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Abstract

Background: Laser-assisted bioprinting of multi-cellular replicates in accordance with
CAD blueprint may substantially improve our understandings of fundamental aspects
of 3 D cell-cell and cell-matrix interactions in vitro. For predictable printing results, a
profound knowledge about effects of different processing parameters is essential for
realisation of 3 D cell models with well-defined cell densities.

Methods: Time-resolved imaging of the hydrogel jet dynamics and quantitative
assessment of the dependence of printed droplet diameter on the process
characteristics were conducted.

Results: The existence of a counterjet was visualised, proving the bubble collapsing
theory for the jet formation. Furthermore, by adjusting the viscosity and height of
the applied hydrogel layer in combination with different laser pulse energies, the
printing of volumes in the range of 10 to 7000 picolitres was demonstrated.
Additionally, the relationship between the viscosity and the layer thickness at
different laser pulse energies on the printed droplet volume was identified.

Conclusions: These findings are essential for the advancement of laser-assisted
bioprinting by enabling predictable printing results and the integration of
computational methods in the generation of 3 D multi-cellular constructs.

Background
Bioprinting techniques are emerging as potential instruments for the multidisciplinary

field of tissue engineering and regenerative medicine. The possibility to arrange multi-

ple cell types in a computer-controlled 3 D manner may substantially improve our

understanding about complex cell-cell and cell-environment interaction. Among all

bioprinting techniques [1-3], laser-assisted bioprinting (LaBP) approaches based on

laser-induced forward transfer were demonstrated to possess additional benefits: (i)

tiny amounts of different hydrogels with a wide range of rheological characteristics can

be printed in a controlled and precise way [4-8], which is important for the realisation

of 3 D cell-hydrogel constructs mimicking various stiffnesses of native tissues; (ii) any

desired cell amount ranging from single [9] to dozens of cells [10] can be printed with-

out observable damage to pheno- and genotype [7,9-12]; and (iii) the printing speed

(number of droplets per second) depends mainly on the pulse repetition rate of the

applied laser. Printing speed of 5000 droplets per second was recently demonstrated

[4], which enables fast generation of large cell constructs.
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Already demonstrated biological applications reflect the flexibility of this laser print-

ing technique, for instance: (1) generation and differentiation of 3 D stem cell grafts

[13], which can be used as in vitro tissue models for the screening of drug effects; (2)

assembly of cellular micro arrays of single [11] and multiple [14] cell types for sys-

tematic studies of fundamental aspects of cell-cell and cell-environment interaction; (3)

computer-controlled seeding of 3 D scaffolds with multiple cell types [15]; and (4) in

vivo bioprinting of nano-hydroxyapatite [16]. The principal laser-assisted bioprinting

setup (see Figure 1) consists of a pulsed laser source and two positioning systems on

which a donor-slide coated with an energy-absorbing material layer carrying the cell-

hydrogel compound, and a collector-slide receiving the printed biological material are

located. In brief, laser pulses are focussed through the donor-slide onto the gold layer

which is evaporated locally at the focal point. This rapid energy deposition leads to the

generation of a jet dynamic [17] resulting in the deposition of a tiny hydrogel volume

on the collector-slide. Control of the printed volume is a key issue and great efforts

have been made to understand the relationship between the printed volume and the

processing parameters [5,6,8,18]. Providing a deeper understanding of this relationship

is crucial in order to make the printed volume with embedded cells more predictable,

and to enable theoretical simulation of cell-cell interaction, cell-extracellular matrix

interaction and signalling pathways [12]. However, the whole jet generation process is

not completely understood. Moreover, recent studies mainly used glycerol-based fluids

to investigate the effects of the laser fluence and fluid properties on the droplet volume

[5,8,18] instead of fluids based on fibrin-precursors, which are widely used for bioprint-

ing of different cell types [4,7,13,15].

Therefore, in this study we present our experimental results concerning the relation-

ship between the laser pulse energy and the rheological properties of a natural hydro-

gel consisting of alginate and blood plasma by means of time-resolved imaging and

quantitative assessment of the droplet diameter.

Methods
Laser-assisted Bioprinting (LaBP)

A detailed description of the laser bioprinting setup has been previously published [7].

