ing r, improving frequency separation of the filter bank across scales.

The group delay of the equivalent filter Qk must be accounted for in multi-scale ana-

lysis of discrete wavelet transform (DWT) coefficients. To match zero-crossings (and

their relative modulus-maxima) across different scales, DWT coefficients must be

aligned temporally.

The group delay of Qk at scale 2k, k >1, is given by:

τ k
g =

k−1∑
l=1

τ l
g,H + τ k

g,G (4:1)

where:

τ l
g,H = −3 · 2l−2 (4:2)

Table 1 Wavelet Filters Impulse Response

N hn gn

-2 1/128

-1 7/128

0 21/128 -2

1 35/128 2

2 35/128

3 21/128

4 7/128

5 1/128
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is the group delay of the low-pass filter at scale 2l, and

τ k
g,G = −2k−2 (4:3)

is the group delay of the high-pass filter at scale 2k.

According to [22,23], the energy of the main waveforms composing the ECG, namely

QRS-complex, P and T waves, lies within a limited frequency range. As a consequence,

a limited number of scales is required for ECG delineation. Table 2 summarizes the

cutoff frequencies of Qk filters for the scales of interest, for r = 1 and r = 3.

Description of the Algorithm

The raw ECG signal is assumed to be sampled at 250 samples/s.

The databases used for validation contain records of ECG data stored at 12-bit/

sample. Therefore, to prevent overflow in a (signed) integer implementation of the

low-pass filter adopted in the filter bank, 16-bit integer capacity is not sufficient. This

constitutes the only reason for adopting a 32-bit instead of 16-bit implementation.

However, a 32-bit implementation also complies with input signals (raw ECG data)
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Figure 2 DWT filter bank. Filter bank implementation of biorthogonal dyadic wavelet transform without
decimation (algorithme à trous). dkn is the detail coefficient series for scale 2k. Inspired by [13].

Figure 3 Equivalent filters magnitude response. Equivalent Filters Qk magnitude response, for different
scales 2k, for r = 1 (dotted line) and r = 3 (solid line). Sample frequency Fs = 250 samples/s.
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with a sample resolution up to 24-bit/sample. Most, if not all, commercially available

ECG front-end devices currently fall within this category. In order to comply with the

largest set of such devices on the market, no assumptions are made on the amplitude

resolution.

The DWT properties which the proposed method is based on are well described in

[13], [19]. Based on the properties of the filter bank (2), the zero-crossings of the

DWT coefficients dkn correspond to the local maxima or minima of the smoothed

input signal at different scales, and the maximum absolute values of dkn are associated

with maximum slopes in the filtered signal [13].

Figure 4 shows DWT detail coefficients computed by the present algorithm, for

actual ECG signals (record 108 and 208, from MITDB).

At a sampling frequency of 250 samples/s, the spectral content of the ECG signal

mainly falls within the first five scales of the filter bank (2). In particular, the QRS-

complex is prominent at scales 22 and 23 while its energy decreases at increasing scales

and becomes very low at scales higher than 24, while P shows high energy at scale 23

which decreases at higher ones. At scales 23 through 25 T wave has high energy,

though at scale 25 the baseline drift, including respiration effects, becomes prominent.

For this reason, scale 25 is not considered in this study. At scales 21 and 22 small

Table 2 Wavelet Filters Bandwidth

Scale Bandwidth [Hz] (*) Bandwidth [Hz] (*)

2k 3rd degree Spline θ(t) (r = 1) 8th degree Spline θ(t) (r = 3)

k = 1 62.50 - 125.00 62.50 - 125.00

k = 2 18.02 - 58.60 13.12 - 43.55

k = 3 8.36 - 27.46 5.98 - 19.99

k = 4 4.11 - 13.52 2.93 - 9.80

(*) 3 dB cut-off.