Briefly, to initiate the printing, a pulsed Nd:YAG laser (DIVA II, Thales, 1064 nm

wavelength, 10 ns pulse duration, 20 Hz pulse repetition rate, beam quality M² < 1.1)

was deployed. Laser pulse energies were varied by an attenuator and continuously

monitored by an energy meter (Nova II and sensor 3A-P-V1, Ophir, Germany). Collec-

tor and donor glass slides (Resolab, Germany) were 26 × 26 × 1 mm in size and

Figure 1 Schematic Laser-assisted bioprinting setup.
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cleaned with acetone before usage. The bottom side of the donor glass slide was coated

with a 60 nm gold layer using a plasma-enhanced sputter coater (Cressington 208HR,

EO Service GmbH, Germany). The hydrogel layer was applied upon the gold layer by a

blade coater. A 60 mm achromatic lens focused the laser beam through the donor-

glass slide onto the gold layer.

The droplet deposition was controlled via computerized scanning setup consisting of

three high speed translation stages (M-414.1PD and M413.3PD, Physik Instrumente

GmbH, Germany). On the XY-translation stages, two mirrors and the Z-stage holding

the focussing optics as well as the camera for process visualization were mounted. The

stages were synchronized with laser pulses using a programmable computer-based real

time system (Adwin-4L-T400, Jaeger Messtechnik, Germany) to ensure equidistant

positioning of the laser spots. This automated CAM controlled stage setup allows sin-

gle spot deposition and accurate positioning of a wide variety of patterns.

Hydrogel

The utilized hydrogel consisted of alginate (low viscosity, brown algae) and ethylene-

diaminetetraacetic acid (EDTA) blood plasma. Chemicals were obtained from Sigma

Aldrich, Germany, unless otherwise stated and porcine whole blood samples were

obtained from a local abattoir. First 2 wt%, 4 wt% and 6 wt% of alginate were dissolved

in 0.15 M NaCl-solution. These solutions were mixed 1:1 (v/v) with blood plasma

resulting in 1 wt%, 2 wt% and 3 wt% alginate concentration. All the fluids show shear

thinning flow behaviour which means that viscosity decreases with rate of shear. The

material properties are shown in Table 1.

The densities were acquired with a density meter DMA 38, Anton Paar, Austria. For

viscosity measurements Fluids Spectrometer RFS II, Rheometrics Scientific, USA, was

applied. Surface tension was measured by means of pendant drop method (OCA 40

micro, Dataphysics, Germany).

Time-resolved imaging

The time-resolved imaging setup [17] consisted of a frequency-doubled Nd:YAG laser

(Quanta-Ray DCR-11, 532 nm, 9.2 ns ± 0.5 ns (SD) pulse duration) for stroboscopic

illumination and a single lens reflex (SLR) camera (Canon EOS 450D). Magnification

of the images was realised by a five-fold microscope objective (Zeiss, Fluar, NA 0.25).

The temporal delay between the laser responsible for printing and the illumination

laser was set by two digital delay generators (SG 535, Stanford Research Systems, USA,

and BME, SG05p, Bergmann Messgeraete Entwicklung, Germany). The delay was mon-

itored by two fast-rising photo diodes (DET 10A/M, Thorlabs). With this setup, one

frame per transfer could be captured. Therefore, at least 5 images per delay were taken

to ensure reproducibility.

Table 1 Material characteristics of the hydrogels at 24°C

Alginate concentration Density Viscosity Surface tension

(v/v) (g/cm3) (Pa·s) (mN/m)

1% 1.017 0.022 46.7

2% 1.023 0.148 45.5

3% 1.028 0.431 45.3

Gruene et al. BioMedical Engineering OnLine 2011, 10:19
http://www.biomedical-engineering-online.com/content/10/1/19

Page 3 of 11



For the time-resolved imaging, the collector glass slide was removed. To prevent dry-

ing of the hydrogel layer, a humidity chamber was placed under the donor slide.

Transferred volume

The determination of the transferred volume was accomplished by printing spot arrays,

whereby every line corresponded to a certain energy level. At least 20 droplets per

energy value were evaluated. To ensure reproducibility, three spot arrays for each cho-

sen viscosity and layer height have been printed. Every spot array was printed from a

freshly coated donor glass slide. Overall, this leads to 60 analysed droplets per each

energy level, viscosity and layer height. Droplet diameters were automatically obtained

by using the open source program ImageJ. Based on the average contact angle of 45.5°,

the measured diameters were converted into volumes. The contact angle was investi-

gated by dispensing small droplets on a cleaned glass substrate with a contact angle

measuring device (OCA 40 micro, Dataphysics, Germany). Subsequently, the drying

process was monitored and the contact angles were calculated with the help of the

contact angle measuring device software.