Figure 4 ECG signal and DWT decomposition. Examples of ECG signals from MITDB records (resampled
at Fs = 250 samples/s) MITDB:108 (left), MITDB:208 (right), and DWT detail coefficient dkn at scales 2

1

through 25.
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peaks in Q and S waves may show zero-crossings though at such low scales, especially

scale 21, muscular noise and power-line coupling may appear.

Using the information of local maxima, minima and zero-crossing at the scales of

interest, the algorithm identifies for each beat the significant points of the ECG in the

following steps: 1) detection of the QRS-complex; 2) QRS-complex delineation (onset,

offset); 3) P wave delineation (onset, peak, offset); 4) T wave delineation (peak, offset)

of the previous beat. Figure 5 displays the flow chart of the state machine for online

parsing of detail coefficients d2n, for QRS detection. Unlike previous works [13], [19],

for QRS detection only two scales (22, 23) are processed.

The algorithm proposed in this work is intended for online processing, therefore it is

causal: at discrete time Ti, only ECG samples at Tk ≤ Ti are assumed to be available.

To comply with low power budget constraints, the algorithm does not perform back-

search for missed beats. The drawback is a decrease in sensitivity; the advantage is a

decrease in storage memory and processing time. A memory buffer of 1 s for WT

coefficients is sufficient for QRS detection, whereas the required storage size increases

(depending on the inter-beat interval duration, in general no more than 1.5 s) for com-

puting delineation of the T wave of the previous beat.

QRS detection

For each beat, the QRS-complex is detected using wavelet detail coefficients dkn at

scales 22 and 23. As shown in Figure 5, only scale 22 is parsed for zero-crossings.

When a zero-crossing is detected, the adjacent modulus-maxima pair MMp(nZ) is
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Search zero-crossing

No

Store  zero-crossing
Yes

0)0( 00ZMMp nA
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qc = WQRS
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QRS decision rule
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Zero-crossing Search (scale 2²) ECG Delineation (scale 2², 2³)

Delineate QRS

Zn

Delineate P

Delineate T

Figure 5 ECG delineation state machine. State Machine flow chart for online ECG delineation. The zero-
corssing nZ with the largest modulus-maxima pair amplitude AMMp(nZ) is detected within ΔWQRS (250 ms)
at scale 22. Detail coefficients dkn at scales 2

2 and 23 are parsed for the verification of QRS candidates
according to the QRS-detection decision rule. After QRS-complex detection, the delineation process
delineates in the order: the QRS-complex, the P wave, and the T wave.
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determined and the associated amplitude AMMp(nZ), defined as the difference between

the positive maximum and negative minimum detail coefficients, is computed. The

zero-crossing is stored and an observation window ΔWQRS of 250 ms is initialized: if

a new zero-crossing nZ
* is detected within this window such that AMMp(nZ

*) > AMMp

(nZ), the window is reset and nZ
* is stored, replacing nZ, as shown in Figure 5. The

process is iterated until a full window elapses without new candidates. The zero-cross-

ing nZ represents the QRS-candidate. The QRS-detection decision rule is defined as

follows: a window of 200 ms centred around nZ is considered, and the maximum-mini-

mum difference Δd2n(nZ) of detail coefficients within such window, at scale 22, is com-

puted as follows:

� d2n(nZ) ≡ max
n ∈ [nZ−�W100, nZ+�W100]

{
d2n

}
− min

n ∈ [nZ−�W100, nZ+�W100]

{
d2n

} (5:1)

where ΔW100 represents a time interval of 100 ms expressed in units of samples. The

following condition is then tested:

� d2n(nZ) > ε2QRS (5:2)

where ε2QRS is an empirically determined threshold computed as follows:

ε2QRS =
11
32

·

∑
nZ

� d2n(nz)

N
(5:3)

where the summation encompasses the N (= 4) most recent QRS-candidates that

satisfied (5.2). Under the assumption that the time distance between two consecutive

beats is generally not longer than 2 s (corresponding to a heart rate of 30 beats/min),

it takes not more than 8 s to collect N (= 4) confirmed candidates. For this reason, a

learning period of 8 s is allowed before the algorithm outputs any detected beats.