Splashed volumes at higher energy have not been taken into account.

Results
Jet dynamics

Figure 2 shows the comparison of schematic and real jet formation images. For every

delay, at least 5 images have been captured to ensure reproducibility. 1 μs after laser

pulse impact, a small protrusion of the liquid layer is visible (Figure 2a). This protrusion

grows and becomes elongated in shape after additional 2 μs (Figure 2b). At the tip, the

jet forms. The existence a so-called counterjet was assumed for LaBP of liquids by Duo-

castella [8] and ourselves [17]. In Figure 2c) the counterjet is clearly visible. To uncover

the small counterjet high energy levels for large size protrusion were necessary. The

pulse energy was 60 μJ in comparison to 20 μJ for the other images. This led to temporal

discontinuity of the images. Temporal delays were as follows: a) 1 μs, b) 3 μs, c) 100 μs

Figure 2 Comparison of schematic and real jet formation images. In the sketches, grey arrows
indicate expansion or contraction of the vapour and black arrows mark the fluid flow inside the jet. For
the time-resolved images hydrogel with the viscosity h = 0.1477 Pa·s was coated in 66 μm layer onto the
donor slide. The black scale bars correspond to 200 μm. For images a), b) and d) laser pulse energy of 20
μJ was applied. The delays of the images were a) 1μs, b) 3 μs, c) 100 μs and d) 34 μs. To visualize the
small counterjet higher energy levels were necessary. Therefore, applied energy in c) was 60 μJ.
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and d) 34 μs. Figure 2d) shows a bulge structure around the jet which decreases over

time.

Viscosity effect

Figure 3 shows the jet length dependence on time for hydrogels with 0.0218 Pa·s,

0.1477 Pa·s and 0.4311 Pa·s viscosities. The laser energy has been kept constant at

approximately 21 μJ during all the measurements. Five images per delay have been

taken to ensure reproducibility. The error bars in the diagram represent the standard

deviation. The plots for 0.0218 Pa·s and 0.1477 Pa·s viscosities end when the jets

exceeded the image field of view. The plot for the lowest viscosity of h = 0.0218 Pa·s

shows stronger inhomogeneities compared to other plots. As one can see in Figure 4C,

the laser energy of 21 μJ is an upper limit for jetting behaviour for the 0.0218 Pa·s

solution. In this case the jet appears very turbulent. Nevertheless, this laser pulse

energy was chosen to observe jetting behaviour for all viscosities. For estimation of

laminar or turbulent flow behaviour, the Reynolds number is usually applied. In our

case, Reynolds numbers of the different viscosities are the following: Re (h = 0.0218

Pa·s) = 539, Re (h = 0.1477 Pa·s) = 51 and Re (h = 0.4311 Pa·s) = 13. For these calcula-

tions the jet’s front velocity and jet diameter at 6 μs delay were used. Since the critical

Reynolds number Re, crit for laser-assisted bioprinting of liquids has not been investi-

gated so far, one cannot clearly distinguish between laminar and turbulent flows. How-

ever, these numbers support the time resolved images (Figure 4), where different flow

behaviours of the hydrogels with h = 0.0218 Pa·s versus h = 0.1477 Pa·s and h =

0.4311 Pa·s are clearly visible. Further time-resolved imaging studies are necessary for

verification of the critical Reynolds number during laser-assisted bioprinting of liquids.

Figure 3 Dependence of the jet evolution on viscosity. Plot of the jet length dependence on the
temporal delay. Five images per delay have been taken. The error bars mark the standard deviation.
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Figure 3 illustrates a distinct dependency of the jet evolution on the viscosity. During

the first 5 μs of the jet formation process, the materials front velocity is very high.

Later on the velocity is damped depending on the liquids viscosity.

Figure 4 clarifies the different velocities of the jet formation stages depending on the

viscosity. At lower viscosity (C) the protrusion at the beginning is strongly pronounced

since the hydrogel has lower resistance against expansion of the vapour. A flow inside

the hydrogel is induced easier at low viscosity, leading to an earlier formation of the jet.