If (5.2) is met, the decision process proceeds to the next step considering scale 23:

� d3n ≡ max
n ∈ [nZ−�W100, nZ+�W100]

{
d3n

}
− min

n ∈ [nZ−�W100, nZ+�W100]

{
d3n

} (5:4)

� d3n > ε3QRS (5:5)

where ε3QRS is an empirically determined threshold computed as in (5.3), for scale 23.

It shall be noted that, in (5.4), n spans the same window as in (5.1). Coefficients across

different scales are time-aligned by accounting for the group delay computed in (4.1).

If (5.2) and (5.5) are met, the QRS-candidate is confirmed, and thresholds ε2QRS and

ε3QRS are updated. Then, if the learning period is expired, the zero-crossing is marked

as the local peak (fiducial point) of a QRS-complex, and the algorithm proceeds for

the delineation of P, QRS, T waves. It shall be noted that thresholds ε2QRS and ε3QRS
are initialized to zero and iteratively adapt to QRS candidates. At the early stages of

this process, QRS misdetections (false positives) are likely to occur. To prevent this,

the algorithm does not output any detected QRS complexes until the learning period

has expired. A learning period of 8 s is generally sufficient, although there may be
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extreme conditions such as lead-fail, cardiac arrest, poor signal-to-noise ratio, in which

a longer time is required.

QRS delineation

QRS delineation is performed at scale 22. After detecting the QRS-complex, the QRS

onset fiducial point is determined starting from the position npre of the modulus maxi-

mum preceding the zero-crossing nZ of the QRS-complex at scale 22.

The following thresholds are defined, based on local d2n coefficient values:

ε2Q on,I =
d2n pre + d2n post

32

ε2Qon,II =
d2n pre + d2n post

16

(5:6)

where npost is the sample index of the modulus maximum following nZ. The delinea-

tion algorithm searches back from npre for negative minima or positive maxima, and

stores the first crossing of the threshold ε2Qon, I to be assigned to QRS onset in case

no modulus maxima are found within a fixed size window of 120 ms preceding npre.

The algorithm stops when a modulus maximum is detected whose amplitude is

lower than the threshold ε2Qon,II, or the end of the search window has been reached. If

at least one modulus maximum is found, a new threshold is defined:

ε2Q on,III =
d2n left

4
(5:7)

where nleft is the sample index at which d2n has its left-most modulus maximum.

The algorithm searches back from nleft until the first crossing of the new threshold

ε2Qon,III or the end of the fixed-size window is reached. The value is assigned to QRS

onset. The symmetrical criterion is adopted for the determination of QRS offset, start-

ing from the position npost of the modulus maximum following the zero-crossing nZ.

The threshold used for QRS offset delineation are:

ε2Q off ,I =
d2n post

4

ε2Qoff ,II =
d2n post

8

ε2Qoff ,III =
d2n right

4

(5:8)

where nright is the sample index of the right-most modulus maximum following npost
whose amplitude exceeds threshold ε2Qoff,II.

Figure 6 shows examples of different QRS morphologies from QTDB records, the

related manual annotations and the automatic delineation markers.

P wave delineation

P wave delineation is performed at scale 23. Mono- and bi-phasic P waves are handled.

After delineating the QRS-complex, the algorithm searches back from QRS onset on

scale 23 for the P wave. A fixed-size window whose length is chosen to be the shortest

between 300 ms and half the last inter-beat interval is used for the search. Within

this window, all zero-crossings are stored. The zero-crossing search is limited to a
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sub-portion of the window excluding the first (left-most) 100 ms which are only used

for determining P onset. The zero crossing nZ with maximizes AMMp(nZ) is marked as

P wave dominant peak. To determine the mono- bi-phasic morphology of the P wave,

specific conditions are tested:

1
2

∣∣∣d3n post

∣∣∣ ≤
∣∣∣d3n pre

∣∣∣ ≤ 2
∣∣∣d3n post

∣∣∣ (6:1)

where |d3n pre| is the modulus maximum preceding the zero-crossing nZ, at scale 23,

and |d3n post| is the modulus maximum following nZ. If (6.1) is verified, and a zero-

crossing nLZ preceding nZ is available within a distance of 100 ms, (6.1) is tested also

for nLZ. If such condition is verified, the following is also tested:

AMMp(nLZ) >
3
4
AMMp(nZ) (6:2:1)

If (6.1) and (6.2.1) are verified for nLZ, the P wave is considered to be bi-phasic and

npre is defined as the sample corresponding to the left-most modulus maximum of

MMp(nLZ) otherwise npre is defined as the sample corresponding to the left-most mod-

ulus maximum of MMp(nZ).

The same procedure is adopted in the search of nRZ following nZ within a distance of

100 ms. If (6.1) is verified for nRZ, the following condition is tested:

AMMp(nRZ) >
3
4
AMMp(nZ) (6:2:2)

If (6.1) and (6.2.2) are verified for nRZ, the P wave is considered to be bi-phasic and

npost is defined as the sample corresponding to the right-most modulus maximum of

MMp(nRZ) otherwise npost is defined as the sample corresponding to the right-most

modulus maximum of MMp(nZ).

Figure 6 Delineation of QRS morphologies. Examples of various QRS morphologies from QTDB records,
with manual annotations (top) and delineated characteristic points (bottom): QRS onset, dominant QRS
peak, QRS offset.
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The sample npre becomes the starting point for searching back the first crossing of a

threshold:

ε3P on =
d3n pre

4
(6:3)

If such crossing point is found within the search window, it is assigned to P onset.

The algorithm then searches for P offset, namely the estimated end of P, adopting

the same procedure described for P onset. The threshold adopted is:

ε3P off =
35 · d3n post

64
(6:4)

If P onset, peak and offset are found within the search window, P wave delineation

result is positive, otherwise the algorithm declares that P wave could not be delineated

for the given beat.

Figure 7 shows examples of P morphologies from QTDB records, the related manual

annotations and the automatic delineation markers.

T wave delineation

T wave delineation is performed at scale 23. The following possible morphologies are

handled: positive (+), negative (-), biphasic (+/- or -/+), upward and downward. At

each identified QRS-complex, T wave is delineated for the previous beat. The search is

done over a window defined as:

�WT =
{
nQRSoff (i−1) + �W80 ,

nQRSoff (i−1) +
19 · rr
32

}
(7:1)

Figure 7 Delineation of P wave. Examples of P waves from QTDB records, with manual annotations (top)
and delineated characteristic points (bottom): P onset, dominant P peak, P offset. (a) absent P wave, (b)
positive P wave, (c) bi-phasic P wave.
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where nQRS off (i-1) denotes the sample of the QRS offset of the previous beat (assum-

ing the ith beat is the latest detected), rr is the distance in units of samples between

the ith and the (i-1)th QRS fiducial point, and ΔW80 represents an interval of 80 ms

expressed in units of samples. The T wave dominant peak is searched within a sub-

window of ΔWT:

�WTPK =
{
nQRSoff (i−1) + �W80 ,

nQRSoff (i−1) +
rr
2

} (7:2)

Within ΔWT PK all zero-crossings are stored. A zero-crossing nZ is considered to have

a positive (negative) slope if the first non-zero detail coefficient preceding nZ is negative

(positive), and the first non-zero detail coefficient following nZ is positive (negative). For

zero-crossings nZ with negative (positive) slopes, the maximum (minimum) value Mn pre

of positive (negative) d3n coefficients preceding nZ is stored, together with the minimum