Effect of layer thickness

The influence of the layer thickness on the printed droplet volume was investigated at

three different viscosities and over a wide range of laser energies. The investigated

energy domains span from the minimum energy needed for material transfer and the

energy level causing strong splashing of the droplets. In Figure 5 the relevant plots are

demonstrated. From these graphs the following statements can be derived: (1) mini-

mum transfer energies increase with rising viscosity and layer height, and (2) trans-

ferred volume increases with layer height at every viscosity. The most conspicuous

dependency exhibits at h = 0.1477 Pa·s viscosity. At a layer thickness of 66 μm the

maximal printed volume is about 6 times higher compared to a layer thickness of 44

μm, whereas for 0.0218 Pa·s and 0.4311 Pa·s viscosities the corresponding volume

growth is 1.2 and 4.5 times, respectively. With increasing layer thickness this difference

between the different viscosities becomes even more distinct.

In Figure 6, the relationship between laser energy, droplet diameter and correspond-

ing volume are clarified. As one can see in Figure 6b) only the droplet volume has

nearly linear dependence on the laser pulse energy in contrast to Figure 6a) where the

curve progression has more nonlinear character.

Figure 4 Time-resolved imaging of jet formation depending on viscosity. First 10 μs of the jet
formation depending on the solution’s viscosity whereas A corresponds to h = 0.4311 Pa·s, B to h =
0.1477 Pa·s and C to h = 0.0218 Pa·s. Black spherical disturbances in the background of C are due to
condensed humidity on the microscope objective.
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Discussion
Laser-assisted arrangement of multiple cell types in accordance with a CAD blueprint

provides a route for the realization of 3 D tissue constructs and the fabrication of

niche-like environments resembling their native origin. We previously demonstrated

the arrangement of cells in two [7] and three dimensions [13] on the micro-scale and

without observable damage to their pheno- and genotype. However, the cells undergo

Figure 5 Influence of layer thickness and viscosity on droplet volume. Plots a) - c) show the
dependence of the droplet volume on the laser energy and the initial hydrogel layer thickness on the
donor slide. Dashed lines illustrate the linear trend of the data points and the error bars mark the standard
deviation. For the time-resolved images in d) a solution with h = 0.4311 Pa·s was imaged at different layer
heights. The temporal delay in all these images was 100 μs and the laser energy was kept constant at
17 μJ.

Figure 6 Comparison of printed droplet diameter with droplet volume. Progressions of the droplet
diameter (a) and the droplet volume (b) depending on layer thickness and laser energy of a solution with
h = 0.4311 Pa·s.
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mechanical shear forces during the jet formation by acceleration towards and impact on

the collector slide. In order to predict these mechanical forces and their effects on the

cells by means of numerical methods, the fundamentals of hydrogel flow inside the jet

have to be understood to a greater extent. In previous studies, the mechanisms behind

the jet formation process are discussed [5,8,17] and a first modelling attempt is pre-

sented [19]. The hydrogel transport initiated by LaBP proceeds in the following steps:

first, the metal layer is irradiated by the nanosecond laser pulse. The laser light is

absorbed by the electrons inside the solid and after only tens of picoseconds the atoms

and electrons are in equilibrium state [20] which leads to strong heating of the material

to the melting point. Subsequently the liquid material is vaporized by further nanose-

cond laser light absorption [21]. At low fluences the vapour is transparent for the laser

light whereas at higher fluences the vapour is ionized by the laser irradiation and plasma

is generated. Plasma shining is usually visible on the time-resolved images. Only at mini-

mum transfer fluences plasma light cannot be detected. However, this is no evidence for

absence of plasma. After the end of the laser pulse the vapour expands in all directions

but resistance against expansion is lowest at the front because in this area the amount of

hydrogel is small compared to the lateral region. Therefore the expanding vapour bubble

possesses elongated shape (see Figure 2a). After the stretching of the hydrogel layer a

flow inside of this layer is initiated. Due to inertia, surface tension and the bubble col-

lapse the jet is formed and fed by the hydrogel flow (see Figure 2b). In studies focusing

on cavitation bubble dynamics near free surfaces [22,23] an additional small jet penetrat-

ing the cavitation bubble is observed. Therefore, the existence of this so-called counter-

jet was assumed for LaBP of liquids by Duocastella [8] and ourselves [17]. In Figure 2c)

the counterjet is clearly visible. The counterjet evolves due to bubble collapse and the

high pressure region at the tip of the protrusion. In Figure 2d) the jet after collapse of

the vapour is demonstrated. The lateral flows collide and the counterjet might be

reflected on the donor glass slide, if its velocity is high enough to overcome viscous

forces. Those colliding flows lead to a bulge formation. Over time, the bulge will

decrease and move along the jet. This result can provide more precise boundary condi-

tions for the computational fluid dynamic model and enables evaluation of critical flow

forces onto cells, which are difficult to observe with present biological methods.