(maximum) value Mn post of negative (positive) d3n coefficients following nZ. The abso-

lute value of the difference ΔMM(nZ) between Mn pre and Mn post is computed and the

zero-crossing nZ with the highest value is considered. If an adjacent zero-crossing nLZ to

the left of nZ exists and the following condition is met:

�MM(nLZ) >
51
64

�MM(nZ) (7:3)

then the T wave is considered biphasic, nLZ is marked as T wave dominant peak Tpk,

nZ is marked as the end Toff of the dominant wave (i.e. the wave whose peak is sur-

rounded by the largest slopes), and the bi-phasic T wave end Tend is searched to the

right of npost following nZ. Tend is then assigned to the first sample for which d3n falls

below a threshold ε3Tend defined as:

ε3T end =
19 · d3n post

64
(7:4)

If nLZ does not exist or (7.3) is not verified, nZ is marked as Tpk, and the search pro-

ceeds to the right of npost following nZ. Toff is assigned to the first sample for which

d3n falls below a threshold ε3Toff, defined as;

ε3T off =
19 · d3n post

64
(7:5)

where npost refers to nZ. If an adjacent zero-crossing nRZ exists to the right of nZ,

such that:

�MM(nRZ) ≥ 1
2

�MM(nZ) (7:6)

the T wave is considered to be bi-phasic and Tend is defined as the first sample for

which d3n falls below the threshold in (7.4) where npost now refers to nRZ.

Figure 8 shows examples of various T wave morphologies from QTDB records, the

related manual annotations and the automatic delineation markers.

Validation

The QRS detection algorithm was validated on manually annotated ECG databases,

namely the MIT-BIH Arrhythmia Database (MITDB) and the European ST-T Database
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(EDB), whereas the P-QRS-T delineation algorithm was validated on the QT Database

(QTDB).

The MITDB database includes a selection of Holter recordings covering a broad

spectrum of arrhythmias.

The EDB database contains annotated excerpts of ambulatory ECG recordings with a

representative selection of ECG abnormalities including ST segment displacement and

cardiac axis shifts.

The QTDB database contains records from MITDB and EDB, and from several other

databases (Normal Sinus Rhythm, ST Change, Supraventricular Arrhythmia, Sudden

Death, Long Term Recordings). This database was created for validation of waveform

boundaries and contains annotations by cardiologists for at least 30 beats per record,

including QRS-complex, P, T, U waves delineation.

For the QRS detector validation on MITDB and EDB, the first ECG channel was

used and, for MITDB only, raw data were resampled at 250 samples/s before

processing.

For the validation on QTDB, reference annotations of first cardiologist (q1c files

from QTDB) were used in this work. Records from this database are sampled at 250

samples/s, therefore no resampling was required.

Table 3 summarizes the databases used for validation.

Figure 8 Delineation of T wave. Examples of T waves from QTDB records, with manual annotations (top)
and delineated characteristic points (bottom): dominant T peak, dominant T offset, T end. (a) positive T
wave, (b) negative T wave, (c) upward T wave, (d) downward T wave, (e) and (f) bi-phasic T wave.

Table 3 Databases used for validation

Database #Annotated Beats Records Record Duration

MITDB 109010 48 30 min

EDB 788050 90 120 min

QTDB 3622 105 15 min
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To assess QRS detection performance, sensitivity (Se) and positive predictive value (P+)

were calculated: Se = TP/(TP+FN) where TP is the total number of true positives identi-

fied in the given record, FN is the total number of false negatives; P+ = TP/(TP+FP) where

FP is the total number of false positives.

A true positive is achieved when the time difference between the given annotated

beat and the detected beat is not greater than 150 ms, in compliance with ANSI/

AAMI-EC57:1998 standard.

For the validation of ECG delineation on QTDB, the metrics proposed in [13], [16]

was adopted, where m is the mean value of the errors intended as the time difference

between automatic and reference annotation, for all annotations, and s is the average

standard deviation of the error, calculated by averaging the intra-recording standard

deviations.