This work was carried out with an alginate-blood plasma hydrogel instead of a gly-

cerol solution, as was primarily applied in other studies [5,8,18,24], due to three rea-

sons. Firstly, alginic salts, in contrast to glycerol, are able to form an ionic network in

the presence of bivalent cations (e.g. calcium), which is required for the generation of

3 D constructs. Alginate is biocompatible and has adjustable mechanical properties

[25,26]. Blood plasma was chosen as the second hydrogel component due to simple

withdrawal from the same cell donor and its coagulation ability (in the presence of cal-

cium and/or thrombin). Secondly, hydrogels based on precursors of fibrin, in contrast

to glycerol/water solutions, are widely used for biofabrication and tissue engineering

applications [2,4,25,26]. Lastly, hydrogels with blood origin show shear-thinning flow

behaviour whereas water/glycerol solutions have Newtonian properties. The resistance

(viscosity) of a shear-thinning fluid decreases with higher rate of shear stress and

increases with lower shear rates.

The cells inside such a hydrogel will undergo less shear forces during the accelera-

tion phase of the jet, since the viscosity is decreased during this phase. The increasing
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viscosity during jet elongation, on the other hand, will decelerate the jet and thus

reduce the impact forces onto the collector slide (Figure 3). Hence, with an adequate

gap between the donor- and collector-slides these effects reduce shear stress on

printed cells significantly compared to a Newtonian fluid.

Furthermore, we investigated the relationship between the laser pulse energy and gel

layer characteristics (viscosity and layer height) of the applied hydrogel by means of

time-resolved imaging and droplet size evaluation. Here, we demonstrate a nearly lin-

ear relationship between the laser pulse energy and the droplet volume. This relation-

ship correlates with the results from other studies [8,24], working with a similar laser

setup, metallic laser energy-absorbing layer and a water/glycerol solution with constant

viscosity. Furthermore, we demonstrate that the droplet volume has no systematic

dependence on the viscosity at different laser pulse energies. The droplet volume

increased with rising viscosity until a maximum value at a viscosity of 0.1477 Pa·s is

reached. Thereafter, the droplet volume decreased with further rising of the hydrogel’s

viscosity. This non-linear relationship between droplet volume and hydrogel viscosity

correlates with the results of [5], who worked with a comparable setup and a water/

glycerol solution, but without a metallic laser energy absorbing layer. Additionally, this

effect was more pronounced when the height of the hydrogel layer was increased.

Moreover, these results indicate that the maximum droplet volume at a specific viscos-

ity depends on the height of the hydrogel layer. Based on these results two assump-

tions can be made:

(1) For every layer thickness a specific viscosity exists, where the printed droplet

volume reaches its maximum.

(2) The specific viscosity, where the printed droplet volume reaches its maximum,

reduces at a lower thickness of the hydrogel layer.

These observations are important for the development of analytical and computa-

tional approaches in order to clarify the relationship between material characteristics,

laser pulse energy and the printed droplet volume. The theoretical understanding of

this relationship may lead to a bioprinting approach that is capable of printing millions

of femto to picolitre droplets of a crosslinkable hydrogel per second with any desired

cell density.

Conclusions
In order to make droplet deposition by a laser-assisted bioprinting approach more pre-

dictable, the fundamentals of the jet dynamics and the dependencies on laser pulse

energy and fluid properties of a natural hydrogel were investigated by means of time-

resolved imaging and quantitative assessment of the printed droplet diameter. These

findings can be summarized as follows:

(1) Droplet volumes in the range of 10 to 7000 picolitres can be printed by adjust-

ing the viscosity and thickness of the applied hydrogel layer in combination with

the laser pulse energy.

(2) The existence of a counterjet has been proven, verifying the predicted bubble

collapsing theory of the jet formation.
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(3) Laser pulse energy and printed droplet volume have a nearly linear relationship

at a constant viscosity and layer thickness in the energy regime examined.

(4) There is no systematic relationship between the viscosity, the layer thickness,

and the printed droplet volume at different laser pulse energies.

These findings are important for the advancement of laser-assisted bioprinting due to

enabling reliable and predictable volumes of transferred cell-hydrogels.
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