For each fiducial point delineation, the ECG channel with the least error was chosen,

as in [13], [16]. Sensitivity was calculated for each characteristic point, for P wave,

T wave and QRS-complex, separately. For T wave, manual annotations T-peak and T-

offset, are matched to Tpk an Toff as defined in the delineation method, respectively.

A true positive is achieved when the wave is annotated and the delineation process

detects the presence of such wave within a time distance not greater than 150 ms. (in

[16] a window of 320 ms is used, in [13] the window size is not reported). A false posi-

tive occurs when the delineation process locates a characteristic point which was not

annotated. A false negative is considered when the delineation process fails to locate

the annotated fiducial point within the above mentioned tolerance of 150 ms. Positive

predictive value could not be calculated, as noted in [13]: when there is no annotation

it is not possible to determine whether the cardiologist considered that there was no

waveform to annotate or was not confident in annotating it (perhaps because of the

noise level). Nevertheless, for points other than the QRS delineation, P+ was calculated

under the assumption that an absent mark in the annotated beat means that there is

no waveform. As a result, the calculated P+ can be interpreted as a lower limit (P+min)

of the actual one.

Results
QRS detection

Table 4 and Table 5 show the QRS detector performance on MITDB and EDB data-

bases, respectively. Results are compared to previous studies. As in [13] segments with

ventricular flutter in record 207 of MITDB (for an overall length of approximately 2

min 20 s) and those marked as unreadable (in the pertaining annotation file) in EDB,

were excluded.

ECG delineation

ECG delineation results are shown in Table 6, where they are also compared to the

ones obtained in previous studies. The results reported by Ghaffari et al. in [18] are

not included in the table because the number of leads used for detection was not sta-

ted, nor was the number of annotated beats; it is also unclear the extent to which the

authors used third party annotations for validation of their algorithm on the QT Data-

base. The accepted two-standard-deviations 2sCSE tolerance, defined by the Common

Standards for Electrocardiography (CSE) working party in [24] based on measurements
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made on different experts annotations, is also reported in the bottom row of the table.

Table 7 shows inter-cardiologist annotations variability calculated on the QTDB

records that were annotated by two different cardiologists. Unfortunately, only eleven

records include double annotations, and only for QRS and T wave, not for P wave.

Discussion
The proposed algorithm performs online QRS detection as well as P, QRS, T waves

delineation. Unlike previous DWT based methods [13], [16], [19], the present only

uses two scales (22, 23), for both QRS detection and ECG delineation. The QRS detec-

tion showed an excellent performance on the MIT-BIH Arrhythmia Database, achiev-

ing a sensitivity of 99.77% and a positive predictive value of 99.86% on 109010

annotated beats, and on the European ST-T Database, achieving a sensitivity of 99.81%

and a positive predictive value of 99.56% on 788050 annotated beats. Sensitivity and

positive predictive value reported for the ST-T database are the highest among pre-

vious works, as shown in Table 5.

The validation on the QT Database showed very good performance in P, QRS,

T waves delineation. The mean error (m) and the average standard deviation (s) were

comparable to the ones obtained by other WT-based delineators, as shown in Table 6.

Mean error (m) was lower than 6 ms (1.5 samples, at Fs = 250 samples/s) for all charac-

teristic points, whereas the average standard deviation (s) was around 8 ms (2 samples)

for QRS delineation, and 12 ms (3 samples) for P wave and T peak delineation. Relatively

high values of s in T wave delineation are present in all algorithms, and may be caused

Table 4 Comparison of QRS Detection Performance with Published Methods (First ECG
Channel of MITDB)

QRS Detector # annotations FP FN Se [%] P+ [%]

This work 109010 148 252 99.77 99.86

Martinez et al. [13] 109428 153 220 99.80 99.86

Ghaffari et al. [18] 109428 129 101 99.91 99.88

Aristotle [25] 109428 94 1861 98.30 99.91

Li et al. [19] 104182 (*) 65 112 99.89 99.94

Afonso et al. [26] 90909 406 374 99.59 99.56

Bahoura et al. [20] 109809 (*) 135 184 99.83 99.88

Lee et al. [27] 109481 137 335 99.69 99.88

Hamilton and Tompkins [28] 109267 248 340 99.69 99.77

Pan and Tompkins [23] 109809 (*) 507 277 99.75 99.54

Poli et al. [29] 109963 545 441 99.60 99.50

Moraes et al. [30] N/R N/R N/R 99.22 99.73

Hamilton [31] N/R N/R N/R 99.80 99.80

Inspired by [13], Table 2.

(*) a discrepancy was found in the original publication between reported total and record-by-record count.

N/R: not reported.

Table 5 Comparison of QRS Detection Performance on the European ST-T Database
(EDB)

QRS Detector # annotations FP FN Se [%] P+ [%]

This work 788050 3511 1483 99.81 99.56

Martinez et al. [13] 787103 4077 3044 99.61 99.48

Aristotle [25] 787103 10405 38635 95.09 98.63

Inspired by [13], Table 2.

Di Marco and Chiari BioMedical Engineering OnLine 2011, 10:23
http://www.biomedical-engineering-online.com/content/10/1/23

Page 15 of 19



Table 6 Comparison of Delineation Performance with Published Methods (QT Database)

Method Param P onset P peak P offset QRS onset QRS offset T peak T offset

# annot 3194 3194 3194 3623 3623 3542 3542

This work Se [%] 98.15 98.15 98.15 100 100 99.72 99.77

P+min [%] 91.00 91.00 91.00 N/A N/A 97.76 97.76

m ± s -4.5 ± 13.4 -4.7 ± 9.7 -2.5 ± 13.0 -5.1 ± 7.2 0.9 ± 8.7 -0.3 ± 12.8 1.3 ± 18.6

Martinez et al. [13] Se [%] 98.87 98.87 98.75 99.97 99.97 99.77 99.77

P+min [%] 91.03 91.03 91.03 N/A N/A 97.79 97.79

m ± s 2.0 ± 14.8 3.6 ± 13.2 1.9 ± 12.8 4.6 ± 7.7 0.8 ± 8.7 0.2 ± 13.9 -1.6 ± 18.1

Laguna et al. [32] Se [%] 97.70 97.70 97.70 99.92 99.92 99.00 99.00

P+min[%] 91.17 91.17 91.17 N/A N/A 97.74 97.71

m ± s 14.0 ± 13.3 4.8 ± 10.6 -0.1 ± 12.3 -3.6 ± 8.6 -1.1 ± 8.3 -7.2 ± 14.3 13.5 ± 27.0

Boichat et al. [16] (*) Se [%] 99.87 99.87 99.91 99.97 99.97 99.97 99.97

P+min [%] 91.98 92.46 91.70 98.61 98.72 98.91 98.50

m ± s 8.6 ± 11.2 10.1 ± 8.9 0.9 ± 10.1 3.4 ± 7.0 3.5 ± 8.3 3.7 ± 13.0 -2.4 ± 16.9

2sCSE Tolerance [24] 10.2 - 12.7 6.5 11.6 - 30.6

Partially inspired by [13], Table 3.

(*) 16-bit integer implementation. No. annotations not reported. Se and P+min use 320 ms window.

N/A: not applicable, N/R: not reported.
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by the difficulty in determining the exact fiducial points as confirmed by the large inter-

cardiologist annotation variability, especially for T offset as shown in Table 7.

Comparing the average standard deviation (s) with the 2sCSE tolerances, the condi-

tion s < sCSE (referred to in [13] as “strict criterion”) is met for P peak, QRS offset, T

offset, whereas the condition s < 2sCSE (referred to in [13] as “loose criterion”) is not

met for any of the characteristic points. However, the “strict criterion” is not met by

any methods, as shown in Table 6.

Sensitivity and positive predictive value of the ECG delineator for P, QRS, T waves

were comparable to the values reported by others, as shown in Table 6. However, it

shall be noted that the width of the search window adopted in the computation of true

positives (TP) is not the same for all methods. In [13] the window width was not

reported, in [16] it was set to 320 ms. In the present work, the window width was set

to 150 ms. As a result, Se sand P+min may not be comparable across different methods.

Previous DWT-based methods [13], [16], compute the adaptive thresholds in QRS

detection εkQRS based on the root mean square (RMS) of dkn coefficients at the scales

of interest. In [13] RMS is computed over N = 216 samples excerpts, for the first three

scales (21, 22, 23). In [16] RMS is emulated over N = 29 samples excerpts for the first

four scales. RMS is computationally demanding, as it requires squaring and summing

N coefficients and calculating a square root. Although the square root was emulated in

[16], a considerable amount of computations is required for squaring large data

excerpts. In the present method, which uses only two scales, all thresholds are calcu-

lated from few (local) coefficients, which dramatically reduces the computational effort.

In particular, the computation of ε2QRS by (5.3) only requires N = 4 data-points, com-

pared to N = 29 in [16] and N = 216 in [13], and this computation does not require

squaring as in RMS. This observation also applies to ε3QRS. Moreover, all thresholds

are expressed in the linear form of (A·v)/2B, where v is an integer variable (or the sum

of integer variables), A and B are positive constant integer values. Thus all thresholds

can be computed by elementary shift and add operations.

The ECG data used in this work were either originally sampled at 250 samples/s or

resampled accordingly. Although many ECG front-end devices currently on the market

offer data streams at 250 samples/s or 256 samples/s, there may be devices that pro-

vide a fixed sample rate which is significantly different from 250 samples/s. In order to

preserve an integer linear algebra implementation in these cases, depending on the

sample rate different scales of the DWT filter bank (2) may be used, or the filter bank

itself may need to be redesigned, either by using a different degree of the spline

smoothing function θ(t), or different scaling and wavelet functions.

Conclusions
In this paper, a WT-based single-lead ECG delineation algorithm, designed for online

32-bit integer linear algebra processing, with shift/add operations replacing

Table 7 Inter-Cardiologist Annotation Variability on QTDB (Annotation Files: q1c vs. q2c)

# matched annotations Mean Error ± SD [ms]

Q onset 360 -3.12 ± 14.06

T peak 359 -0.28 ± 26.24

T offset 359 -2.99 ± 39.60
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multiplications and divisions, was presented. The algorithm complies with a sample

resolution up to 24-bit/sample without any assumptions on the amplitude resolution

of the ECG signal.

The algorithm detects the QRS-complex, delineates the onset, dominant peak, and

offset of the mono- or bi-phasic P wave, the onset and offset of the QRS-complex, the

dominant peak and offset of the mono- or bi-phasic T wave.

The QRS detector achieved excellent performance on the MIT-BIH Arrhythmia

database (Se = 99.77%, P+ = 99.86%, 109010 annotated beats) and on the European

ST-T Database, (Se = 99.81%, P+ = 99.56%, 788050 annotated beats).

The proposed algorithm also exhibited very good accuracy in P, QRS, T delineator

on QT Database, where the mean error between automatic and manual annotations

was lower than 1.5 samples for all the characteristic points, and the associated average

standard deviations were comparable to the ones reported from previous methods.

However, the QTDB database contains a limited number of annotations, which makes

the validation of an automatic ECG delineator not comprehensive.

Based on the results achieved on standard databases, the proposed algorithm exhibits

reliable QRS detection as well as accurate ECG delineation. Reliability and accuracy

are close to the highest among the ones obtained in other studies, in spite of a simpli-

fied structure built on integer linear algebra which makes the proposed algorithm a

suitable candidate for online QRS detection and ECG delineation under strict power

constraints and limited computational resources, such as in wearable devices for long-

term non-diagnostic ambulatory monitoring.
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